iﬁéﬁm B éi}
"“%3;4’:‘.?“ ©

Scalable Stream Processing - Spark Streaming and Flink

Amir H. Payberah
payberah@Qkth.se
05/10/2018

The Course Web Page

https://id2221kth.github.io

https://id2221kth.github.io

Where Are We?

Data Processing

Pregel, GraphLab, PowerGraph Spark SQL Milib
GraphX, X-Streem, Chaos Tensorflow

MapReduce, Dryad Storm, SEEP, Naiad, Spark Streaming, Flink,
FlumeJava, Spark h Millwheel, Google Dataflow ‘

Data Storage

Dynamo, BigTable,
GFS, Flat FS Cassandra

Resource Management

Mesos, YARN

Stream Processing Systems Design Issues

» Continuous vs. micro-batch processing

» Record-at-a-Time vs. declarative APls

Outline

» Spark streaming

> Flink

Spark Streaming

Contribution

» Design issues

e Continuous vs. micro-batch processing
e Record-at-a-Time vs. declarative APls

Spark Streaming

» Run a streaming computation as a series of very small, deterministic batch jobs.

input data batches of batches of
stream Spark input data Spark processed data

Streaming |:”:”:> Engine |1

Spark Streaming

» Run a streaming computation as a series of very small, deterministic batch jobs.

e Chops up the live stream into batches of X seconds.

e Treats each batch as RDDs and processes them using RDD operations.

input data batches of batches of
stream Spark input data Spark processed data

Streaming |:”:”:> Engine |1

Spark Streaming

» Run a streaming computation as a series of very small, deterministic batch jobs.

e Chops up the live stream into batches of X seconds.

Treats each batch as RDDs and processes them using RDD operations.

Discretized Stream Processing (DStream)

input data batches of batches of
stream Spark input data Spark processed data

Streaming |1 Engine |1

DStream (1/2)

» DStream: sequence of RDDs representing a stream of data.

input data batches of batches of
stream Spark input data Spark processed data

Streaming |:||:||:> Engine |1

RDD @time1 RDD@time2 RDD@time3 RDD @ time4

_| datafrom |__| datafrom | _
time 1to 2 time2to3

data from
time3to4

>

DStream = _{ data from

timeOto1

DStream (1/2)

» DStream: sequence of RDDs representing a stream of data.

input data batches of batches of
stream Spark input data Spark processed data
|:> Streaming |1 |:> Engine |:||:||:>

RDD @time1 RDD@time2 RDD@time3 RDD @ time4

~| detafom || datafrom | _| datafrom | o
time 1to 2 time2to3 time3to4

DStream = data from
time 0 to 1

DStream (2/2)

» Any operation applied on a DStream translates to operations on the underlying RDDs.

lines — | tfinesfrom |__| linesfrom | _ | linesfrom | _ | linesfrom | .
DStream timeOto 1 time 1to 2 time 2 to 3 time3to4
flatMap
operation
N A 4 A 4 A 4
words _ | wordsfrom | _| wordsfrom | _ | wordsfrom |_ | wordsfrom |_ >
DStream time O to 1 time 1to 2 time 2 to 3 time3to 4

StreamingContext

» StreamingContext is the main entry point of all Spark Streaming functionality.

» The second parameter, Seconds (1), represents the time interval at which streaming
data will be divided into batches.

val conf = new SparkConf () .setAppName (appName) .setMaster (master)
val ssc = new StreamingContext(conf, Seconds(1))

StreamingContext

» StreamingContext is the main entry point of all Spark Streaming functionality.

» The second parameter, Seconds (1), represents the time interval at which streaming
data will be divided into batches.

val conf = new SparkConf () .setAppName (appName) .setMaster (master)
val ssc = new StreamingContext(conf, Seconds(1))

> It can also be created from an existing SparkContext object.

val sc = ... // existing SparkContezt
val ssc = new StreamingContext(sc, Seconds(1))

Operations on DStreams

» DStream operations are broken into the following categories (rather than transfor-
mations and actions):

1. Input operations
2. Transformation
3. Output operations

Operations on DStreams

» Input operations

» Transformation

» Output operations

Input Operations

» Every input DStream is associated with a Receiver object.

e It receives the data from a source and stores it in Spark’s memory for processing.

Input Operations

» Every input DStream is associated with a Receiver object.
e It receives the data from a source and stores it in Spark’s memory for processing.

» Three categories of streaming sources:
1. Basic sources directly available in the StreamingContext API, e.g., file systems, socket
connections.
2. Advanced sources, e.g., Kafka, Flume, Kinesis, Twitter.

3. Custom sources, e.g., user-provided sources.

Input Operations - Basic Sources

» Socket connection
o Creates a DStream from text data received over a TCP socket connection.

ssc.socketTextStream("localhost", 9999)

Input Operations - Basic Sources

» Socket connection
o Creates a DStream from text data received over a TCP socket connection.

ssc.socketTextStream("localhost", 9999)

» File stream
e Reads data from files.

streamingContext.fileStream[KeyClass, ValueClass, InputFormatClass] (dataDirectory)

streamingContext.textFileStream(dataDirectory)

Input Operations - Advanced Sources

» Connectors with external sources

» Twitter, Kafka, Flume, Kinesis, ...

TwitterUtils.createStream(ssc, None)

KafkaUtils.createStream(ssc, [ZK quorum], [consumer group id], [number of partitions])

Input Operations - Custom Sources (1/3)

» To create a custom source: extend the Receiver class.

> Implement onStart () and onStop().

» Call store(data) to store received data inside Spark.

bt) .
b4 Input Operations - Custom Sources (2/3)

class CustomReceiver(host: String, port: Int)
extends Receiver[String] (StorageLevel .MEMORY_AND_DISK_2) with Logging {

def onStart() {
new Thread("Socket Receiver") { override def run() { receive() }}.start()

}
def onStop() {}
private def receive() {

socket = new Socket(host, port)
val reader = ... // read from the socket connection
val userInput = reader.readLine()
while(!isStopped && userInput != null) {
store (userInput)
userInput = reader.readLine()

}

1}

Input Operations - Custom Sources (3/3)

val customReceiverStream = ssc.receiverStream(new CustomReceiver (host, port))

val words = customReceiverStream.flatMap(_.split(" "))

Operations on DStreams

» Input operations

» Transformation

» Output operations

Transformations (1/4)

» Transformations on DStreams are still lazy!

» Now instead, computation is kicked off explicitly by a call to the start () method.

» DStreams support many of the transformations available on normal Spark RDDs.

Transformations (2/4)

> map

e Returns a new DStream by passing each element of the source DStream through a
given function.

Transformations (2/4)

> map
e Returns a new DStream by passing each element of the source DStream through a
given function.

» flatMap
e Similar to map, but each input item can be mapped to 0 or more output items.

Transformations (2/4)

> map
e Returns a new DStream by passing each element of the source DStream through a
given function.

» flatMap
e Similar to map, but each input item can be mapped to 0 or more output items.

» filter

e Returns a new DStream by selecting only the records of the source DStream on which
func returns true.

Transformations (3/4)

» count

e Returns a new DStream of single-element RDDs by counting the number of elements
in each RDD of the source DStream.

Transformations (3/4)

» count

e Returns a new DStream of single-element RDDs by counting the number of elements
in each RDD of the source DStream.

> union

e Returns a new DStream that contains the union of the elements in two DStreams.

Transformations (4/4)

» reduce

e Returns a new DStream of single-element RDDs by aggregating the elements in each
RDD using a given function.

Transformations (4/4)

» reduce

e Returns a new DStream of single-element RDDs by aggregating the elements in each
RDD using a given function.

» reduceByKey

¢ Returns a new DStream of (K, V) pairs where the values for each key are aggregated
using the given reduce function.

Transformations (4/4)

» reduce

e Returns a new DStream of single-element RDDs by aggregating the elements in each
RDD using a given function.

» reduceByKey

¢ Returns a new DStream of (K, V) pairs where the values for each key are aggregated
using the given reduce function.

» countByValue

e Returns a new DStream of (K, Long) pairs where the value of each key is its
frequency in each RDD of the source DStream.

Window Operations (1/3)

» Spark provides a set of transformations that apply to a over a sliding window of data.
» A window is defined by two parameters: window length and slide interval.

» A tumbling window effect can be achieved by making slide interval = window length

time 1 time 2 time 3 time 4 time 5
original
DStream D U [U D D]
window-based
operation

windowed
DStream

window window window

at time 1 attime 3 attime 5

Window Operations (2/3)

» window(windowLength, slideInterval)

e Returns a new DStream which is computed based on windowed batches.

Window Operations (2/3)

» window(windowLength, slideInterval)
e Returns a new DStream which is computed based on windowed batches.

> countByWindow(windowLength, slideInterval)

e Returns a sliding window count of elements in the stream.

Window Operations (2/3)

» window(windowLength, slideInterval)
e Returns a new DStream which is computed based on windowed batches.

> countByWindow(windowLength, slideInterval)
e Returns a sliding window count of elements in the stream.

» reduceByWindow(func, windowLength, slidelInterval)

e Returns a new single-element DStream, created by aggregating elements in the stream
over a sliding interval using func.

Window Operations (3/3)

> reduceByKeyAndWindow(func, windowLength, slideInterval)
e Called on a DStream of (K, V) pairs.
¢ Returns a new DStream of (K, V) pairs where the values for each key are aggregated
using function func over batches in a sliding window.

Window Operations (3/3)

> reduceByKeyAndWindow(func, windowLength, slideInterval)
e Called on a DStream of (K, V) pairs.
¢ Returns a new DStream of (K, V) pairs where the values for each key are aggregated
using function func over batches in a sliding window.

> countByValueAndWindow(windowLength, slideInterval)
¢ Called on a DStream of (K, V) pairs.
¢ Returns a new DStream of (K, Long) pairs where the value of each key is its
frequency within a sliding window.

Join Operation (1/3)

» Stream-stream joins

» In each batch interval, the RDD generated by streaml will be joined with the RDD
generated by stream?2.

val streaml: DStream[String, String]
val stream2: DStream[String, String]

val joinedStream = streaml.join(stream?2)

Join Operation (2/3)

» Stream-stream joins

» Joins over windows of the streams.

val windowedStreaml = streaml.window(Seconds(20))
val windowedStream2 = stream2.window(Minutes(1))

val joinedStream = windowedStreaml.join(windowedStream2)

Join Operation (3/3)

» Stream-dataset joins

val dataset: RDD[String, String] =
val windowedStream = stream. w1ndow(Seconds(20))

val joinedStream = windowedStream.transform { rdd => rdd.join(dataset) }

Operations on DStreams

» Input operations

» Transformation

» Output operations

Output Operations (1/4)

» Push out DStream's data to external systems, e.g., a database or a file system.

» foreachRDD: the most generic output operator

e Applies a function to each RDD generated from the stream.
e The function is executed in the driver process.

Output Operations (2/4)

» What's wrong with this code?

dstream.foreachRDD { rdd =>
val connection = createNewConnection() // ezecuted at the driver
rdd.foreach { record =>
connection.send(record) // ezecuted at the worker

}
}

Output Operations (2/4)

» What's wrong with this code?

» This requires the connection object to be serialized and sent from the driver to the
worker.

dstream.foreachRDD { rdd =>
val connection = createNewConnection() // ezecuted at the driver
rdd.foreach { record =>
connection.send(record) // ezecuted at the worker

}
}

Output Operations (3/4)

» What's wrong with this code?
» Creating a connection object has time and resource overheads.

» Creating and destroying a connection object for each record can incur unnecessarily
high overheads.

dstream.foreachRDD { rdd =>
rdd.foreach { record =>
val connection = createNewConnection()
connection.send(record)
connection.close()

}
}

Output Operations (4/4)

» A better solution is to use rdd.foreachPartition

» Create a single connection object and send all the records in a RDD partition using
that connection.

dstream.foreachRDD { rdd =>
rdd.foreachPartition { partitionOfRecords =>
val connection = createNewConnection()
partitionOfRecords.foreach(record => connection.send(record))
connection.close()

}
}

Word Count in Spark Streaming

Word Count in Spark Streaming (1/6)

» First we create a StreamingContex

import org.apache.spark._
import org.apache.spark.streaming._

// Create a local StreamingContext with two working threads and batch interval of 1 second.
val conf = new SparkConf () .setMaster("local[2]").setAppName ("NetworkWordCount")
val ssc = new StreamingContext(conf, Seconds(1))

Word Count in Spark Streaming (2/6)

» Create a DStream that represents streaming data from a TCP source.

» Specified as hostname (e.g., localhost) and port (e.g., 9999).

val lines = ssc.socketTextStream("localhost", 9999)

Word Count in Spark Streaming (3/6)

» Use flatMap on the stream to split the records text to words.

» |t creates a new DStream.

val words = lines.flatMap(_.split(" "))

lines _ | lines from _| linesfrom | _ | linesfrom
DStream timeOto 1 time 1to 2 time 2to 3

lines from
time3to4 >

flatMap

operation
words _ | wordsfrom |__| wordsfrom | _ | wordsfrom |_ | wordsfrom >
DStream time0to 1 time 1to 2 time2to3 time 3to 4

Word Count in Spark Streaming (4/6)

» Map the words DStream to a DStream of (word, 1).
» Get the frequency of words in each batch of data.

» Finally, print the result.

val pairs = words.map(word => (word, 1))

val wordCounts = pairs.reduceByKey(_ + _)

wordCounts.print ()

Word Count in Spark Streaming (5/6)

> Start the computation and wait for it to terminate.

// Start the computation
ssc.start ()

// Wait for the computation to terminate
ssc.awaitTermination()

Word Count in Spark Streaming (6/6)

val conf = new SparkConf () .setMaster("local[2]").setAppName ("NetworkWordCount")
val ssc = new StreamingContext(conf, Seconds(1))

val lines = ssc.socketTextStream("localhost", 9999)
val words = lines.flatMap(_.split(" "))

val pairs = words.map(word => (word, 1))

val wordCounts = pairs.reduceByKey(_ + _)
wordCounts.print ()

ssc.start ()
ssc.awaitTermination()

lines lines from lines from lines from lines from
DStream timeO0to 1 time 1t0 2 time 2 to 3 time3to4
flatMap
operation
words words from

DStream

time 0to 1 time 1to 2 time2to3 time3to4

words from | | words from | ‘ words from |

Word Count with Window

val conf = new SparkConf () .setMaster("local[2]").setAppName ("NetworkWordCount")
val ssc = new StreamingContext(conf, Seconds(1))

val lines = ssc.socketTextStream("localhost", 9999)

val words = lines.flatMap(_.split(" "))

val pairs = words.map(word => (word, 1))

val windowedWordCounts = pairs.reduceByKeyAndWindow(_ + _, Seconds(30), Seconds(10))
windowedWordCounts.print ()

ssc.start()
ssc.awaitTermination()

time 1 time 2 time 3 time 4 time 5
original
DStream

window-based
operation

windowed
DStream

window window window

at time 1 attime 3 attime 5

State and DStream

What is State?

» Accumulate and aggregate the results from the start of the streaming job.

» Need to check the previous state of the RDD in order to do something with the
current RDD.

What is State?

» Accumulate and aggregate the results from the start of the streaming job.

» Need to check the previous state of the RDD in order to do something with the
current RDD.

» Spark supports stateful streams.

Checkpointing

» Checkpointing is a feature for any non-stateful transformation.

» It is mandatory that you provide a checkpointing directory for stateful streams.

val ssc = new StreamingContext(conf, Seconds(1))
ssc.checkpoint ("path/to/persistent/storage")

Stateful Stream Operations

» Spark API proposes two functions for statful processing:

Stateful Stream Operations

» Spark API proposes two functions for statful processing:

» updateStateByKey

e It is executed on the whole range of keys in DStream.
e The performance of these operation is proportional to the size of the state.

Stateful Stream Operations

» Spark API proposes two functions for statful processing:

» updateStateByKey

e It is executed on the whole range of keys in DStream.
e The performance of these operation is proportional to the size of the state.

» mapWithState

|t is executed only on set of keys that are available in the last micro batch.
e The performance is proportional to the size of the batch.

updateStateByKey Operation

» It manages the state per key (assuming we have (key, value) pairs).

def updateStateByKey[S] (updateFunc: (Seq[V], Option[S]) => Option[S])

// Seq[V]: the list of new values received for the given key in the current batch
// Option[S]: the state we are updating on every iteration.

updateStateByKey Operation

» It manages the state per key (assuming we have (key, value) pairs).

def updateStateByKey[S] (updateFunc: (Seq[V], Option[S]) => Option[S])

// Seq[V]: the list of new values received for the given key in the current batch
// Option[S]: the state we are updating on every iteration.

> To define updateFunc we have to figure out two things:

1. Define the state
2. Specify how to update the state using the previous state and the new values

Problems with updateStateByKey Operation

» Performance

e For each new incoming batch, the transformation iterates the entire state store, regard-
less of whether a new value for a given key has been consumed or not.

» No built-in timeouts

e Think what would happen in our example, if the event signaling the end of the user
session was lost, or had not arrived for some reason.

mapWithState Operation

> mapWithState is an alternative to updateStateByKeys:
¢ Update function (partial updates)
e Built in timeout mechanism
e Choose the return type
* Initial state

def mapWithState[StateType, MappedTypel (spec: StateSpec[K, V, StateType, MappedTypel):
DStream[MappedTypel

StateSpec.function(updateFunc)
val updateFunc = (batch: Time, key: String, value: Option[Int], state: State[Int])

mapWithState Operation

> mapWithState is an alternative to updateStateByKeys:
¢ Update function (partial updates)
e Built in timeout mechanism
e Choose the return type
* Initial state

def mapWithState[StateType, MappedTypel (spec: StateSpec[K, V, StateType, MappedTypel):
DStream[MappedTypel

StateSpec.function(updateFunc)
val updateFunc = (batch: Time, key: String, value: Option[Int], state: State[Int])

» You put all of the things into StateSpec.

Word Count with updateStateByKey Operation

val ssc = new StreamingContext(conf, Seconds(1))
ssc.checkpoint (".")

val lines = ssc.socketTextStream(IP, Port)
val words = lines.flatMap(_.split(" "))
val pairs = words.map(word => (word, 1))

val stateWordCount = pairs.updateStateByKey(updateFunc)

val updateFunc = (values: Seq[Int], state: Option[Int]) => {
val newCount = values.foldLeft(0)(_ + _)
val oldCount = state.getOrElse(0)
val sum = newCount + oldCount
Some (sum)

Word Count with mapWithState Operation

val ssc = new StreamingContext(conf, Seconds(1))
ssc.checkpoint (".")

val lines = ssc.socketTextStream(IP, Port)
val words = lines.flatMap(_.split(" "))
val pairs = words.map(word => (word, 1))

val stateWordCount = pairs.mapWithState(StateSpec.function(updateFunc))

val updateFunc = (key: String, value: Option[Int], state: State[Int]) => {
val newCount = value.getOrElse(0)
val oldCount = state.getOption.getOrElse(0)
val sum = newCount + oldCount
state.update (sum)
(key, sum)

updateStateByKey vs. mapWithState Example (1/3)

» The first micro batch contains a message a.

updateStateByKey vs. mapWithState Example (1/3)

» The first micro batch contains a message a.

» updateStateByKey

® updateFunc = (values: Seq[Int], state: Option[Int]) => Some(sum)
e Input: values = [1], state = None (for key a)
¢ Output: sum = 1 (for key a)

updateStateByKey vs. mapWithState Example (1/3)

» The first micro batch contains a message a.

» updateStateByKey
® updateFunc = (values: Seq[Int], state: Option[Int]) => Some(sum)
e Input: values = [1], state = None (for key a)
¢ Output: sum = 1 (for key a)

» mapWithState
® updateFunc = (key: String, value: Option[Int], state: Statel[Int]) => (key, sum)
e Input: key = a, value = Some(1l), state = 0
e Qutput: key = a, sum = 1

updateStateByKey vs. mapWithState Example (2/3)

» The second micro batch contains messages a and b.

updateStateByKey vs. mapWithState Example (2/3)

» The second micro batch contains messages a and b.

» updateStateByKey

® updateFunc = (values: Seq[Int], state: Option[Int]) => Some (sum)
e Input: values = [1], state = Some(1) (for key a)

e Input: values = [1], state = None (for key b)

¢ Output: sum = 2 (for key a)

1 (for key b)

e Output: sum

updateStateByKey vs. mapWithState Example (2/3)

» The second micro batch contains messages a and b.

» updateStateByKey
® updateFunc = (values: Seq[Int], state: Option[Int]) => Some (sum)
e Input: values = [1], state = Some(1) (for key a)
e Input: values = [1], state = None (for key b)
¢ Output: sum = 2 (for key a)
e Output: sum = 1 (for key b)

» mapWithState
® updateFunc = (key: String, value: Option[Int], state: Statel[Int]) => (key, sum)
e Input: key = a, value = Some(1l), state = 1
e Input: key = b, value = Some(1), state = 0
e Qutput: key = a, sum = 2
e Output: key = b, sum = 1

updateStateByKey vs. mapWithState Example (3/3)

» The third micro batch contains a message b.

updateStateByKey vs. mapWithState Example (3/3)

» The third micro batch contains a message b.

» updateStateByKey

® updateFunc = (values: Seq[Int], state: Option[Int]) => Some(sum)
e Input: values = [], state = Some(2) (for key a)

e Input: values = [1], state = Some(1) (for key b)

¢ Output: sum = 2 (for key a)

e Output: sum = 2 (for key b)

updateStateByKey vs. mapWithState Example (3/3)

» The third micro batch contains a message b.

» updateStateByKey

® updateFunc = (values: Seq[Int], state: Option[Int]) => Some(sum)
e Input: values = [], state = Some(2) (for key a)

e Input: values = [1], state = Some(1) (for key b)

¢ Output: sum = 2 (for key a)

e Output: sum = 2 (for key b)

» mapWithState

® updateFunc = (key: String, value: Option[Int], state: Statel[Int]) => (key, sum)
e Input: key = b, value = Some(1), state = 1
e QOutput: key = b, sum = 2

Structured Streaming

Structured Streaming

» Treating a live data stream as a table that is being continuously appended.
> Built on the Spark SQL engine.

> Perform database-like query optimizations.

Data stream Unbounded Table

new datain the
data stream

- =

new rows appended
to a unbounded table

Data stream as an unbounded table

Programming Model (1/2)

» Two main steps to develop a Spark stuctured streaming:

Programming Model (1/2)

» Two main steps to develop a Spark stuctured streaming:

» 1. Defines a query on the input table, as a static table.
e Spark automatically converts this batch-like query to a streaming execution plan.

Programming Model (1/2)

» Two main steps to develop a Spark stuctured streaming:

» 1. Defines a query on the input table, as a static table.
e Spark automatically converts this batch-like query to a streaming execution plan.

» 2. Specify triggers to control when to update the results.

¢ Each time a trigger fires, Spark checks for new data (new row in the input table), and
incrementally updates the result.

Programming Model (2/2)

Input
Table

User
Query

Result
Table

User's batch-like
queryon inputtable

Spark SQL
Planner

Triggers
System 1 2 3 N
Time T T —>
Input dataup dataup dataup
Table tot=1 tot=2 tot=3
Incremental
Query
Result resultup resultup result up
Table tot=1 tot=2 tot=3
Update Mode
rows rows
updated updated
att=2 att=3

Incremental execution on streaming data

Output Modes

» Three output modes:

1. Append: only the new rows appended to the result table since the last trigger will
be written to the external storage.

Output Modes

» Three output modes:

1. Append: only the new rows appended to the result table since the last trigger will
be written to the external storage.

2. Complete: the entire updated result table will be written to external storage.

Output Modes

» Three output modes:

1. Append: only the new rows appended to the result table since the last trigger will
be written to the external storage.

2. Complete: the entire updated result table will be written to external storage.

3. Update: only the rows that were updated in the result table since the last trigger will
be changed in the external storage.

e This mode works for output sinks that can be updated in place, such as a MySQL table.

Structured Streaming Example (1/3)

» Assume we receive (id, time, action) events from a mobile app.

» We want to count how many actions of each type happened each hour.

> Store the result in MySQL.

(phonel, 2:01, open)
(phonel, 2:03, close)

L

(phone2, 2:05, open)

F—0

E (phone4, 2:03, close)
E EIJ Output Sink
Mappers Reducers
split by (action, hour) count by (action, hour)

[https://databricks.com/blog/2016/07/28/structured-streaming-in-apache-spark.html]

Structured Streaming Example (2/3)

» We could express it as the following SQL query.

SELECT action, WINDOW(time, "1 hour"), COUNT *
FROM events

GROUP BY action, WINDOW(time, "1 hour")

(phonel, 2:01, open)
(phonel, 2:03, close)

EE —
(phone2, 2:05, open)
E]

MyS&
(phone4, 2:03, close)
E — R Output Sink

Mappers Reducers
split by (action, hour) count by (action, hour)

Structured Streaming Example (3/3)

Arriving phonel, 2:01, open phonel, 2:03, close
phone2, 2:05, open
Records phone2, 18, open phones, 1:59, open
System 2:02 2:04 2:06 o
Time T T T »
Input Table phonel, 2:01,0pen data up phonel,2:01,0pen dataup | phonel,2:01,0pen| data up
phone2 1:56,0pen | t02:02 phone2, 1:55,open t02:04 phonez, 155, open | t0 2:06
phonel, 2:03, close phonel, 2:03, close
phones, 159, open phones, 159,open

phone2,2:05, close

Query
[open 28] 1] resultup [apen] 20| 1] resultup [apen]za0] 2 | resultup
Result Table open | 100 1 t02:02 [open| 10| 2| 10204 |open| 100| 2 | 10206
close | 2:00 | 1 close | 2:00 | 1
output =T [z [mlan]z]
Update Mode open| 100 | 1 close| 200 | 1

val inputDF = spark.readStream.json("s3://logs")

inputDF. groupBy(col("action"), window(col("time"), "1 hour")).count()
.writeStream.format ("jdbc") .start ("jdbc:mysql//...")

Basic Operations

» Most of operations on DataFrame/Dataset are supported for streaming.

case class Call(action: String, time: Timestamp, id: Int)

val df: DataFrame = spark.readStream.json("s3://logs")
val ds: Dataset[Call] = df.as[Call]

// Selection and projection
df .select("action") .where("id > 10") // using untyped APIs
ds.filter(_.id > 10) .map(_.action) // using typed APIs

// Aggregation
df . groupBy("action") // using untyped API
ds.groupByKey(_.action) // using typed API

// SQL commands
df . createOrReplaceTempView ("dfView")
spark.sql("select count(*) from dfView") // returns another streaming DF

Window Operation

> Aggregations over a sliding event-time window.
e Event-time is the time embedded in the data, not the time Spark receives them.

> Use groupBy () and window() to express windowed aggregations.

// count words within 10 minute windows, updating every 5 minutes.

// streaming DataFrame of schema {time: Timestamp, word: String}

val calls = ...

val actionHours = calls.groupBy(col("action"), window(col("time"), "1 hour", "5 minutes"))

Late Data (1/3)

» Spark streaming uses watermarks to measure progress in event time.
» Watermarks flow as part of the data stream and carry a timestamp t.

» A W(t) declares that event time has reached time t in that stream
e There should be no more elements from the stream with a timestamp t’ < t.

Stream (in order)

I 1
» =] [z [18][27][1s] [3a]j[22] [20] s | »
w20y Wwi11)

/ Event

Watermark

Event timestamp

Late Data (2/3)

nc
catdog = s
dogdog e ow
1 2 3 R
Time >
Input cn] data up catdee | data up ey dataup
p
Unbounded dogdog | {0 t=1 s o8| 0 t=2 dede | to =3
table of all input ovlca =

word count query
Result e [1] result up result up [T2] result up
i o[3] tot=1 tot=2 [doe 4] to t=3
(]
Output a@ a -

word counts.
Complete Mode print all the counts to console

val lines = spark.readStream.format("socket").option("host", "localhost")
.option("port", 9999).load()
val words = lines.as[String].flatMap(_.split(" "))

val wordCounts = words.groupBy("value").count ()
val query = wordCounts.writeStream.outputMode ("complete").format("console").start()

query.awaitTermination()

Late Data (3/3)

1202 | catdog

Input Stream 1203 | dogdog

: 12
Time 1200 -

late data that was generated
at 12:04 but arrived at 12:11

1204 dog
1213 owl

1207 | owlcat

12:10 12:15
T

[1200-12:00 [cat [1]

12:00- 1210 | cat 1200-12:10 | cat

[t200-1210 | cog | 3 |

1200-1210 | dog 12:00-12:10 | dog

Result Tables
after 5 minute triggers

Late data handlingin
Windowed Grouped Aggregation

12:00- 1210 | onl

12:05-12:15 | cat 12:05-12:15 | cat

1205-1215 | onl 12:05-1215 | owl

2
4
12:00 [owl | 1
1
2
1

12:10-1220 [owl

n onlyfor
window 12:00 - 12:10

// count words within 10 minute windows, updating every 5 minutes.
// streaming DataFrame of schema {timestamp: Timestamp, word: String}

val words = ...
val windowedCounts =

.groupBy (window(col("timestamp"), "10 minutes", "5 minutes"), col("word")).count ()

words.withWatermark("timestamp", "10 minutes")

Flink

Flink

>

Distributed data flow processing system

v

Unified real-time stream and batch processing

Process unbounded and bounded Data

v

v

Design issues

e Continuous vs. micro-batch processing
e Record-at-a-Time vs. declarative APls Topology builder Query optimizer

DataStream API DataSet API

Streaming operators Blocking operators

Stream processing engine

Streaming recovery logic Batch recovery logic

Programs and Dataflows

Source

DataStream<string> lines = env.addSource(
new FlinkKafkaConsumer<s(..));

DataStream<tfvent> events = lines.map((line) -> parse(line)); } Transformation

DatasStream<StatisCics> stats = events
.keyBy("id")
.timeWindow(Time.seconds(10))
.apply(new MyWindowAggregationFunction(});

Transformation

stats.addSink(new RollingSink(path)); } Sink
Source Transformation Sink
Operator Operators Operator
/
leeyBy{)/
Source map() window()f Sink

apply(}

Stream

1

Streaming Datafiow

Window Operations

» A window defines a finite set of elements on an unbounded stream.

» Windows can be

¢ Time window (e.g., every 30 seconds)
e Count window (e.g., every 100 elements)

» One typically distinguishes different types of windows:

¢ Tumbling windows (no overlap)
o Sliding windows (with overlap)
* Session windows (punctuated by a gap of inactivity)

Time windows
—_—— A A

By i y e i) i
e s

-
= , Event stream

Event

Count{3) Windows

Watermark and Late Elements

» |t is possible that certain elements will violate the watermark condition.
o After the W(t) has occurred, more elements with timestamp t’ < t will occur.

» Streaming programs may explicitly expect some late elements.

val input: DataStream[T] = ...

input.keyBy(<key selector>)
.window(<window assigner>)
.allowedLateness (<time>)
.<windowed transformation>(<window function>)

Fault Tolerance (1/2)

» Fault tolerance in Spark

e RDD re-computation

Fault Tolerance (1/2)

» Fault tolerance in Spark
e RDD re-computation

» Fault tolerance in Storm

 Tracks records with unique IDs.
e Operators send acks when a record has been processed.
e Records are dropped from the backup when the have been fully acknowledged.

Fault Tolerance (1/2)

» Fault tolerance in Spark
e RDD re-computation

» Fault tolerance in Storm

 Tracks records with unique IDs.
e Operators send acks when a record has been processed.
e Records are dropped from the backup when the have been fully acknowledged.

» Fault tolerance in Flink

» More coarse-grained approach than Storm.
¢ Based on consistent global snapshots (inspired by Chandy-Lamport).
e Low runtime overhead, stateful exactly-once semantics.

Fault Tolerance (2/2)

>

Acks sequences of records instead of individual records.

v

Periodically, the data sources inject checkpoint barriers into the data stream.

v

The barriers flow through the data stream, and trigger operators to emit all records
that depend only on records before the barrier.

v

Once all sinks have received the barriers, Flink knows that all records before the
barriers will never be needed again.

data stream
+— newer records older records —»

» | | L]

checkpoint checkpoint stream record
barriern barrier -1 (event)

L . n .)

part of
checkpointn+1 checkpointn checkpoint n-1

Fault Tolerance (2/2)

Acks sequences of records instead of individual records.
Periodically, the data sources inject checkpoint barriers into the data stream.

The barriers flow through the data stream, and trigger operators to emit all records
that depend only on records before the barrier.

Once all sinks have received the barriers, Flink knows that all records before the
barriers will never be needed again.

Asynchronous barrier snapshotting for globally consistent checkpoints.

data stream
+— newer records older records —»

» | | L]

checkpoint checkpoint stream record
barriern barrier -1 (event)

L . n .)

part of
checkpointn+1 checkpoint n checkpoint n-1

Summary

Summary

» Spark
e Mini-batch processing
e DStream: sequence of RDDs
e RDD and window operations
e Structured streaming

» Flink
e Unified batch and stream
« Different windowing semantics
» Asynchronous barriers

Summary

>

References

M. Zaharia et al., “Spark: The Definitive Guide”, O'Reilly Media, 2018 - Chapters
20-23.

M. Zaharia et al., “Discretized Streams: An Efficient and Fault-Tolerant Model for
Stream Processing on Large Clusters”, HotCloud'12.

P. Carbone et al., “Apache flink: Stream and batch processing in a single engine”,
2015.

Some slides were derived from Heather Miller's slides:
http://heather.miller.am/teaching/cs4240/spring2018

Structured Streaming In Apache Spark:
https://databricks.com/blog/2016/07/28/structured-streaming-in-apache-spark.html

Questions?

	

