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Where Are We?
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Stream Processing (1/4)

I Stream processing is the act of continuously incorporating new data to compute a
result.
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Stream Processing (2/4)

I The input data is unbounded.
• A series of events, no predetermined beginning or end.

• E.g., credit card transactions, clicks on a website, or sensor readings from IoT devices.
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Stream Processing (3/4)

I User applications can then compute various queries over this stream of events.
• E.g., tracking a running count of each type of event or aggregating them into hourly

windows
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Stream Processing (4/4)

I Database Management Systems (DBMS): data-at-rest analytics
• Store and index data before processing it.
• Process data only when explicitly asked by the users.

I Stream Processing Systems (SPS): data-in-motion analytics
• Processing information as it flows, without storing them persistently.
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Stream Processing Systems Stack
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Data Stream Storage

8 / 102



The Problem

I We need disseminate streams of events from various producers to various consumers.
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Example

I Suppose you have a website, and every time someone loads a page, you send a viewed
page event to consumers.

I The consumers may do any of the following:
• Store the message in HDFS for future analysis
• Count page views and update a dashboard
• Trigger an alert if a page view fails
• Send an email notification to another user
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Possible Solutions

I Messaging systems

I Partitioned logs
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What is Messaging System?

I Messaging system is an approach to notify consumers about new events.

I Messaging systems
• Direct messaging
• Message brokers
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Direct Messaging (1/2)

I Necessary in latency critical applications (e.g., remote surgery).

I Both consumers and producers have to be online at the same time.

I A producer sends a message containing the event, which is pushed to consumers.
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Direct Messaging (2/2)

I What happens if a consumer crashes or temporarily goes offline? (not durable)

I What happens if producers send messages faster than the consumers can process?
• Dropping messages
• Backpressure

I We need message brokers that can log events to process at a later time.
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Message Broker (1/2)

I A message broker decouples the producer-consumer interaction.

I It runs as a server, with producers and consumers connecting to it as clients.

I Producers write messages to the broker, and consumers receive them by reading them
from the broker.

I Consumers are generally asynchronous.
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Message Broker (2/2)

I When multiple consumers read messages in the same topic.

I Load balancing: each message is delivered to one of the consumers.

I Fan-out: each message is delivered to all of the consumers.
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Possible Solutions

I Messaging systems

I Partitioned logs
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Partitioned Logs (1/2)

I Log-based message brokers combine the durable storage approach with the low-
latency notification facilities.

I A log is an append-only sequence of records on disk.

I A producer sends a message by appending it to the end of the log.

I A consumer receives messages by reading the log sequentially.
• It waits for a notification, if it reaches the end of the log.
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Partitioned Logs (2/2)

I To scale up the system, logs can be partitioned hosted on different machines.

I A topic is a group of partitions that all carry messages of the same type.

I Within each partition, the broker assigns a monotonically increasing sequence number
(offset) to every message
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Kafka - A Log-Based Message Broker
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Kafka (1/5)

I Kafka is a distributed, topic oriented, partitioned, replicated commit log service.
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Kafka (2/5)
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Kafka (3/5)
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Kafka (5/5)

I Kafka is a distributed, topic oriented, partitioned, replicated commit log service.
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Logs, Topics and Partition (1/5)

I Kafka is about logs.

I Topics are queues: a stream of messages of a particular type
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Logs, Topics and Partition (2/5)

I Each message is assigned a sequential id called an offset.
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Logs, Topics and Partition (3/5)

I Topics are logical collections of partitions (the physical files).
• Ordered
• Append only
• Immutable
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Logs, Topics and Partition (4/5)

I Ordering is only guaranteed within a partition for a topic.

I Messages sent by a producer to a particular topic partition will be appended in the
order they are sent.

I A consumer instance sees messages in the order they are stored in the log.
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Logs, Topics and Partition (5/5)

I Partitions of a topic are replicated: fault-tolerance

I A broker contains some of the partitions for a topic.

I One broker is the leader of a partition: all writes and reads must go to the leader.
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Kafka Architecture
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Producers

I Producers publish data to the topics of their choice.

I Producers are responsible for choosing which message to assign to which partition
within the topic.

• Round-robin
• Key-based
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Consumers and Consumer Groups (1/2)

I Consumers pull a range of messages from brokers.

I Multiple consumers can read from same topic on their own pace.

I Consumers maintain the message offset.
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Consumers and Consumer Groups (2/2)

I Consumers can be organized into consumer groups.

I Each message is delivered to only one of the consumers within the group.

I All messages from one partition are consumed only by a single consumer within each
consumer group.
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Brokers

I The published messages are stored at a set of servers called brokers.

I Brokers are sateless.

I Messages are kept on log for predefined period of time.
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Coordination

I Kafka uses Zookeeper for the following tasks:

I Detecting the addition and the removal of brokers and consumers.

I Triggering a rebalance process in each consumer.

I Keeping track of the consumed offset of each partition.
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Delivery Guarantees

I Kafka guarantees that messages from a single partition are delivered to a consumer
in order.

I There is no guarantee on the ordering of messages coming from different partitions.

I Kafka only guarantees at-least-once delivery.

I No exactly-once delivery: two-phase commits
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Start and Work With Kafka

# Start the ZooKeeper

zookeeper-server-start.sh config/zookeeper.properties

# Start the Kafka server

kafka-server-start.sh config/server.properties

# Create a topic, called "avg"

kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1

--topic avg

# Print the list of topics

kafka-topics.sh --list --zookeeper localhost:2181

# Produce messages and send them to the topic "avg"

kafka-console-producer.sh --broker-list localhost:9092 --topic avg

# Consume the messages sent to the topic "avg"

kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic avg --from-beginning
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Programming Kafka in Scala - Producer

object ScalaProducerExample extends App {

def getRandomVal: String = { ... }

val brokers = "localhost:9092"

val topic = "avg"

val props = new Properties()

props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, brokers)

val producer = new KafkaProducer[String, String](props)

while (true) {

val data = new ProducerRecord[String, String](topic, null, getRandomVal)

producer.send(data)

}

producer.close()

}
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Programming Kafka in Scala - Consumer

object ScalaConsumerExample extends App {

val brokers = "localhost:9092"

val groupId = "group1"

val topic = "avg"

val props = new Properties()

props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, brokers)

props.put(ConsumerConfig.GROUP_ID_CONFIG, groupId)

val consumer = new KafkaConsumer[String, String](props)

consumer.subscribe(Collections.singletonList(topic))

Executors.newSingleThreadExecutor.execute(new Runnable {

override def run(): Unit = {

while (true) {

val records = consumer.poll(1000)

for (record <- records) {

System.out.println(record.key() + ", " + record.value() + ", " + record.offset())

}}}})}

41 / 102



Data Stream Processing
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Streaming Data

I Data stream is unbound data, which is broken into a sequence of individual tuples.

I A data tuple is the atomic data item in a data stream.

I Can be structured, semi-structured, and unstructured.
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Streaming Data Processing Design Points

I Event time vs. processing time

I Continuous vs. micro-batch processing

I Record-at-a-Time vs. declarative APIs
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Event Time vs. Processing Time (1/2)

I Event time: the time at which events actually occurred.
• Timestamps inserted into each record at the source.

I Prcosseing time: the time when the record is received at the streaming application.
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Event Time vs. Processing Time (2/2)

I Ideally, event time and processing time should be equal.

I Skew between event time and processing time.

[https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101]
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Streaming Data Processing Design Points

I Event time vs. processing time

I Continuous vs. micro-batch processing

I Record-at-a-Time vs. declarative APIs

48 / 102



Windowing (1/3)

I Window: a buffer associated with an input port to retain previously received tuples.

I Four different windowing management policies.

• Count-based policy: the maximum number of tuples a window buffer can hold
• Time-based policy: a wall-clock time period
• Delta-based policy: a delta threshold in a tuple attribute
• Punctuation-based policy: a punctuation is received
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Windowing (2/3)

I Two types of windows: tumbling and sliding

I Tumbling window: supports batch operations.
• When the buffer fills up, all the tuples are evicted.

I Sliding window: supports incremental operations.
• When the buffer fills up, older tuples are evicted.
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Windowing (3/3)

I In summary:
• Fixed windows
• Sliding windows
• Sessions

[https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101]
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Streaming Data Processing Patterns

I Micro-batch systems
• Batch engines
• Slicing up the unbounded data into a sets of bounded data, then process each batch.

I Continuous processing-based systems
• Each node in the system continually listens to messages from other nodes and outputs

new updates to its child nodes.

52 / 102



Streaming Data Processing Patterns

I Micro-batch systems
• Batch engines
• Slicing up the unbounded data into a sets of bounded data, then process each batch.

I Continuous processing-based systems
• Each node in the system continually listens to messages from other nodes and outputs

new updates to its child nodes.

52 / 102



Processing Patterns - Micro-Batch Processing (1/2)

I Fixed windows

I Windowing input data into fixed-sized windows, then processing each of window as
a bounded data source.

[https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101]
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Processing Patterns - Micro-Batch Processing (2/2)

I Session

I Periods of activity (e.g., for a specific user) terminated by a gap of inactivity.

[https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101]
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Processing Patterns - Continuous Processing (1/4)

I Time-agnostic

I Time is essentially irrelevant, i.e., all relevant logic is data driven.

I E.g., filtering, inner-join, ...

[https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101]
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Processing Patterns - Continuous Processing (2/4)

I Approximation algorithms

I These algorithms typically have some element of time in their design.

I E.g., approximate Top-N, streaming K-means, ...

[https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101]
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Processing Patterns - Continuous Processing (3/4)

I Windowing by processing time

I The system buffers up incoming data into windows until some amount of processing
time has passed.

I E.g., five-minute fixed windows

[https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101]
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Processing Patterns - Continuous Processing (4/4)

I Windowing by event time

I This model is what we use when we need to observe a data source in finite chunks
that reflect the times at which those events actually happened.

[https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101]
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Streaming Data Processing Design Points

I Event time vs. processing time

I Continuous vs. micro-batch processing

I Record-at-a-Time vs. declarative APIs
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Record-at-a-Time vs. Declarative APIs

I Record-at-a-Time API (e.g., Storm)
• Low-level API
• Passes each event to the application and let it react.
• Useful when applications need full control over the processing of data.
• Complicated factors, such as maintaining state, are governed by the application.

I Declarative API (e.g., Spark streaming, Flink, Google Dataflow)
• Aapplications specify what to compute not how to compute it in response to each new

event.
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Streaming Data Processing Model
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Streaming Data Processing (1/2)

I The tuples are processed by the application’s operators or processing element (PE).

I A PE is the basic functional unit in an application.
• A PE processes input tuples, applies a function, and outputs tuples.
• A set of PEs and stream connections, organized into a data flow graph.
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Streaming Data Processing (2/2)

I Data flow programming

I Flow composition: techniques for creating the topology associated with the flow
graph for an application.

I Flow manipulation: the use of PEs to perform transformations on data flows.
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Data Flow Composition

I Data flow composition patterns:
• Static composition
• Dynamic composition
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PEs Tasks (1/2)

I Edge adaptation: converting data from external sources into tuples that can be
consumed by downstream PEs.

I Aggregation: collecting and summarizing a subset of tuples from one or more streams.

I Splitting: partitioning a stream into multiple streams.

I Merging: combining multiple input streams.
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PEs Tasks (2/2)

I Logical and mathematical operations: applying different logical, relational and math-
ematical processing to tuple attributes.

I Sequence manipulation: reordering, delaying, or altering the temporal properties of
a stream.

I Custom data manipulations: applying data mining, machine learning, ...
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PEs States (1/3)

I A PE can either maintain internal state across tuples while processing them, or
process tuples independently of each other.

I Stateful vs. stateless tasks
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PEs States (2/3)

I Stateless tasks: do not maintain state and process each tuple independently of prior
history, or even from the order of arrival of tuples.

I Easily parallelized.

I No synchronization.

I Restart upon failures without the need of any recovery procedure.
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PEs States (3/3)

I Stateful tasks: involves maintaining information across different tuples to detect
complex patterns.

I A PE is usually a synopsis of the tuples received so far.

I A subset of recent tuples kept in a window buffer.
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Runtime Systems

70 / 102



Job and Job Management

I At runtime, an application is represented by one or more jobs.

I Jobs are deployed as a collection of PEs.

I Job management component must identify and track individual PEs, the jobs they
belong to, and associate them with the user that instantiated them.
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Logical Plan vs. Physical Plan (1/3)

I Logical plan: a data flow graph, where the vertices correspond to PEs, and the edges
to stream connections.

I Physical plan: a data flow graph, where the vertices correspond to OS processes, and
the edges to transport connections.
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Logical Plan vs. Physical Plan (2/3)

Logical plan

Different physical plans
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Logical Plan vs. Physical Plan (3/3)

I How to map a network of PEs onto the physical network of nodes?

• Parallelization

• Fault tolerance

• Optimization
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Parallelization
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Parallelization

I How to scale with increasing the number queries and the rate of incoming events?

I Three forms of parallelisms.
• Pipelined parallelism
• Task parallelism
• Data parallelism
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Pipelined Parallelism

I Sequential stages of a computation execute concurrently for different data items.
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Task Parallelism

I Independent processing stages of a larger computation are executed concurrently on
the same or distinct data items.
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Data Parallelism (1/2)

I The same computation takes place concurrently on different data items.
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Data Parallelism (2/2)

I How to allocate data items to each computation instance?
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Fault Tolerance
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Recovery Methods (1/2)

I The recovery methods of streaming frameworks must take:

• Correctness, e.g., data loss and duplicates

• Performance, e.g., low latency
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Recovery Methods (2/2)

I GAP recovery

I Rollback recovery

I Precise recovery
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GAP Recovery (Cold Restart)

I The weakest recovery guarantee

I A new task takes over the operations of the failed task.

I The new task starts from an empty state.

I Tuples can be lost during the recovery phase.
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Rollback Recovery

I The information loss is avoided, but the output may contain duplicate tuples.

I Three types of rollback recovery:
• Active backup
• Passive backup
• Upstream backup
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Rollback Recovery - Active Backup

I Each processing node has an associated backup node.

I Both primary and backup nodes are given the same input.

I The output tuples of the backup node are logged at the output queues and they are
not sent downstream.

I If the primary fails, the backup takes over by sending the logged tuples to all down-
stream neighbors and then continuing its processing.
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Rollback Recovery - Passive Backup

I Periodically check-points processing state to a shared storage.

I The backup node takes over from the latest checkpoint when the primary fails.

I The backup node is always equal or behind the primary.
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Rollback Recovery - Upstream Backup

I Upstream nodes store the tuples until the downstream nodes acknowledge them.

I If a node fails, an empty node rebuilds the latest state of the failed primary from the
logs kept at the upstream server.

I There is no backup node in this model.
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Precise Recovery

I Post-failure output is exactly the same as the output without failure.

I Can be achieved by modifying the algorithms for rollback recovery.
• For example, in passive backup, after a failure occurs the backup node can ask the

downstream nodes for the latest tuples they received and trim the output queues
accordingly to prevent the duplicates.

89 / 102



Optimization
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Optimization - Early Data Reduction

I Reducing the data volume as early as possible.
• Sampling, filtering, quantization, projection, and aggregation.
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Optimization - Reordering

I Operator reordering
• Executing the computationally cheaper operator and/or the more selective operator

earlier reduces the overall cost.
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Optimization - Redundancy Elimination

I Removing the redundant segments from a data flow graph.
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Optimization - Operator Fusion

I It changes only the physical layout.

I If two operators of the two ends of a stream connection are placed on different hosts:
non-negligible network cost

I It is effective, if the per-tuple processing cost of the operators being fused is lower
than the cost of transferring tuples across the stream connection.
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Optimization - Tuple Batching

I Processing a group of tuples in every iteration of an operator’s internal algorithm.

I Can increase the throughput at the expense of higher latency.
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Optimization - Load Balancing

I Flow partitioning to distribute the workload, e.g., data or task parallelism.

I Distributing the load evenly across the different subflows.
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Optimization - Load Shedding

I Used by an operator to reduce the amount of computational resources it uses.
• Decrease the operator latency, and improve the throughput.

I Different techniques: dropping incoming tuples, data reduction techniques (e.g.,
sampling), ...
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Summary
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Summary

I Messaging system and partitioned logs

I Decoupling producers and consumers

I Kafka: distributed, topic oriented, partitioned, replicated log service

I Logs, topcs, partition

I Kafka architecture: producer, consumer (groups), broker, coordinator
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Summary

I SPS vs. DBMS

I Data stream, unbounded data, tuples

I Event-time vs. processing time

I Micro-batch vs. continues processing (windowing)

I PEs and dataflow

I Stateless vs. Stateful PEs

I SPS runtime: parallelization, fault-tolerance, optimization
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Questions?
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