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Database and Database Management System

» Database: an organized collection of data.

» Database Management System (DBMS): a software that interacts with users, other
applications, and the database itself to capture and analyze data.




Relational Databases Management Systems (RDMBSs)

» RDMBSs: the dominant technology for storing structured data in web and business
applications.

» SQL is good
e Rich language and toolset
e Easy to use and integrate
e Many vendors

» They promise: ACID




ACID Properties

» Atomicity
e All included statements in a transaction are either executed or the whole transaction is
aborted without affecting the database.
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ACID Properties

» Atomicity
e All included statements in a transaction are either executed or the whole transaction is
aborted without affecting the database.
» Consistency
e A database is in a consistent state before and after a transaction.
> lIsolation
e Transactions can not see uncommitted changes in the database.
> Durability

e Changes are written to a disk before a database commits a transaction so that committed
data cannot be lost through a power failure.




RDBMS Challenges

» Web-based applications caused spikes.
¢ Internet-scale data size
e High read-write rates
* Frequent schema changes




Let's Scale RDBMSs

» RDBMS were not designed to be distributed.

» Possible solutions:
e Replication
e Sharding




Let's Scale RDBMSs - Replication

» Master/Slave architecture
Master Server

» Scales read operations

o

Slave Server1 Slave Server2




Let's Scale RDBMSs - Sharding

» Dividing the database across many machines.
> It scales read and write operations.

» Cannot execute transactions across shards (partitions).




Scaling RDBMSs is Expensive and Inefficient
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» Avoids: AP ACHE W
Cassandra
» Overhead of ACID properties HBRASE

e Complexity of SQL query ‘: rlq k

» Provides: .mongoDB
. HYPERTABLE«
e Scalablity CON 4 .
e Easy and frequent changes to DB LS eo4) é redls
* Large data volumes




NoSQL Cost and Performance
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RDBMS vs. NoSQL

Database Scales Out

Just add more commodity databasé servers g
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NoSQL Data Models




NoSQL Data Models
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Key-Value Data Model

» Collection of key/value pairs.

» Ordered Key-Value: processing over key ranges.

» Dynamo, Scalaris, Voldemort, Riak, ...




Column-Oriented Data Model

v

Similar to a key/value store, but the value can have multiple attributes (Columns).

v

Column: a set of data values of a particular type.

v

Store and process data by column instead of row.

v

BigTable, Hbase, Cassandra, ...

row-store column-store
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Document Data Model

Similar to a column-oriented store, but values can have complex documents.
» Flexible schema (XML, YAML, JSON, and BSON).
» CouchDB, MongoDB, ...

FirstName: "Bob",
Address: "5 0Oak St.",
Hobby: "sailing"

}

{

FirstName: "Jonathan",
Address: "15 Wanamassa Point Road",
Children: [
{Name: "Michael", Age: 10},
{Name: "Jennifer", Age: 8},




Graph Data Model

» Uses graph structures with nodes, edges, and properties to represent and store data.

» Neo4dJ, InfoGrid, ...
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Consistency



Consistency

» Strong consistency
e After an update completes, any subsequent access will return the updated value.

read(x=xl wrtexx2) _resdix)=x2
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read(x)=x1 readix)=x2
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Consistency

» Strong consistency
e After an update completes, any subsequent access will return the updated value.

read(x=xl wrtexx2) _resdix)=x2

\

read(x)=x1 readix)=x2

\/

read(x)=x1 read(x)=x2

\/

» Eventual consistency
e Does not guarantee that subsequent accesses will return the updated value.
¢ Inconsistency window.
* If no new updates are made to the object, eventually all accesses will return the last
updated value.

resd(xi=xl write(xx2) readix)=x readix)=xz

Yy

readix)=xl readix)=xl readixi=x2

read(x)=xL read(x)=x2 read(x}=x2

\/

Inconsistency Window




Quorum Model

» N: the number of nodes to which a data item is replicated.
» R: the number of nodes a value has to be read from to be accepted.

» W: the number of nodes a new value has to be written to before the write operation
is finished.

To enforce strong consistency: R+ W > N

v




Quorum Model

» N: the number of nodes to which a data item is replicated.
» R: the number of nodes a value has to be read from to be accepted.

» W: the number of nodes a new value has to be written to before the write operation
is finished.

To enforce strong consistency: R+ W > N

v




CAP Theorem

» Consistency
e Consistent state of data after the execution of an operation.
» Availability
¢ Clients can always read and write data.
» Partition Tolerance
» Continue the operation in the presence of network partitions.
» You can choose only two! oty s8] partton

Tolerance

AP Category
Dynamo
Voldemort
Cassandra

CouchDB




Consistency vs. Availability

» The large-scale applications have to be reliable: availability + partition tolerance

> These properties are difficult to achieve with ACID properties.

» The BASE approach forfeits the ACID properties of consistency and isolation in favor
of availability and performance.




BASE Properties

» Basic Availability
 Possibilities of faults but not a fault of the whole system.

» Soft-state
e Copies of a data item may be inconsistent

» Eventually consistent

» Copies becomes consistent at some later time if there are no more updates to that data
item
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» Distributed key/value storage system

» Scalable and Highly available

» CAP: it sacrifices strong consistency for availability: always writable

29 /90



Data Model
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Partitioning

» Key/value, where values are stored as objects.

> If size of data exceeds the capacity of a single machine: partitioning




Partitioning

» Key/value, where values are stored as objects.
> If size of data exceeds the capacity of a single machine: partitioning

» Consistent hashing is one form of sharding (partitioning).




Consistent Hashing

» Hash both data and nodes using the same hash function in a same id space.

» partition = hash(d) mod n, d: data, n: number of nodes




Consistent Hashing

» Hash both data and nodes using the same hash function in a same id space.

» partition = hash(d) mod n, d: data, n: number of nodes

hash("Fatemeh") = 12
hash("Ahmad") = 2
hash("Seif") = 9
hash("Jim") = 14
hash("Sverker") = 4




Replication

» To achieve high availability and durability, data should be replicates on multiple
nodes.




Data Consistency




Data Consistency

» Eventual consistency: updates are propagated asynchronously.

» Each update/modification of an item results in a new and immutable version of the
data.

e Multiple versions of an object may exist.

» Replicas eventually become consistent.




Data Versioning (1/2)

» Use vector clocks for capturing causality, in the form of (node, counter)

e If causal: older version can be forgotten
 |If concurrent: conflict exists, requiring reconciliation




Data Versioning (1/2)

» Use vector clocks for capturing causality, in the form of (node, counter)

e If causal: older version can be forgotten
 |If concurrent: conflict exists, requiring reconciliation

» Version branching can happen due to node/network failures.




Data Versioning (2/2)

write
. . . . handled by S:
» Client C1 writes new object via Sx. l e

D1 ([Sx,1])

write
handled by Sx

D2 ([Sx,2])

write write
handled by Sy handled by Sz

D3 ([Sx,2],[Sy,1]) D4 ([Sx,2],[Sz,1])

reconciled
and wnlten by

D5 ([Sx,31,[Sy.1][Sz,1])
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Data Versioning (2/2)

write
handled by Sx

» Client C1 writes new object via Sx.
. . D1 (1Sx,1])
» C1 updates the object via Sx. )
» C1 updates the object via Sy. l ety S
» C2 reads D2 and updates the Sl

. . write write
object via Sz. handled by Sy handled by Sz

D3 ([Sx,2],[Sy,1]) D4 ([Sx,2],[Sz,1])

reconciled
and wnlten by

D5 ([Sx,31,[Sy.1][Sz,1])




Data Versioning (2/2)

write
» Client C1 writes new object via Sx. l"a"d"?db"s"
. . D1 ([Sx,1])
» C1 updates the object via Sx. )
. . handled by Sx
» C1 updates the object via Sy. l g
D2 ([Sx,2
» C2 reads D2 and updates the _ SRl _
object via Sz. pandied by Sy / \fandﬁ'ﬁy sz
» C3 reads D3 and D4 via Sx. D3 ([Sx,2].[Sy,1]) D4 ([Sx,2],[Sz,1])
e The read context is a —
summary of the clocks of D3 \ /’"d’”‘”e""y

and D4: [(Sx, 2), (Sy, 1), (Sz, 1)].

D5 ([Sx,31,[Sy.1][Sz,1])




Data Versioning (2/2)

write
. . . . handled by S:
Client C1 writes new object via Sx. l e

. . D1 ([Sx,1])
C1 updates the object via Sx. )
. . handled by Sx
C1 updates the object via Sy. l g
D2 ([Sx,2
C2 reads D2 and updates the _ SRl _
object via Sz. pandied by Sy / \fandﬁ'ﬁy sz
C3 reads D3 and D4 via Sx. D3 ([Sx,2],[Sy,1]) D4 ([Sx,2],[Sz,1])
e The read context is a —
summary of the clocks of D3 \ /’"d’”‘”e""y

and D4: [(Sx, 2), (Sy, 1), (Sz, 1)]. 5 e [ i, T
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Dynamo API



Dynamo API

> get(key)
e Return single object or list of objects with conflicting version and context.

» put(key, context, object)

 Store object and context under key.
e Context encodes system metadata, e.g., version number.

40



put Operation

» Coordinator generates new vector clock and writes the new version locally.

» Send to N nodes.

» Wait for response from W nodes.




get Operation

>

Coordinator requests existing versions from N.
» Wait for response from R nodes.

v

If multiple versions, return all versions that are causally unrelated.

v

Divergent versions are then reconciled.

v

Reconciled version written back.




Membership Management




Membership Management

» Administrator explicitly adds and removes nodes.

» Gossiping to propagate membership changes.

e Eventually consistent view.
¢ O(1) hop overlay.




Adding and Removing Nodes

» A new node X added to system.

e X is assigned key ranges w.r.t. its virtual servers.
e For each key range, it transfers the data items.

X=Data\(X,B)
Data=Data\(A,X)
Drop G

X=B\(X,B)
B=B\(AX)
Drop A




Adding and Removing Nodes

» A new node X added to system.

e X is assigned key ranges w.r.t. its virtual servers.
e For each key range, it transfers the data items.

X=Data\(X,B)
Data=Data\(A,X)
Drop G

X=B\(X,B)
B=B\(AX)
Drop A

» Removing a node: reallocation of keys is a reverse process of adding nodes.




Failure Detection

> Passive failure detection.
e Use pings only for detection from failed to alive.

» In the absence of client requests, node A doesn’t need to know if node B is alive.

46 /90



BigTable




Motivation

» Lots of (semi-)structured data at Google.
e URLs, TextGreenper-user data, geographical locations, ...

» Big data
* Billions of URLs, hundreds of millions of users, 1004+TB of satellite image data, ...




BigTable

>

Distributed multi-level map

Fault-tolerant

v

v

Scalable and self-managing

v

CAP: strong consistency and partition tolerance
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Column-Oriented Data Model (1/2)

» Similar to a key/value store, but the value can have multiple attributes (Columns).

> Column: a set of data values of a particular type.

» Store and process data by column instead of row.

row-store column-store




> In many analytical databases queries, few attributes are needed.

» Column values are stored contiguously on disk: reduces |/0.
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BigTable Data Model (1/5)

» Table

» Distributed multi-dimensional sparse map




BigTable Data Model (2/5)

> Rows
> Every read or write in a row is atomic.

» Rows sorted in lexicographical order.

“com.cnn.www” 3




BigTable Data Model (3/5)

Column

>

The basic unit of data access.

v

v

Column families: group of (the same type) column keys.

v

Column key naming: family:qualifier

Column family Column family
A — ~
“content.”  “anchor:cnnsi.com” “anchor:my.look.ca

v ! !

‘com.cnn.www” L g




BigTable Data Model (4/5)

» Timestamp

» Each column value may contain multiple versions.

“content:” “anchor:cnnsi.com” “anchor:my.look.ca
f ) )

’—%E o 13
s “<html> ...- Tt

‘com.cnn.www” |




BigTable Data Model (5/5)

» Tablet: contiguous ranges of rows stored together.
> Tables are split by the system when they become too large.

» Each tablet is served by exactly one tablet server.

“content”  “anchor:cnnsi.com” “anchor:my.look.ca

“com.aaa”

“com.cnn.www’

“com.cnn.wwwi/tech”

“content”  “anchor:cnnsi.com” “anchor:my.look.ca

“com.weather”

“com.wikipedia”

“com.zoom”




BigTable Architecture



BigTable Cell

BigTable Cell
BigTable Client
. BigTable Client
BigTable Master Library
Performs metadata ops
and load balancing
T 1
BigTable Tablet Server BigTable Tablet Server
| |
Serves data Serves data
Cluster scheduling system GFS Chubby
Handles failover, Holds tablet Holds metadata,
menitaring data, logs handles master election




bl Main Components

OcH KoN:

» Master server

» Tablet server

» Client library

BigTable Cell
BigTable Client

BigTable Master BlgTLaiberear(‘;’hent

Performs metadata ops

and load balancing

T |
BigTable Tablet Server BigTable Tablet Server
L |
Serves data Serves data
Cluster scheduling system ‘ ‘ GFS ‘ Chubby
Handles failover, Holds tablet Holds metadata,

monitaring data, logs handles master election




Master Server

» Assigns tablets to tablet server.

» Balances tablet server load.

» Garbage collection of unneeded files in GFS.

» Handles schema changes, e.g., table and column family creations

BigTable Cell
BigTable Client

BigTable Master BIQTGE;;' L

Performs ops
and load balancing

BigTable Tablet Server

BigTable Tablet Server
| |

Serves data Serves data
Cluster scheduling system ‘ | GFS Chubby |
Handles failover, Holds tablet Holds metadata,

monitoring data, logs handles master election




Tablet Server

» Can be added or removed dynamically.
» Each manages a set of tablets (typically 10-1000 tablets/server).
» Handles read/write requests to tablets.
» Splits tablets when too large. BigTable Cell S
Performs ops.
and load
[ BigTable Tablet Server ; ; BigTable Tablet Server
Serves data Serves data
Cluster scheduling system | | GFS rchubby |
Handles failover, Holds tablet Holds metadata,
monitoring data, logs handles master election




Client Library

>

Library that is linked into every client.

v

Client data does not move though the master.

v

Clients communicate directly with tablet servers for reads/writes.

BigTable Cell
BigTable Client

BigTable Master B'QTG::;:;' L3

Performs ops
and load balancing

BigTable Tablet Server

BigTable Tablet Server
| |

Serves data Serves data
Cluster scheduling system ‘ | GFS Chubby |
Handles failover, Holds tablet Holds metadata,

monitoring data, logs handles master election




Building Blocks

» The building blocks for the BigTable are:
 Google File System (GFS): raw storage
e Chubby: distributed lock manager
e Scheduler: schedules jobs onto machines

BigTable Cell
BigTable Client
A BigTable Client
BigTable Master Library
Performs ops
and load balancing
BigTable Tablet Server BigTable Tablet Server
I |
Serves data Serves data
Cluster scheduling system ‘ | GFS Chubby |
Handles failover, Holds tablet Holds metadata,
monitoring data, logs handles master election




Google File System (GFS)

» Large-scale distributed file system.

> Store log and data files.




Chubby Lock Service

>

Ensure there is only one active master.

v

Store bootstrap location of BigTable data.

Discover tablet servers.

v

v

Store BigTable schema information.

» Store access control lists.




Table Serving



Master Startup

» The master executes the following steps at startup:
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Master Startup

» The master executes the following steps at startup:

e Grabs a unique master lock in Chubby, which prevents concurrent master instantiations.

e Scans the servers directory in Chubby to find the live servers.

e Communicates with every live tablet server to discover what tablets are already assigned
to each server.




Master Startup

» The master executes the following steps at startup:
e Grabs a unique master lock in Chubby, which prevents concurrent master instantiations.
e Scans the servers directory in Chubby to find the live servers.

e Communicates with every live tablet server to discover what tablets are already assigned
to each server.

Scans the METADATA table to learn the set of tablets.




Tablet Assignment

» 1 tablet — 1 tablet server.




Tablet Assignment

» 1 tablet — 1 tablet server.

> Master uses Chubby to keep tracks of live tablet serves and unassigned tablets.
e When a tablet server starts, it creates and acquires an exclusive lock in Chubby.




Tablet Assignment

» 1 tablet — 1 tablet server.

> Master uses Chubby to keep tracks of live tablet serves and unassigned tablets.
e When a tablet server starts, it creates and acquires an exclusive lock in Chubby.

> Master detects the status of the lock of each tablet server by checking periodically.




Tablet Assignment

1 tablet — 1 tablet server.

>

v

Master uses Chubby to keep tracks of live tablet serves and unassigned tablets.
e When a tablet server starts, it creates and acquires an exclusive lock in Chubby.

v

Master detects the status of the lock of each tablet server by checking periodically.

v

Master is responsible for finding when tablet server is no longer serving its tablets
and reassigning those tablets as soon as possible.




Finding a Tablet

>

Three-level hierarchy.

v

The first level is a file stored in Chubby that contains the location of the root tablet.

v

Root tablet contains location of all tablets in a special METADATA table.

v

METADATA table contains location of each tablet under a row.

v

The client library caches tablet locations.

UserTablet

Other

METADATA
tablets 7 -

UserTableN

Root tablet
Chubby f||e (1st METADATA tablet)

(




SSTable (1/2)

» SSTable file format used internally to store Bigtable data.

» Immutable, sorted file of key-value pairs.

» Each SSTable is stored in a GFS file.

SSTable
SSTable » Tablet 1

SSTable
Table <

SSTable

> Tablet 2

SSTable




SSTable (2/2)

» Chunks of data plus a block index.

e A block index is used to locate blocks.
e The index is loaded into memory when the SSTable is opened.

SSTable

Index

64K || 64K || 64K
block || block || block




Tablet Serving (1/2)

» Updates committed to a commit log.
» Recently committed updates are stored in memory - memtable

> Older updates are stored in a sequence of SSTables.

Recent updates kept sorted
in memory Memtable and sstables are merged to
serve a read request

memtable |——— | read

Memeory /\

GFS table /
log

sstable | | sstable

—~(e]

Write operations are logged




Tablet Serving (2/2)

» Strong consistency

e Only one tablet server is responsible for a given piece of data.
¢ Replication is handled on the GFS layer.




Tablet Serving (2/2)

» Strong consistency

e Only one tablet server is responsible for a given piece of data.
¢ Replication is handled on the GFS layer.

» Trade-off with availability

 If a tablet server fails, its portion of data is temporarily unavailable until a new server
is assigned.




Loading Tablets

>

To load a tablet, a tablet server does the following:

v

Finds locaton of tablet through its METADATA.
e Metadata for a tablet includes list of SSTables and set of redo points.

v

Read SSTables index blocks into memory.

v

Read the commit log since the redo point and reconstructs the memtable.




Compaction

» Minor compaction
o Convert the memtable into an SSTable.




Compaction

» Minor compaction
o Convert the memtable into an SSTable.

» Merging compaction

* Reads the contents of a few SSTables and the memtable, and writes out a new
SSTable.




Compaction

» Minor compaction
o Convert the memtable into an SSTable.

» Merging compaction
* Reads the contents of a few SSTables and the memtable, and writes out a new
SSTable.

» Major compaction

e Merging compaction that results in only one SSTable.
* No deleted records, only sensitive live data.




BigTable vs. HBase

| BigTable | HBase |
GFS HDFS
Tablet Server | Region Server
SSTable StoreFile
Memtable MemStore
Chubby ZooKeeper




HBase Example

# Create the table "test"”, with the column family "cf"
create ’test’, ’cf’

# Use describe to get the description of the "test" table
describe ’test’

# Put data in the "test" table

put ’test’, ’rowl’, ’cf:a’, ’valuel’
put ’test’, ’row2’, ’cf:b’, ’value2’
put ’test’, ’row3d’, ’cf:c’, ’valued’

# Scan the table for all data at once
scan ’test’

# To get a single row of data at a time, use the get command
get ’test’, ’rowl’




Cassandra



Cassandra

amazoncom

-




From Dynamo

» Symmetric P2P architecture

v

Gossip based discovery and error detection

v

Distributed key-value store: partitioning and topology discovery

v

Eventual consistency




From BigTable

» Sparse Column oriented sparse array

» SSTable disk storage

* Append-only commit log

¢ Memtable (buffering and sorting)
e Immutable sstable files

e Compaction




Cassandra Example

# Create a keyspace called "test"

# (a keyspace %s similar to a database in the RDBMS)

create keyspace test

with replication = {’class’: ’SimpleStrategy’, ’replication_factor’: 1};

# Print the list of keyspaces
describe keyspaces;

# Navigate to the "test" keyspace
use test

# Create the "words" table in the "test" keyspace
create table words (word text, count int, primary key (word));

# Insert a Tow
insert into words(word, count) values(’hello’, 5);

# Look at the table
select * from words;




Summary




Summary

NoSQL data models: key-value, column-oriented, document-oriented, graph-based

>

v

Sharding and consistent hashing

ACID vs. BASE

>

» CAP (Consistency vs. Availability)




Summary

» Dynamo: key/value storage: put and get
» Data partitioning: consistent hashing
» Replication: several nodes, preference list

» Data versioning: vector clock, resolve conflict at read time by the application

» Membership management: join/leave by admin, gossip-based to update the nodes’
views, ping to detect failure




Summary

>

BigTable

Column-oriented

v

>

» Basic components: GFS, SSTable, Chubby

Main components: master, tablet server, client library
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