
Scalable Stream Processing - Spark Streaming and Flink

Amir H. Payberah
payberah@kth.se

05/10/2018



The Course Web Page

https://id2221kth.github.io

1 / 79

https://id2221kth.github.io


Where Are We?

2 / 79



Stream Processing Systems Design Issues

I Continuous vs. micro-batch processing

I Record-at-a-Time vs. declarative APIs

3 / 79



Outline

I Spark streaming

I Flink

4 / 79



Spark Streaming

5 / 79



Contribution

I Design issues
• Continuous vs. micro-batch processing
• Record-at-a-Time vs. declarative APIs

6 / 79



Spark Streaming

I Run a streaming computation as a series of very small, deterministic batch jobs.

• Chops up the live stream into batches of X seconds.

• Treats each batch as RDDs and processes them using RDD operations.

• Discretized Stream Processing (DStream)

7 / 79



Spark Streaming

I Run a streaming computation as a series of very small, deterministic batch jobs.

• Chops up the live stream into batches of X seconds.

• Treats each batch as RDDs and processes them using RDD operations.

• Discretized Stream Processing (DStream)

7 / 79



Spark Streaming

I Run a streaming computation as a series of very small, deterministic batch jobs.

• Chops up the live stream into batches of X seconds.

• Treats each batch as RDDs and processes them using RDD operations.

• Discretized Stream Processing (DStream)

7 / 79



DStream (1/2)

I DStream: sequence of RDDs representing a stream of data.

8 / 79



DStream (1/2)

I DStream: sequence of RDDs representing a stream of data.

8 / 79



DStream (2/2)

I Any operation applied on a DStream translates to operations on the underlying RDDs.

9 / 79



StreamingContext

I StreamingContext is the main entry point of all Spark Streaming functionality.

I The second parameter, Seconds(1), represents the time interval at which streaming
data will be divided into batches.

val conf = new SparkConf().setAppName(appName).setMaster(master)

val ssc = new StreamingContext(conf, Seconds(1))

I It can also be created from an existing SparkContext object.

val sc = ... // existing SparkContext

val ssc = new StreamingContext(sc, Seconds(1))

10 / 79



StreamingContext

I StreamingContext is the main entry point of all Spark Streaming functionality.

I The second parameter, Seconds(1), represents the time interval at which streaming
data will be divided into batches.

val conf = new SparkConf().setAppName(appName).setMaster(master)

val ssc = new StreamingContext(conf, Seconds(1))

I It can also be created from an existing SparkContext object.

val sc = ... // existing SparkContext

val ssc = new StreamingContext(sc, Seconds(1))

10 / 79



Operations on DStreams

I DStream operations are broken into the following categories (rather than transfor-
mations and actions):

1. Input operations
2. Transformation
3. Output operations

11 / 79



Operations on DStreams

I Input operations

I Transformation

I Output operations

12 / 79



Input Operations

I Every input DStream is associated with a Receiver object.
• It receives the data from a source and stores it in Spark’s memory for processing.

I Three categories of streaming sources:

1. Basic sources directly available in the StreamingContext API, e.g., file systems, socket
connections.

2. Advanced sources, e.g., Kafka, Flume, Kinesis, Twitter.

3. Custom sources, e.g., user-provided sources.

13 / 79



Input Operations

I Every input DStream is associated with a Receiver object.
• It receives the data from a source and stores it in Spark’s memory for processing.

I Three categories of streaming sources:

1. Basic sources directly available in the StreamingContext API, e.g., file systems, socket
connections.

2. Advanced sources, e.g., Kafka, Flume, Kinesis, Twitter.

3. Custom sources, e.g., user-provided sources.

13 / 79



Input Operations - Basic Sources

I Socket connection
• Creates a DStream from text data received over a TCP socket connection.

ssc.socketTextStream("localhost", 9999)

I File stream
• Reads data from files.

streamingContext.fileStream[KeyClass, ValueClass, InputFormatClass](dataDirectory)

streamingContext.textFileStream(dataDirectory)

14 / 79



Input Operations - Basic Sources

I Socket connection
• Creates a DStream from text data received over a TCP socket connection.

ssc.socketTextStream("localhost", 9999)

I File stream
• Reads data from files.

streamingContext.fileStream[KeyClass, ValueClass, InputFormatClass](dataDirectory)

streamingContext.textFileStream(dataDirectory)

14 / 79



Input Operations - Advanced Sources

I Connectors with external sources

I Twitter, Kafka, Flume, Kinesis, ...

TwitterUtils.createStream(ssc, None)

KafkaUtils.createStream(ssc, [ZK quorum], [consumer group id], [number of partitions])

15 / 79



Input Operations - Custom Sources (1/3)

I To create a custom source: extend the Receiver class.

I Implement onStart() and onStop().

I Call store(data) to store received data inside Spark.

16 / 79



Input Operations - Custom Sources (2/3)

class CustomReceiver(host: String, port: Int)

extends Receiver[String](StorageLevel.MEMORY_AND_DISK_2) with Logging {

def onStart() {

new Thread("Socket Receiver") { override def run() { receive() }}.start()

}

def onStop() {}

private def receive() {

...

socket = new Socket(host, port)

val reader = ... // read from the socket connection

val userInput = reader.readLine()

while(!isStopped && userInput != null) {

store(userInput)

userInput = reader.readLine()

}

...

}}

17 / 79



Input Operations - Custom Sources (3/3)

val customReceiverStream = ssc.receiverStream(new CustomReceiver(host, port))

val words = customReceiverStream.flatMap(_.split(" "))

18 / 79



Operations on DStreams

I Input operations

I Transformation

I Output operations

19 / 79



Transformations (1/4)

I Transformations on DStreams are still lazy!

I Now instead, computation is kicked off explicitly by a call to the start() method.

I DStreams support many of the transformations available on normal Spark RDDs.

20 / 79



Transformations (2/4)

I map
• Returns a new DStream by passing each element of the source DStream through a

given function.

I flatMap
• Similar to map, but each input item can be mapped to 0 or more output items.

I filter
• Returns a new DStream by selecting only the records of the source DStream on which

func returns true.

21 / 79



Transformations (2/4)

I map
• Returns a new DStream by passing each element of the source DStream through a

given function.

I flatMap
• Similar to map, but each input item can be mapped to 0 or more output items.

I filter
• Returns a new DStream by selecting only the records of the source DStream on which

func returns true.

21 / 79



Transformations (2/4)

I map
• Returns a new DStream by passing each element of the source DStream through a

given function.

I flatMap
• Similar to map, but each input item can be mapped to 0 or more output items.

I filter
• Returns a new DStream by selecting only the records of the source DStream on which

func returns true.

21 / 79



Transformations (3/4)

I count
• Returns a new DStream of single-element RDDs by counting the number of elements

in each RDD of the source DStream.

I union
• Returns a new DStream that contains the union of the elements in two DStreams.

22 / 79



Transformations (3/4)

I count
• Returns a new DStream of single-element RDDs by counting the number of elements

in each RDD of the source DStream.

I union
• Returns a new DStream that contains the union of the elements in two DStreams.

22 / 79



Transformations (4/4)

I reduce
• Returns a new DStream of single-element RDDs by aggregating the elements in each

RDD using a given function.

I reduceByKey
• Returns a new DStream of (K, V) pairs where the values for each key are aggregated

using the given reduce function.

I countByValue
• Returns a new DStream of (K, Long) pairs where the value of each key is its

frequency in each RDD of the source DStream.

23 / 79



Transformations (4/4)

I reduce
• Returns a new DStream of single-element RDDs by aggregating the elements in each

RDD using a given function.

I reduceByKey
• Returns a new DStream of (K, V) pairs where the values for each key are aggregated

using the given reduce function.

I countByValue
• Returns a new DStream of (K, Long) pairs where the value of each key is its

frequency in each RDD of the source DStream.

23 / 79



Transformations (4/4)

I reduce
• Returns a new DStream of single-element RDDs by aggregating the elements in each

RDD using a given function.

I reduceByKey
• Returns a new DStream of (K, V) pairs where the values for each key are aggregated

using the given reduce function.

I countByValue
• Returns a new DStream of (K, Long) pairs where the value of each key is its

frequency in each RDD of the source DStream.

23 / 79



Window Operations (1/3)

I Spark provides a set of transformations that apply to a over a sliding window of data.

I A window is defined by two parameters: window length and slide interval.

I A tumbling window effect can be achieved by making slide interval = window length

24 / 79



Window Operations (2/3)

I window(windowLength, slideInterval)
• Returns a new DStream which is computed based on windowed batches.

I countByWindow(windowLength, slideInterval)
• Returns a sliding window count of elements in the stream.

I reduceByWindow(func, windowLength, slideInterval)
• Returns a new single-element DStream, created by aggregating elements in the stream

over a sliding interval using func.

25 / 79



Window Operations (2/3)

I window(windowLength, slideInterval)
• Returns a new DStream which is computed based on windowed batches.

I countByWindow(windowLength, slideInterval)
• Returns a sliding window count of elements in the stream.

I reduceByWindow(func, windowLength, slideInterval)
• Returns a new single-element DStream, created by aggregating elements in the stream

over a sliding interval using func.

25 / 79



Window Operations (2/3)

I window(windowLength, slideInterval)
• Returns a new DStream which is computed based on windowed batches.

I countByWindow(windowLength, slideInterval)
• Returns a sliding window count of elements in the stream.

I reduceByWindow(func, windowLength, slideInterval)
• Returns a new single-element DStream, created by aggregating elements in the stream

over a sliding interval using func.

25 / 79



Window Operations (3/3)

I reduceByKeyAndWindow(func, windowLength, slideInterval)
• Called on a DStream of (K, V) pairs.
• Returns a new DStream of (K, V) pairs where the values for each key are aggregated

using function func over batches in a sliding window.

I countByValueAndWindow(windowLength, slideInterval)
• Called on a DStream of (K, V) pairs.
• Returns a new DStream of (K, Long) pairs where the value of each key is its

frequency within a sliding window.

26 / 79



Window Operations (3/3)

I reduceByKeyAndWindow(func, windowLength, slideInterval)
• Called on a DStream of (K, V) pairs.
• Returns a new DStream of (K, V) pairs where the values for each key are aggregated

using function func over batches in a sliding window.

I countByValueAndWindow(windowLength, slideInterval)
• Called on a DStream of (K, V) pairs.
• Returns a new DStream of (K, Long) pairs where the value of each key is its

frequency within a sliding window.

26 / 79



Join Operation (1/3)

I Stream-stream joins

I In each batch interval, the RDD generated by stream1 will be joined with the RDD
generated by stream2.

val stream1: DStream[String, String] = ...

val stream2: DStream[String, String] = ...

val joinedStream = stream1.join(stream2)

27 / 79



Join Operation (2/3)

I Stream-stream joins

I Joins over windows of the streams.

val windowedStream1 = stream1.window(Seconds(20))

val windowedStream2 = stream2.window(Minutes(1))

val joinedStream = windowedStream1.join(windowedStream2)

28 / 79



Join Operation (3/3)

I Stream-dataset joins

val dataset: RDD[String, String] = ...

val windowedStream = stream.window(Seconds(20))...

val joinedStream = windowedStream.transform { rdd => rdd.join(dataset) }

29 / 79



Operations on DStreams

I Input operations

I Transformation

I Output operations

30 / 79



Output Operations (1/4)

I Push out DStream’s data to external systems, e.g., a database or a file system.

I foreachRDD: the most generic output operator
• Applies a function to each RDD generated from the stream.
• The function is executed in the driver process.

31 / 79



Output Operations (2/4)

I What’s wrong with this code?

I This requires the connection object to be serialized and sent from the driver to the
worker.

dstream.foreachRDD { rdd =>

val connection = createNewConnection() // executed at the driver

rdd.foreach { record =>

connection.send(record) // executed at the worker

}

}

32 / 79



Output Operations (2/4)

I What’s wrong with this code?

I This requires the connection object to be serialized and sent from the driver to the
worker.

dstream.foreachRDD { rdd =>

val connection = createNewConnection() // executed at the driver

rdd.foreach { record =>

connection.send(record) // executed at the worker

}

}

32 / 79



Output Operations (3/4)

I What’s wrong with this code?

I Creating a connection object has time and resource overheads.

I Creating and destroying a connection object for each record can incur unnecessarily
high overheads.

dstream.foreachRDD { rdd =>

rdd.foreach { record =>

val connection = createNewConnection()

connection.send(record)

connection.close()

}

}

33 / 79



Output Operations (4/4)

I A better solution is to use rdd.foreachPartition

I Create a single connection object and send all the records in a RDD partition using
that connection.

dstream.foreachRDD { rdd =>

rdd.foreachPartition { partitionOfRecords =>

val connection = createNewConnection()

partitionOfRecords.foreach(record => connection.send(record))

connection.close()

}

}

34 / 79



Word Count in Spark Streaming

35 / 79



Word Count in Spark Streaming (1/6)

I First we create a StreamingContex

import org.apache.spark._

import org.apache.spark.streaming._

// Create a local StreamingContext with two working threads and batch interval of 1 second.

val conf = new SparkConf().setMaster("local[2]").setAppName("NetworkWordCount")

val ssc = new StreamingContext(conf, Seconds(1))

36 / 79



Word Count in Spark Streaming (2/6)

I Create a DStream that represents streaming data from a TCP source.

I Specified as hostname (e.g., localhost) and port (e.g., 9999).

val lines = ssc.socketTextStream("localhost", 9999)

37 / 79



Word Count in Spark Streaming (3/6)

I Use flatMap on the stream to split the records text to words.

I It creates a new DStream.

val words = lines.flatMap(_.split(" "))

38 / 79



Word Count in Spark Streaming (4/6)

I Map the words DStream to a DStream of (word, 1).

I Get the frequency of words in each batch of data.

I Finally, print the result.

val pairs = words.map(word => (word, 1))

val wordCounts = pairs.reduceByKey(_ + _)

wordCounts.print()

39 / 79



Word Count in Spark Streaming (5/6)

I Start the computation and wait for it to terminate.

// Start the computation

ssc.start()

// Wait for the computation to terminate

ssc.awaitTermination()

40 / 79



Word Count in Spark Streaming (6/6)

val conf = new SparkConf().setMaster("local[2]").setAppName("NetworkWordCount")

val ssc = new StreamingContext(conf, Seconds(1))

val lines = ssc.socketTextStream("localhost", 9999)

val words = lines.flatMap(_.split(" "))

val pairs = words.map(word => (word, 1))

val wordCounts = pairs.reduceByKey(_ + _)

wordCounts.print()

ssc.start()

ssc.awaitTermination()

41 / 79



Word Count with Window

val conf = new SparkConf().setMaster("local[2]").setAppName("NetworkWordCount")

val ssc = new StreamingContext(conf, Seconds(1))

val lines = ssc.socketTextStream("localhost", 9999)

val words = lines.flatMap(_.split(" "))

val pairs = words.map(word => (word, 1))

val windowedWordCounts = pairs.reduceByKeyAndWindow(_ + _, Seconds(30), Seconds(10))

windowedWordCounts.print()

ssc.start()

ssc.awaitTermination()

42 / 79



State and DStream

43 / 79



What is State?

I Accumulate and aggregate the results from the start of the streaming job.

I Need to check the previous state of the RDD in order to do something with the
current RDD.

I Spark supports stateful streams.

44 / 79



What is State?

I Accumulate and aggregate the results from the start of the streaming job.

I Need to check the previous state of the RDD in order to do something with the
current RDD.

I Spark supports stateful streams.

44 / 79



Checkpointing

I Checkpointing is a feature for any non-stateful transformation.

I It is mandatory that you provide a checkpointing directory for stateful streams.

val ssc = new StreamingContext(conf, Seconds(1))

ssc.checkpoint("path/to/persistent/storage")

45 / 79



Stateful Stream Operations

I Spark API proposes two functions for statful processing:

I updateStateByKey
• It is executed on the whole range of keys in DStream.
• The performance of these operation is proportional to the size of the state.

I mapWithState
• It is executed only on set of keys that are available in the last micro batch.
• The performance is proportional to the size of the batch.

46 / 79



Stateful Stream Operations

I Spark API proposes two functions for statful processing:

I updateStateByKey
• It is executed on the whole range of keys in DStream.
• The performance of these operation is proportional to the size of the state.

I mapWithState
• It is executed only on set of keys that are available in the last micro batch.
• The performance is proportional to the size of the batch.

46 / 79



Stateful Stream Operations

I Spark API proposes two functions for statful processing:

I updateStateByKey
• It is executed on the whole range of keys in DStream.
• The performance of these operation is proportional to the size of the state.

I mapWithState
• It is executed only on set of keys that are available in the last micro batch.
• The performance is proportional to the size of the batch.

46 / 79



updateStateByKey Operation

I It manages the state per key (assuming we have (key, value) pairs).

def updateStateByKey[S](updateFunc: (Seq[V], Option[S]) => Option[S])

// Seq[V]: the list of new values received for the given key in the current batch

// Option[S]: the state we are updating on every iteration.

I To define updateFunc we have to figure out two things:

1. Define the state
2. Specify how to update the state using the previous state and the new values

47 / 79



updateStateByKey Operation

I It manages the state per key (assuming we have (key, value) pairs).

def updateStateByKey[S](updateFunc: (Seq[V], Option[S]) => Option[S])

// Seq[V]: the list of new values received for the given key in the current batch

// Option[S]: the state we are updating on every iteration.

I To define updateFunc we have to figure out two things:

1. Define the state
2. Specify how to update the state using the previous state and the new values

47 / 79



Problems with updateStateByKey Operation

I Performance
• For each new incoming batch, the transformation iterates the entire state store, regard-

less of whether a new value for a given key has been consumed or not.

I No built-in timeouts
• Think what would happen in our example, if the event signaling the end of the user

session was lost, or had not arrived for some reason.

48 / 79



mapWithState Operation

I mapWithState is an alternative to updateStateByKeys:
• Update function (partial updates)
• Built in timeout mechanism
• Choose the return type
• Initial state

def mapWithState[StateType, MappedType](spec: StateSpec[K, V, StateType, MappedType]):

DStream[MappedType]

StateSpec.function(updateFunc)

val updateFunc = (batch: Time, key: String, value: Option[Int], state: State[Int])

I You put all of the things into StateSpec.

49 / 79



mapWithState Operation

I mapWithState is an alternative to updateStateByKeys:
• Update function (partial updates)
• Built in timeout mechanism
• Choose the return type
• Initial state

def mapWithState[StateType, MappedType](spec: StateSpec[K, V, StateType, MappedType]):

DStream[MappedType]

StateSpec.function(updateFunc)

val updateFunc = (batch: Time, key: String, value: Option[Int], state: State[Int])

I You put all of the things into StateSpec.

49 / 79



Word Count with updateStateByKey Operation

val ssc = new StreamingContext(conf, Seconds(1))

ssc.checkpoint(".")

val lines = ssc.socketTextStream(IP, Port)

val words = lines.flatMap(_.split(" "))

val pairs = words.map(word => (word, 1))

val stateWordCount = pairs.updateStateByKey(updateFunc)

val updateFunc = (values: Seq[Int], state: Option[Int]) => {

val newCount = values.foldLeft(0)(_ + _)

val oldCount = state.getOrElse(0)

val sum = newCount + oldCount

Some(sum)

}

50 / 79



Word Count with mapWithState Operation

val ssc = new StreamingContext(conf, Seconds(1))

ssc.checkpoint(".")

val lines = ssc.socketTextStream(IP, Port)

val words = lines.flatMap(_.split(" "))

val pairs = words.map(word => (word, 1))

val stateWordCount = pairs.mapWithState(StateSpec.function(updateFunc))

val updateFunc = (key: String, value: Option[Int], state: State[Int]) => {

val newCount = value.getOrElse(0)

val oldCount = state.getOption.getOrElse(0)

val sum = newCount + oldCount

state.update(sum)

(key, sum)

}

51 / 79



updateStateByKey vs. mapWithState Example (1/3)

I The first micro batch contains a message a.

I updateStateByKey
• updateFunc = (values: Seq[Int], state: Option[Int]) => Some(sum)

• Input: values = [1], state = None (for key a)
• Output: sum = 1 (for key a)

I mapWithState
• updateFunc = (key: String, value: Option[Int], state: State[Int]) => (key, sum)

• Input: key = a, value = Some(1), state = 0
• Output: key = a, sum = 1

52 / 79



updateStateByKey vs. mapWithState Example (1/3)

I The first micro batch contains a message a.

I updateStateByKey
• updateFunc = (values: Seq[Int], state: Option[Int]) => Some(sum)

• Input: values = [1], state = None (for key a)
• Output: sum = 1 (for key a)

I mapWithState
• updateFunc = (key: String, value: Option[Int], state: State[Int]) => (key, sum)

• Input: key = a, value = Some(1), state = 0
• Output: key = a, sum = 1

52 / 79



updateStateByKey vs. mapWithState Example (1/3)

I The first micro batch contains a message a.

I updateStateByKey
• updateFunc = (values: Seq[Int], state: Option[Int]) => Some(sum)

• Input: values = [1], state = None (for key a)
• Output: sum = 1 (for key a)

I mapWithState
• updateFunc = (key: String, value: Option[Int], state: State[Int]) => (key, sum)

• Input: key = a, value = Some(1), state = 0
• Output: key = a, sum = 1

52 / 79



updateStateByKey vs. mapWithState Example (2/3)

I The second micro batch contains messages a and b.

I updateStateByKey
• updateFunc = (values: Seq[Int], state: Option[Int]) => Some(sum)

• Input: values = [1], state = Some(1) (for key a)
• Input: values = [1], state = None (for key b)
• Output: sum = 2 (for key a)
• Output: sum = 1 (for key b)

I mapWithState
• updateFunc = (key: String, value: Option[Int], state: State[Int]) => (key, sum)

• Input: key = a, value = Some(1), state = 1
• Input: key = b, value = Some(1), state = 0
• Output: key = a, sum = 2
• Output: key = b, sum = 1

53 / 79



updateStateByKey vs. mapWithState Example (2/3)

I The second micro batch contains messages a and b.

I updateStateByKey
• updateFunc = (values: Seq[Int], state: Option[Int]) => Some(sum)

• Input: values = [1], state = Some(1) (for key a)
• Input: values = [1], state = None (for key b)
• Output: sum = 2 (for key a)
• Output: sum = 1 (for key b)

I mapWithState
• updateFunc = (key: String, value: Option[Int], state: State[Int]) => (key, sum)

• Input: key = a, value = Some(1), state = 1
• Input: key = b, value = Some(1), state = 0
• Output: key = a, sum = 2
• Output: key = b, sum = 1

53 / 79



updateStateByKey vs. mapWithState Example (2/3)

I The second micro batch contains messages a and b.

I updateStateByKey
• updateFunc = (values: Seq[Int], state: Option[Int]) => Some(sum)

• Input: values = [1], state = Some(1) (for key a)
• Input: values = [1], state = None (for key b)
• Output: sum = 2 (for key a)
• Output: sum = 1 (for key b)

I mapWithState
• updateFunc = (key: String, value: Option[Int], state: State[Int]) => (key, sum)

• Input: key = a, value = Some(1), state = 1
• Input: key = b, value = Some(1), state = 0
• Output: key = a, sum = 2
• Output: key = b, sum = 1

53 / 79



updateStateByKey vs. mapWithState Example (3/3)

I The third micro batch contains a message b.

I updateStateByKey
• updateFunc = (values: Seq[Int], state: Option[Int]) => Some(sum)

• Input: values = [], state = Some(2) (for key a)
• Input: values = [1], state = Some(1) (for key b)
• Output: sum = 2 (for key a)
• Output: sum = 2 (for key b)

I mapWithState
• updateFunc = (key: String, value: Option[Int], state: State[Int]) => (key, sum)

• Input: key = b, value = Some(1), state = 1
• Output: key = b, sum = 2

54 / 79



updateStateByKey vs. mapWithState Example (3/3)

I The third micro batch contains a message b.

I updateStateByKey
• updateFunc = (values: Seq[Int], state: Option[Int]) => Some(sum)

• Input: values = [], state = Some(2) (for key a)
• Input: values = [1], state = Some(1) (for key b)
• Output: sum = 2 (for key a)
• Output: sum = 2 (for key b)

I mapWithState
• updateFunc = (key: String, value: Option[Int], state: State[Int]) => (key, sum)

• Input: key = b, value = Some(1), state = 1
• Output: key = b, sum = 2

54 / 79



updateStateByKey vs. mapWithState Example (3/3)

I The third micro batch contains a message b.

I updateStateByKey
• updateFunc = (values: Seq[Int], state: Option[Int]) => Some(sum)

• Input: values = [], state = Some(2) (for key a)
• Input: values = [1], state = Some(1) (for key b)
• Output: sum = 2 (for key a)
• Output: sum = 2 (for key b)

I mapWithState
• updateFunc = (key: String, value: Option[Int], state: State[Int]) => (key, sum)

• Input: key = b, value = Some(1), state = 1
• Output: key = b, sum = 2

54 / 79



Structured Streaming

55 / 79



Structured Streaming

I Treating a live data stream as a table that is being continuously appended.

I Built on the Spark SQL engine.

I Perform database-like query optimizations.

56 / 79



Programming Model (1/2)

I Two main steps to develop a Spark stuctured streaming:

I 1. Defines a query on the input table, as a static table.
• Spark automatically converts this batch-like query to a streaming execution plan.

I 2. Specify triggers to control when to update the results.
• Each time a trigger fires, Spark checks for new data (new row in the input table), and

incrementally updates the result.

57 / 79



Programming Model (1/2)

I Two main steps to develop a Spark stuctured streaming:

I 1. Defines a query on the input table, as a static table.
• Spark automatically converts this batch-like query to a streaming execution plan.

I 2. Specify triggers to control when to update the results.
• Each time a trigger fires, Spark checks for new data (new row in the input table), and

incrementally updates the result.

57 / 79



Programming Model (1/2)

I Two main steps to develop a Spark stuctured streaming:

I 1. Defines a query on the input table, as a static table.
• Spark automatically converts this batch-like query to a streaming execution plan.

I 2. Specify triggers to control when to update the results.
• Each time a trigger fires, Spark checks for new data (new row in the input table), and

incrementally updates the result.

57 / 79



Programming Model (2/2)

58 / 79



Output Modes

I Three output modes:

1. Append: only the new rows appended to the result table since the last trigger will
be written to the external storage.

2. Complete: the entire updated result table will be written to external storage.

3. Update: only the rows that were updated in the result table since the last trigger will
be changed in the external storage.

• This mode works for output sinks that can be updated in place, such as a MySQL table.

59 / 79



Output Modes

I Three output modes:

1. Append: only the new rows appended to the result table since the last trigger will
be written to the external storage.

2. Complete: the entire updated result table will be written to external storage.

3. Update: only the rows that were updated in the result table since the last trigger will
be changed in the external storage.

• This mode works for output sinks that can be updated in place, such as a MySQL table.

59 / 79



Output Modes

I Three output modes:

1. Append: only the new rows appended to the result table since the last trigger will
be written to the external storage.

2. Complete: the entire updated result table will be written to external storage.

3. Update: only the rows that were updated in the result table since the last trigger will
be changed in the external storage.

• This mode works for output sinks that can be updated in place, such as a MySQL table.

59 / 79



Structured Streaming Example (1/3)

I Assume we receive (id, time, action) events from a mobile app.

I We want to count how many actions of each type happened each hour.

I Store the result in MySQL.

[https://databricks.com/blog/2016/07/28/structured-streaming-in-apache-spark.html]

60 / 79



Structured Streaming Example (2/3)

I We could express it as the following SQL query.

SELECT action, WINDOW(time, "1 hour"), COUNT *

FROM events

GROUP BY action, WINDOW(time, "1 hour")

61 / 79



Structured Streaming Example (3/3)

val inputDF = spark.readStream.json("s3://logs")

inputDF.groupBy(col("action"), window(col("time"), "1 hour")).count()

.writeStream.format("jdbc").start("jdbc:mysql//...")

62 / 79



Basic Operations

I Most of operations on DataFrame/Dataset are supported for streaming.

case class Call(action: String, time: Timestamp, id: Int)

val df: DataFrame = spark.readStream.json("s3://logs")

val ds: Dataset[Call] = df.as[Call]

// Selection and projection

df.select("action").where("id > 10") // using untyped APIs

ds.filter(_.id > 10).map(_.action) // using typed APIs

// Aggregation

df.groupBy("action") // using untyped API

ds.groupByKey(_.action) // using typed API

// SQL commands

df.createOrReplaceTempView("dfView")

spark.sql("select count(*) from dfView") // returns another streaming DF

63 / 79



Window Operation

I Aggregations over a sliding event-time window.
• Event-time is the time embedded in the data, not the time Spark receives them.

I Use groupBy() and window() to express windowed aggregations.

// count words within 10 minute windows, updating every 5 minutes.

// streaming DataFrame of schema {time: Timestamp, word: String}

val calls = ...

val actionHours = calls.groupBy(col("action"), window(col("time"), "1 hour", "5 minutes"))

64 / 79



Late Data (1/3)

I Spark streaming uses watermarks to measure progress in event time.

I Watermarks flow as part of the data stream and carry a timestamp t.

I A W(t) declares that event time has reached time t in that stream
• There should be no more elements from the stream with a timestamp t′ ≤ t.

65 / 79



Late Data (2/3)

val lines = spark.readStream.format("socket").option("host", "localhost")

.option("port", 9999).load()

val words = lines.as[String].flatMap(_.split(" "))

val wordCounts = words.groupBy("value").count()

val query = wordCounts.writeStream.outputMode("complete").format("console").start()

query.awaitTermination()

66 / 79



Late Data (3/3)

// count words within 10 minute windows, updating every 5 minutes.

// streaming DataFrame of schema {timestamp: Timestamp, word: String}

val words = ...

val windowedCounts = words.withWatermark("timestamp", "10 minutes")

.groupBy(window(col("timestamp"), "10 minutes", "5 minutes"), col("word")).count()

67 / 79



Flink

68 / 79



Flink

I Distributed data flow processing system

I Unified real-time stream and batch processing

I Process unbounded and bounded Data

I Design issues
• Continuous vs. micro-batch processing
• Record-at-a-Time vs. declarative APIs

69 / 79



Programs and Dataflows

70 / 79



Window Operations

I A window defines a finite set of elements on an unbounded stream.

I Windows can be
• Time window (e.g., every 30 seconds)
• Count window (e.g., every 100 elements)

I One typically distinguishes different types of windows:
• Tumbling windows (no overlap)
• Sliding windows (with overlap)
• Session windows (punctuated by a gap of inactivity)

71 / 79



Watermark and Late Elements

I It is possible that certain elements will violate the watermark condition.
• After the W(t) has occurred, more elements with timestamp t′ ≤ t will occur.

I Streaming programs may explicitly expect some late elements.

val input: DataStream[T] = ...

input.keyBy(<key selector>)

.window(<window assigner>)

.allowedLateness(<time>)

.<windowed transformation>(<window function>)

72 / 79



Fault Tolerance (1/2)

I Fault tolerance in Spark
• RDD re-computation

I Fault tolerance in Storm
• Tracks records with unique IDs.
• Operators send acks when a record has been processed.
• Records are dropped from the backup when the have been fully acknowledged.

I Fault tolerance in Flink
• More coarse-grained approach than Storm.
• Based on consistent global snapshots (inspired by Chandy-Lamport).
• Low runtime overhead, stateful exactly-once semantics.

73 / 79



Fault Tolerance (1/2)

I Fault tolerance in Spark
• RDD re-computation

I Fault tolerance in Storm
• Tracks records with unique IDs.
• Operators send acks when a record has been processed.
• Records are dropped from the backup when the have been fully acknowledged.

I Fault tolerance in Flink
• More coarse-grained approach than Storm.
• Based on consistent global snapshots (inspired by Chandy-Lamport).
• Low runtime overhead, stateful exactly-once semantics.

73 / 79



Fault Tolerance (1/2)

I Fault tolerance in Spark
• RDD re-computation

I Fault tolerance in Storm
• Tracks records with unique IDs.
• Operators send acks when a record has been processed.
• Records are dropped from the backup when the have been fully acknowledged.

I Fault tolerance in Flink
• More coarse-grained approach than Storm.
• Based on consistent global snapshots (inspired by Chandy-Lamport).
• Low runtime overhead, stateful exactly-once semantics.

73 / 79



Fault Tolerance (2/2)

I Acks sequences of records instead of individual records.

I Periodically, the data sources inject checkpoint barriers into the data stream.

I The barriers flow through the data stream, and trigger operators to emit all records
that depend only on records before the barrier.

I Once all sinks have received the barriers, Flink knows that all records before the
barriers will never be needed again.

I Asynchronous barrier snapshotting for globally consistent checkpoints.

74 / 79



Fault Tolerance (2/2)

I Acks sequences of records instead of individual records.

I Periodically, the data sources inject checkpoint barriers into the data stream.

I The barriers flow through the data stream, and trigger operators to emit all records
that depend only on records before the barrier.

I Once all sinks have received the barriers, Flink knows that all records before the
barriers will never be needed again.

I Asynchronous barrier snapshotting for globally consistent checkpoints.

74 / 79



Summary

75 / 79



Summary

I Spark
• Mini-batch processing
• DStream: sequence of RDDs
• RDD and window operations
• Structured streaming

I Flink
• Unified batch and stream
• Different windowing semantics
• Asynchronous barriers

76 / 79



Summary

77 / 79



References

I M. Zaharia et al., “Spark: The Definitive Guide”, O’Reilly Media, 2018 - Chapters
20-23.

I M. Zaharia et al., “Discretized Streams: An Efficient and Fault-Tolerant Model for
Stream Processing on Large Clusters”, HotCloud’12.

I P. Carbone et al., “Apache flink: Stream and batch processing in a single engine”,
2015.

I Some slides were derived from Heather Miller’s slides:
http://heather.miller.am/teaching/cs4240/spring2018

I Structured Streaming In Apache Spark:
https://databricks.com/blog/2016/07/28/structured-streaming-in-apache-spark.html

78 / 79



Questions?

79 / 79


	

