NoSQL Databases

Amir H. Payberah
payberah@Qkth.se
03/09/2018

The Course Web Page

https://id2221kth.github.io

https://id2221kth.github.io

Where Are We?

Data Processing

Pregel, GraphLab, PowerGraph Spark SQL Milib
GraphX, X-Streem, Chaos Tensorflow

MapReduce, Dryad Storm, SEEP, Naiad, Spark Streaming, Flink,
FlumeJava, Spark Millwheel, Google Dataflow

Data Storage

Dynamo, BigTable,
GFS, Flat FS Cassandra

Resource Management

Mesos, YARN

Database and Database Management System

» Database: an organized collection of data.

» Database Management System (DBMS): a software that interacts with users, other
applications, and the database itself to capture and analyze data.

Relational Databases Management Systems (RDMBSs)

» RDMBSs: the dominant technology for storing structured data in web and business
applications.

» SQL is good
e Rich language and toolset
e Easy to use and integrate
e Many vendors

» They promise: ACID

ACID Properties

» Atomicity
e All included statements in a transaction are either executed or the whole transaction is
aborted without affecting the database.

ACID Properties

» Atomicity
e All included statements in a transaction are either executed or the whole transaction is
aborted without affecting the database.

» Consistency
» A database is in a consistent state before and after a transaction.

ACID Properties

» Atomicity
e All included statements in a transaction are either executed or the whole transaction is
aborted without affecting the database.

» Consistency
» A database is in a consistent state before and after a transaction.

> lIsolation
e Transactions can not see uncommitted changes in the database.

ACID Properties

» Atomicity
e All included statements in a transaction are either executed or the whole transaction is
aborted without affecting the database.
» Consistency
e A database is in a consistent state before and after a transaction.
> lIsolation
e Transactions can not see uncommitted changes in the database.
> Durability

e Changes are written to a disk before a database commits a transaction so that committed
data cannot be lost through a power failure.

RDBMS Challenges

» Web-based applications caused spikes.
¢ Internet-scale data size
e High read-write rates
* Frequent schema changes

Let's Scale RDBMSs

» RDBMS were not designed to be distributed.

» Possible solutions:
e Replication
e Sharding

Let's Scale RDBMSs - Replication

» Master/Slave architecture
Master Server

» Scales read operations

o

Slave Server1 Slave Server2

Let's Scale RDBMSs - Sharding

» Dividing the database across many machines.
> It scales read and write operations.

» Cannot execute transactions across shards (partitions).

Scaling RDBMSs is Expensive and Inefficient

Application Response Time

"g‘ Won't |

1
O scale i
£ S beyond 1
] this |
@ oint !
> P 1
(7] 1

Users

[http://www.couchbase.com /sites /default/files /uploads/all /whitepapers/NoSQLWhitepaper.pdf]

» Avoids: AP ACHE W
Cassandra
» Overhead of ACID properties HBRASE

e Complexity of SQL query ‘: rlq k

» Provides: .mongoDB
. HYPERTABLE«
e Scalablity CON 4 .
e Easy and frequent changes to DB LS eo4) é redls
* Large data volumes

NoSQL Cost and Performance

(/]
E
'—
[}
0
| o
(o]
Q.
0
(]
"(;,' - -
[=
8 o
=
£ S
o a
> o
n <

Users

[http://www.couchbase.com/sites /default/files/uploads/all /whitepapers/NoSQLWhitepaper. pdf]

RDBMS vs. NoSQL

Database Scales Out

Just add more commodity databasé servers g

s

@

(]

/ S

o

(]

(]

7 —

o =

0 3

£ (¢}

. s

2 o

(7] g
Users

[http://www.couchbase.com/sites/default/files/uploads/all /whitepapers/NoSQLWhitepaper.pdf]

NoSQL Data Models

NoSQL Data Models

5 §

KeyValue Ordered Key-alue Column oriented Document,
ull-Toxt Search

3
e

[http://highlyscalable.wordpress.com/2012/03/01 /nosql-data-modeling-techniques]

Key-Value Data Model

» Collection of key/value pairs.

» Ordered Key-Value: processing over key ranges.

» Dynamo, Scalaris, Voldemort, Riak, ...

Column-Oriented Data Model

v

Similar to a key/value store, but the value can have multiple attributes (Columns).

v

Column: a set of data values of a particular type.

v

Store and process data by column instead of row.

v

BigTable, Hbase, Cassandra, ...

row-store column-store

oss I scro v Moo

Document Data Model

Similar to a column-oriented store, but values can have complex documents.
» Flexible schema (XML, YAML, JSON, and BSON).
» CouchDB, MongoDB, ...

FirstName: "Bob",
Address: "5 0Oak St.",
Hobby: "sailing"

}

{

FirstName: "Jonathan",
Address: "15 Wanamassa Point Road",
Children: [
{Name: "Michael", Age: 10},
{Name: "Jennifer", Age: 8},

Graph Data Model

» Uses graph structures with nodes, edges, and properties to represent and store data.

» Neo4dJ, InfoGrid, ...

s
o
N ROt

[
(0%
e
1 103
T Me, b,

[http://en.wikipedia.org/wiki/Graph_database]

Consistency

Consistency

» Strong consistency
e After an update completes, any subsequent access will return the updated value.

read(x=xl wrtexx2) _resdix)=x2

\

read(x)=x1 readix)=x2

\/

read(x)=x1 read(x)=x2

\/

Consistency

» Strong consistency
e After an update completes, any subsequent access will return the updated value.

read(x=xl wrtexx2) _resdix)=x2

\

read(x)=x1 readix)=x2

\/

read(x)=x1 read(x)=x2

\/

» Eventual consistency
e Does not guarantee that subsequent accesses will return the updated value.
¢ Inconsistency window.
* If no new updates are made to the object, eventually all accesses will return the last
updated value.

resd(xi=xl write(xx2) readix)=x readix)=xz

Yy

readix)=xl readix)=xl readixi=x2

read(x)=xL read(x)=x2 read(x}=x2

\/

Inconsistency Window

Quorum Model

» N: the number of nodes to which a data item is replicated.
» R: the number of nodes a value has to be read from to be accepted.

» W: the number of nodes a new value has to be written to before the write operation
is finished.

To enforce strong consistency: R+ W > N

v

Quorum Model

» N: the number of nodes to which a data item is replicated.
» R: the number of nodes a value has to be read from to be accepted.

» W: the number of nodes a new value has to be written to before the write operation
is finished.

To enforce strong consistency: R+ W > N

v

CAP Theorem

» Consistency
e Consistent state of data after the execution of an operation.
» Availability
¢ Clients can always read and write data.
» Partition Tolerance
» Continue the operation in the presence of network partitions.
» You can choose only two! oty s8] partton

Tolerance

AP Category
Dynamo
Voldemort
Cassandra

CouchDB

Consistency vs. Availability

» The large-scale applications have to be reliable: availability + partition tolerance

> These properties are difficult to achieve with ACID properties.

» The BASE approach forfeits the ACID properties of consistency and isolation in favor
of availability and performance.

BASE Properties

» Basic Availability
 Possibilities of faults but not a fault of the whole system.

» Soft-state
e Copies of a data item may be inconsistent

» Eventually consistent

» Copies becomes consistent at some later time if there are no more updates to that data
item

P
fKTHE
e

27/90

Dyanmo

» Distributed key/value storage system

» Scalable and Highly available

» CAP: it sacrifices strong consistency for availability: always writable

29 /90

Data Model

Data Model

>
P,
Ry
e
SN

KeyValue Ordered Key-alue Column oriented

-)

=]

- e

H - .
\

“Delivery

[http://highlyscalable.wordpress.com/2012/03/01 /nosql-data-modeling-techniques]

Partitioning

» Key/value, where values are stored as objects.

> If size of data exceeds the capacity of a single machine: partitioning

Partitioning

» Key/value, where values are stored as objects.
> If size of data exceeds the capacity of a single machine: partitioning

» Consistent hashing is one form of sharding (partitioning).

Consistent Hashing

» Hash both data and nodes using the same hash function in a same id space.

» partition = hash(d) mod n, d: data, n: number of nodes

Consistent Hashing

» Hash both data and nodes using the same hash function in a same id space.

» partition = hash(d) mod n, d: data, n: number of nodes

hash("Fatemeh") = 12
hash("Ahmad") = 2
hash("Seif") = 9
hash("Jim") = 14
hash("Sverker") = 4

Replication

» To achieve high availability and durability, data should be replicates on multiple
nodes.

Data Consistency

Data Consistency

» Eventual consistency: updates are propagated asynchronously.

» Each update/modification of an item results in a new and immutable version of the
data.

e Multiple versions of an object may exist.

» Replicas eventually become consistent.

Data Versioning (1/2)

» Use vector clocks for capturing causality, in the form of (node, counter)

e If causal: older version can be forgotten
 |If concurrent: conflict exists, requiring reconciliation

Data Versioning (1/2)

» Use vector clocks for capturing causality, in the form of (node, counter)

e If causal: older version can be forgotten
 |If concurrent: conflict exists, requiring reconciliation

» Version branching can happen due to node/network failures.

Data Versioning (2/2)

write
. . . . handled by S:
» Client C1 writes new object via Sx. l e

D1 ([Sx,1])

write
handled by Sx

D2 ([Sx,2])

write write
handled by Sy handled by Sz

D3 ([Sx,2],[Sy,1]) D4 ([Sx,2],[Sz,1])

reconciled
and wnlten by

D5 ([Sx,31,[Sy.1][Sz,1])

Data Versioning (2/2)

write
» Client C1 writes new object via Sx. lha"d'e“"sx
. . D1 (ISx,11)
» C1 updates the object via Sx. l

write
handled by Sx

D2 ([Sx,2])

write write
handled by Sy handled by Sz

D3 ([Sx,2],[Sy,1]) D4 ([Sx,2],[Sz,1])

reconciled
and wnlten by

D5 ([Sx,31,[Sy.1][Sz,1])

Data Versioning (2/2)

write
. . . . handled by S:
» Client C1 writes new object via Sx. l e

. . D1 ([Sx,1])
» C1 updates the object via Sx.)
. . handled by Sx
» C1 updates the object via Sy. l g
D2 ([Sx,2])

write write
handled by Sy handled by Sz

D3 ([Sx,2],[Sy,1]) D4 ([Sx,2],[Sz,1])

reconciled
and wnlten by

D5 ([Sx,31,[Sy.1][Sz,1])

Data Versioning (2/2)

write
handled by Sx

» Client C1 writes new object via Sx.
. . D1 (1Sx,1])
» C1 updates the object via Sx.)
» C1 updates the object via Sy. l ety S
» C2 reads D2 and updates the Sl

. . write write
object via Sz. handled by Sy handled by Sz

D3 ([Sx,2],[Sy,1]) D4 ([Sx,2],[Sz,1])

reconciled
and wnlten by

D5 ([Sx,31,[Sy.1][Sz,1])

Data Versioning (2/2)

write
» Client C1 writes new object via Sx. l"a"d"?db"s"
. . D1 ([Sx,1])
» C1 updates the object via Sx.)
. . handled by Sx
» C1 updates the object via Sy. l g
D2 ([Sx,2
» C2 reads D2 and updates the _ SRl _
object via Sz. pandied by Sy / \fandﬁ'ﬁy sz
» C3 reads D3 and D4 via Sx. D3 ([Sx,2].[Sy,1]) D4 ([Sx,2],[Sz,1])
e The read context is a —
summary of the clocks of D3 \ /’"d’”‘”e""y

and D4: [(Sx, 2), (Sy, 1), (Sz, 1)].

D5 ([Sx,31,[Sy.1][Sz,1])

Data Versioning (2/2)

write
. . . . handled by S:
Client C1 writes new object via Sx. l e

. . D1 ([Sx,1])
C1 updates the object via Sx.)
. . handled by Sx
C1 updates the object via Sy. l g
D2 ([Sx,2
C2 reads D2 and updates the _ SRl _
object via Sz. pandied by Sy / \fandﬁ'ﬁy sz
C3 reads D3 and D4 via Sx. D3 ([Sx,2],[Sy,1]) D4 ([Sx,2],[Sz,1])
e The read context is a —
summary of the clocks of D3 \ /’"d’”‘”e""y

and D4: [(Sx, 2), (Sy, 1), (Sz, 1)]. 5 e [i, T

Reconciliation

Dynamo API

Dynamo API

> get(key)
e Return single object or list of objects with conflicting version and context.

» put(key, context, object)

 Store object and context under key.
e Context encodes system metadata, e.g., version number.

40

put Operation

» Coordinator generates new vector clock and writes the new version locally.

» Send to N nodes.

» Wait for response from W nodes.

get Operation

>

Coordinator requests existing versions from N.
» Wait for response from R nodes.

v

If multiple versions, return all versions that are causally unrelated.

v

Divergent versions are then reconciled.

v

Reconciled version written back.

Membership Management

Membership Management

» Administrator explicitly adds and removes nodes.

» Gossiping to propagate membership changes.

e Eventually consistent view.
¢ O(1) hop overlay.

Adding and Removing Nodes

» A new node X added to system.

e X is assigned key ranges w.r.t. its virtual servers.
e For each key range, it transfers the data items.

X=Data\(X,B)
Data=Data\(A,X)
Drop G

X=B\(X,B)
B=B\(AX)
Drop A

Adding and Removing Nodes

» A new node X added to system.

e X is assigned key ranges w.r.t. its virtual servers.
e For each key range, it transfers the data items.

X=Data\(X,B)
Data=Data\(A,X)
Drop G

X=B\(X,B)
B=B\(AX)
Drop A

» Removing a node: reallocation of keys is a reverse process of adding nodes.

Failure Detection

> Passive failure detection.
e Use pings only for detection from failed to alive.

» In the absence of client requests, node A doesn’t need to know if node B is alive.

46 /90

BigTable

Motivation

» Lots of (semi-)structured data at Google.
e URLs, TextGreenper-user data, geographical locations, ...

» Big data
* Billions of URLs, hundreds of millions of users, 1004+TB of satellite image data, ...

BigTable

>

Distributed multi-level map

Fault-tolerant

v

v

Scalable and self-managing

v

CAP: strong consistency and partition tolerance

P ey

R1e .'-rh ® vE

Data Model

Data Model

>
P,
Ry
e
SN

KeyValue Ordered Key-alue Column oriented

-)

=]

- e

H - .
\

“Delivery

[http://highlyscalable.wordpress.com/2012/03/01 /nosql-data-modeling-techniques]

Column-Oriented Data Model (1/2)

» Similar to a key/value store, but the value can have multiple attributes (Columns).

> Column: a set of data values of a particular type.

» Store and process data by column instead of row.

row-store column-store

> In many analytical databases queries, few attributes are needed.

» Column values are stored contiguously on disk: reduces |/0.

g/ pcheors _[364_Thbasefome JGeatiool T chin <head><itte>Hbae ome </t

£ |2 137 [lend [<lunbocby NPt

3 oo [T N EETTE o ST

=
FrE T T
E [Twwenion 0 i Jorsior[owamocamimon]
2 [2 [memsoagon |ow [T e ——
3 Hf34h <NILL> Read aboutit.. {404 Page rot found._

o]|
[364 1337 Hi34h 00001 .|

Gite [Wovetone ot B St
IO = P T T
[104 Pige vt found.

Colurn Orenced terage

[Lars George, “Hbase: The Definitive Guide”, O'Reilly, 2011]

BigTable Data Model (1/5)

» Table

» Distributed multi-dimensional sparse map

BigTable Data Model (2/5)

> Rows
> Every read or write in a row is atomic.

» Rows sorted in lexicographical order.

“com.cnn.www” 3

BigTable Data Model (3/5)

Column

>

The basic unit of data access.

v

v

Column families: group of (the same type) column keys.

v

Column key naming: family:qualifier

Column family Column family
A — ~
“content.” “anchor:cnnsi.com” “anchor:my.look.ca

v ! !

‘com.cnn.www” L g

BigTable Data Model (4/5)

» Timestamp

» Each column value may contain multiple versions.

“content:” “anchor:cnnsi.com” “anchor:my.look.ca
f))

’—%E o 13
s “<html> ...- Tt

‘com.cnn.www” |

BigTable Data Model (5/5)

» Tablet: contiguous ranges of rows stored together.
> Tables are split by the system when they become too large.

» Each tablet is served by exactly one tablet server.

“content” “anchor:cnnsi.com” “anchor:my.look.ca

“com.aaa”

“com.cnn.www’

“com.cnn.wwwi/tech”

“content” “anchor:cnnsi.com” “anchor:my.look.ca

“com.weather”

“com.wikipedia”

“com.zoom”

BigTable Architecture

BigTable Cell

BigTable Cell
BigTable Client
. BigTable Client
BigTable Master Library
Performs metadata ops
and load balancing
T 1
BigTable Tablet Server BigTable Tablet Server
| |
Serves data Serves data
Cluster scheduling system GFS Chubby
Handles failover, Holds tablet Holds metadata,
menitaring data, logs handles master election

bl Main Components

OcH KoN:

» Master server

» Tablet server

» Client library

BigTable Cell
BigTable Client

BigTable Master BlgTLaiberear(‘;’hent

Performs metadata ops

and load balancing

T |
BigTable Tablet Server BigTable Tablet Server
L |
Serves data Serves data
Cluster scheduling system ‘ ‘ GFS ‘ Chubby
Handles failover, Holds tablet Holds metadata,

monitaring data, logs handles master election

Master Server

» Assigns tablets to tablet server.

» Balances tablet server load.

» Garbage collection of unneeded files in GFS.

» Handles schema changes, e.g., table and column family creations

BigTable Cell
BigTable Client

BigTable Master BIQTGE;;' L

Performs ops
and load balancing

BigTable Tablet Server

BigTable Tablet Server
| |

Serves data Serves data
Cluster scheduling system ‘ | GFS Chubby |
Handles failover, Holds tablet Holds metadata,

monitoring data, logs handles master election

Tablet Server

» Can be added or removed dynamically.
» Each manages a set of tablets (typically 10-1000 tablets/server).
» Handles read/write requests to tablets.
» Splits tablets when too large. BigTable Cell S
Performs ops.
and load
[BigTable Tablet Server ; ; BigTable Tablet Server
Serves data Serves data
Cluster scheduling system | | GFS rchubby |
Handles failover, Holds tablet Holds metadata,
monitoring data, logs handles master election

Client Library

>

Library that is linked into every client.

v

Client data does not move though the master.

v

Clients communicate directly with tablet servers for reads/writes.

BigTable Cell
BigTable Client

BigTable Master B'QTG::;:;' L3

Performs ops
and load balancing

BigTable Tablet Server

BigTable Tablet Server
| |

Serves data Serves data
Cluster scheduling system ‘ | GFS Chubby |
Handles failover, Holds tablet Holds metadata,

monitoring data, logs handles master election

Building Blocks

» The building blocks for the BigTable are:
 Google File System (GFS): raw storage
e Chubby: distributed lock manager
e Scheduler: schedules jobs onto machines

BigTable Cell
BigTable Client
A BigTable Client
BigTable Master Library
Performs ops
and load balancing
BigTable Tablet Server BigTable Tablet Server
I |
Serves data Serves data
Cluster scheduling system ‘ | GFS Chubby |
Handles failover, Holds tablet Holds metadata,
monitoring data, logs handles master election

Google File System (GFS)

» Large-scale distributed file system.

> Store log and data files.

Chubby Lock Service

>

Ensure there is only one active master.

v

Store bootstrap location of BigTable data.

Discover tablet servers.

v

v

Store BigTable schema information.

» Store access control lists.

Table Serving

Master Startup

» The master executes the following steps at startup:

69 /90

Master Startup

» The master executes the following steps at startup:

e Grabs a unique master lock in Chubby, which prevents concurrent master instantiations.

Master Startup

» The master executes the following steps at startup:

e Grabs a unique master lock in Chubby, which prevents concurrent master instantiations.

e Scans the servers directory in Chubby to find the live servers.

Master Startup

» The master executes the following steps at startup:

e Grabs a unique master lock in Chubby, which prevents concurrent master instantiations.

e Scans the servers directory in Chubby to find the live servers.

e Communicates with every live tablet server to discover what tablets are already assigned
to each server.

Master Startup

» The master executes the following steps at startup:
e Grabs a unique master lock in Chubby, which prevents concurrent master instantiations.
e Scans the servers directory in Chubby to find the live servers.

e Communicates with every live tablet server to discover what tablets are already assigned
to each server.

Scans the METADATA table to learn the set of tablets.

Tablet Assignment

» 1 tablet — 1 tablet server.

Tablet Assignment

» 1 tablet — 1 tablet server.

> Master uses Chubby to keep tracks of live tablet serves and unassigned tablets.
e When a tablet server starts, it creates and acquires an exclusive lock in Chubby.

Tablet Assignment

» 1 tablet — 1 tablet server.

> Master uses Chubby to keep tracks of live tablet serves and unassigned tablets.
e When a tablet server starts, it creates and acquires an exclusive lock in Chubby.

> Master detects the status of the lock of each tablet server by checking periodically.

Tablet Assignment

1 tablet — 1 tablet server.

>

v

Master uses Chubby to keep tracks of live tablet serves and unassigned tablets.
e When a tablet server starts, it creates and acquires an exclusive lock in Chubby.

v

Master detects the status of the lock of each tablet server by checking periodically.

v

Master is responsible for finding when tablet server is no longer serving its tablets
and reassigning those tablets as soon as possible.

Finding a Tablet

>

Three-level hierarchy.

v

The first level is a file stored in Chubby that contains the location of the root tablet.

v

Root tablet contains location of all tablets in a special METADATA table.

v

METADATA table contains location of each tablet under a row.

v

The client library caches tablet locations.

UserTablet

Other

METADATA
tablets 7 -

UserTableN

Root tablet
Chubby f||e (1st METADATA tablet)

(

SSTable (1/2)

» SSTable file format used internally to store Bigtable data.

» Immutable, sorted file of key-value pairs.

» Each SSTable is stored in a GFS file.

SSTable
SSTable » Tablet 1

SSTable
Table <

SSTable

> Tablet 2

SSTable

SSTable (2/2)

» Chunks of data plus a block index.

e A block index is used to locate blocks.
e The index is loaded into memory when the SSTable is opened.

SSTable

Index

64K || 64K || 64K
block || block || block

Tablet Serving (1/2)

» Updates committed to a commit log.
» Recently committed updates are stored in memory - memtable

> Older updates are stored in a sequence of SSTables.

Recent updates kept sorted
in memory Memtable and sstables are merged to
serve a read request

memtable |——— | read

Memeory /\

GFS table /
log

sstable | | sstable

—~(e]

Write operations are logged

Tablet Serving (2/2)

» Strong consistency

e Only one tablet server is responsible for a given piece of data.
¢ Replication is handled on the GFS layer.

Tablet Serving (2/2)

» Strong consistency

e Only one tablet server is responsible for a given piece of data.
¢ Replication is handled on the GFS layer.

» Trade-off with availability

 If a tablet server fails, its portion of data is temporarily unavailable until a new server
is assigned.

Loading Tablets

>

To load a tablet, a tablet server does the following:

v

Finds locaton of tablet through its METADATA.
e Metadata for a tablet includes list of SSTables and set of redo points.

v

Read SSTables index blocks into memory.

v

Read the commit log since the redo point and reconstructs the memtable.

Compaction

» Minor compaction
o Convert the memtable into an SSTable.

Compaction

» Minor compaction
o Convert the memtable into an SSTable.

» Merging compaction

* Reads the contents of a few SSTables and the memtable, and writes out a new
SSTable.

Compaction

» Minor compaction
o Convert the memtable into an SSTable.

» Merging compaction
* Reads the contents of a few SSTables and the memtable, and writes out a new
SSTable.

» Major compaction

e Merging compaction that results in only one SSTable.
* No deleted records, only sensitive live data.

BigTable vs. HBase

| BigTable | HBase |
GFS HDFS
Tablet Server | Region Server
SSTable StoreFile
Memtable MemStore
Chubby ZooKeeper

HBase Example

Create the table "test"”, with the column family "cf"
create ’test’, ’cf’

Use describe to get the description of the "test" table
describe ’test’

Put data in the "test" table

put ’test’, ’rowl’, ’cf:a’, ’valuel’
put ’test’, ’row2’, ’cf:b’, ’value2’
put ’test’, ’row3d’, ’cf:c’, ’valued’

Scan the table for all data at once
scan ’test’

To get a single row of data at a time, use the get command
get ’test’, ’rowl’

Cassandra

Cassandra

amazoncom

-

From Dynamo

» Symmetric P2P architecture

v

Gossip based discovery and error detection

v

Distributed key-value store: partitioning and topology discovery

v

Eventual consistency

From BigTable

» Sparse Column oriented sparse array

» SSTable disk storage

* Append-only commit log

¢ Memtable (buffering and sorting)
e Immutable sstable files

e Compaction

Cassandra Example

Create a keyspace called "test"

(a keyspace %s similar to a database in the RDBMS)

create keyspace test

with replication = {’class’: ’SimpleStrategy’, ’replication_factor’: 1};

Print the list of keyspaces
describe keyspaces;

Navigate to the "test" keyspace
use test

Create the "words" table in the "test" keyspace
create table words (word text, count int, primary key (word));

Insert a Tow
insert into words(word, count) values(’hello’, 5);

Look at the table
select * from words;

Summary

Summary

NoSQL data models: key-value, column-oriented, document-oriented, graph-based

>

v

Sharding and consistent hashing

ACID vs. BASE

>

» CAP (Consistency vs. Availability)

Summary

» Dynamo: key/value storage: put and get
» Data partitioning: consistent hashing
» Replication: several nodes, preference list

» Data versioning: vector clock, resolve conflict at read time by the application

» Membership management: join/leave by admin, gossip-based to update the nodes’
views, ping to detect failure

Summary

>

BigTable

Column-oriented

v

>

» Basic components: GFS, SSTable, Chubby

Main components: master, tablet server, client library

References

>

G. DeCandia et al., Dynamo: amazon's highly available key-value store, ACM
SIGOPS operating systems review. Vol. 41. No. 6. ACM, 2007.

v

F. Chang et al., Bigtable: A distributed storage system for structured data, ACM
Transactions on Computer Systems (TOCS) 26.2, 2008.

A. Lakshman et al.,, Cassandra: a decentralized structured storage system, ACM
SIGOPS Operating Systems Review 44.2, 2010.

v

Questions?

