Large Scale Graph Processing - GraphX, Giraph++, and Pegasus

Amir H. Payberah
payberah@kth.se
09/10/2018

https://id2221kth.github.io

Where Are We?

Graph Algorithms Challenges

- Difficult to extract parallelism based on partitioning of the data.
- Difficult to express parallelism based on partitioning of computation.

Different Approached to Process Large Scale Graphs

- Think like a vertex
- Think like an edge
- Think like a table
- Think like a graph
- Think like a matrix

Think Like a Table

Graph-Parallel Processing Model

Data-Parallel vs. Graph-Parallel Computation

Graph-Parallel

Motivation (2/3)

- Graph-parallel computation: restricting the types of computation to achieve performance.

Motivation (2/3)

- Graph-parallel computation: restricting the types of computation to achieve performance.
- The same restrictions make it difficult and inefficient to express many stages in a typical graph-analytics pipeline.

Motivation (3/3)

Live-Journal: 69 Million Edges

Motivation (3/3)

Live-Journal: 69 Million Edges

Think Like a Table

- Unifies data-parallel and graph-parallel systems.
- Tables and Graphs are composable views of the same physical data.

Graph View

GraphX

- GraphX is the library to perform graph-parallel processing in Spark.
- In-memory caching.
- Lineage-based fault tolerance.

The Property Graph Data Model

- Spark represent graph structured data as a property graph.
- It is logically represented as a pair of vertex and edge property collections.
- VertexRDD and EdgeRDD

```
// VD: the type of the vertex attribute
// ED: the type of the edge attribute
class Graph[VD, ED] {
    val vertices: VertexRDD[VD]
    val edges: EdgeRDD[ED]
}
```


Id	Property (V)	
3	(rxin, student)	
7	(jgonzal, postdoc)	
5	(frankin, professor)	
2	(istoica, professor)	
Edge Table		
Srcld	Dstid	Property (E)
3	7	Collaborator
5	3	Advisor
2	5	Colleague
5	7	PI

The Vertex Collection

- VertexRDD: contains the vertex properties keyed by the vertex ID.

```
class Graph[VD, ED] {
    val vertices: VertexRDD[VD]
    val edges: EdgeRDD[ED]
}
```

// VD: the type of the vertex attribute
abstract class VertexRDD[VD] extends RDD[(VertexId, VD)]

The Edge Collection

- EdgeRDD: contains the edge properties keyed by the source and destination vertex IDs.

```
class Graph[VD, ED] {
    val vertices: VertexRDD[VD]
    val edges: EdgeRDD[ED]
}
// ED: the type of the edge attribute
case class Edge[ED] (srcId: VertexId, dstId: VertexId, attr: ED)
abstract class EdgeRDD[ED] extends RDD[Edge[ED]]
```


VertexTable

Edge Table

Sreld	Dstld	Propery (E)
3	7	Collabator
5	3	Adisor
2	5	Coleggue
5	7	Al

The Triplet Collection

- The triplets collection consists of each edge and its corresponding source and destination vertex properties.
- It logically joins the vertex and edge properties: RDD[EdgeTriplet [VD, ED]].
- The EdgeTriplet class extends the Edge class by adding the srcAttr and dstAttr members, which contain the source and destination properties respectively.

Building a Property Graph


```
val users: RDD[(VertexId, (String, String))] = sc.parallelize(Array((3L, ("rxin", "student")),
    (7L, ("jgonzal", "postdoc")), (5L, ("franklin", "prof")), (2L, ("istoica", "prof"))))
val relationships: RDD[Edge[String]] = sc.parallelize(Array(Edge(3L, 7L, "collab"),
    Edge(5L, 3L, "advisor"), Edge(2L, 5L, "colleague"), Edge(5L, 7L, "pi"), Edge(5L, 1L, "-")))
val defaultUser = ("John Doe", "Missing")
val graph: Graph[(String, String), String] = Graph(users, relationships, defaultUser)
```


Graph Operators

- Information about the graph
- Property operators
- Structural operators
- Joins
- Aggregation
- Iterative computation
- ...

Information About The Graph (1/2)

- Information about the graph

```
val numEdges: Long
val numVertices: Long
val inDegrees: VertexRDD[Int]
val outDegrees: VertexRDD[Int]
val degrees: VertexRDD[Int]
```

- Views of the graph as collections

```
val vertices: VertexRDD[VD]
val edges: EdgeRDD[ED]
val triplets: RDD[EdgeTriplet[VD, ED]]
```


Information About The Graph (2/2)


```
// Constructed from above
val graph: Graph[(String, String), String]
// Count all users which are postdocs
graph.vertices.filter { case (id, (name, pos)) => pos == "postdoc" }.count
// Count all the edges where src > dst
graph.edges.filter(e => e.srcId > e.dstId).count
```


Property Operators

- Transform vertex and edge attributes
- Each of these operators yields a new graph with the vertex or edge properties modified by the user defined map function.

```
def mapVertices[VD2] (map: (VertexId, VD) => VD2): Graph[VD2, ED]
def mapEdges[ED2] (map: Edge[ED] => ED2): Graph[VD, ED2]
def mapTriplets[ED2] (map: EdgeTriplet[VD, ED] => ED2): Graph[VD, ED2]
```


Property Operators

- Transform vertex and edge attributes
- Each of these operators yields a new graph with the vertex or edge properties modified by the user defined map function.

```
def mapVertices[VD2] (map: (VertexId, VD) => VD2): Graph[VD2, ED]
def mapEdges[ED2] (map: Edge[ED] => ED2): Graph[VD, ED2]
def mapTriplets[ED2] (map: EdgeTriplet[VD, ED] => ED2): Graph[VD, ED2]
```

```
val relations: RDD[String] = graph.triplets.map(triplet =>
    triplet.srcAttr._1 + " is the " + triplet.attr + " of " + triplet.dstAttr._1)
relations.collect.foreach(println)
```


Property Operators

- Transform vertex and edge attributes
- Each of these operators yields a new graph with the vertex or edge properties modified by the user defined map function.

```
def mapVertices[VD2] (map: (VertexId, VD) => VD2): Graph[VD2, ED]
def mapEdges[ED2] (map: Edge[ED] => ED2): Graph[VD, ED2]
def mapTriplets[ED2] (map: EdgeTriplet[VD, ED] => ED2): Graph[VD, ED2]
```

```
val relations: RDD[String] = graph.triplets.map(triplet =>
    triplet.srcAttr._1 + " is the " + triplet.attr + " of " + triplet.dstAttr._1)
relations.collect.foreach(println)
```

```
val newGraph = graph.mapTriplets(triplet =>
    triplet.srcAttr._1 + " is the " + triplet.attr + " of " + triplet.dstAttr._1)
newGraph.edges.collect.foreach(println)
```


Structural Operators

- reverse returns a new graph with all the edge directions reversed.

```
def reverse: Graph[VD, ED]
def subgraph(epred: EdgeTriplet[VD, ED] => Boolean, vpred: (VertexId, VD) => Boolean):
    Graph[VD, ED]
def mask[VD2, ED2](other: Graph[VD2, ED2]): Graph[VD, ED]
```


Structural Operators

- reverse returns a new graph with all the edge directions reversed.
- subgraph takes vertex/edge predicates and returns the graph containing only the vertices/edges that satisfy the given predicate.

```
def reverse: Graph[VD, ED]
def subgraph(epred: EdgeTriplet[VD, ED] => Boolean, vpred: (VertexId, VD) => Boolean):
    Graph[VD, ED]
def mask[VD2, ED2](other: Graph[VD2, ED2]): Graph[VD, ED]
```

```
// Remove missing vertices as well as the edges to connected to them
val validGraph = graph.subgraph(vpred = (id, attr) => attr._2 != "Missing")
graph.vertices.collect.foreach(println)
validGraph.vertices.collect.foreach(println)
// Restrict the answer to the valid subgraph
val validUserGraph = graph.mask(validGraph)
```


Structural Operators

- reverse returns a new graph with all the edge directions reversed.
- subgraph takes vertex/edge predicates and returns the graph containing only the vertices/edges that satisfy the given predicate.
- mask constructs a subgraph of the input graph.

```
def reverse: Graph[VD, ED]
def subgraph(epred: EdgeTriplet[VD, ED] => Boolean, vpred: (VertexId, VD) => Boolean):
    Graph[VD, ED]
def mask[VD2, ED2](other: Graph[VD2, ED2]): Graph[VD, ED]
```

```
// Remove missing vertices as well as the edges to connected to them
val validGraph = graph.subgraph(vpred = (id, attr) => attr._2 != "Missing")
graph.vertices.collect.foreach(println)
validGraph.vertices.collect.foreach(println)
// Restrict the answer to the valid subgraph
val validUserGraph = graph.mask(validGraph)
```


Join Operators

- joinVertices joins the vertices with the input RDD.
- Returns a new graph with the vertex properties obtained by applying the user defined map function to the result of the joined vertices.
- Vertices without a matching value in the RDD retain their original value.

```
def joinVertices[U](table: RDD[(VertexId, U)])(map: (VertexId, VD, U) => VD): Graph[VD, ED]
```


Join Operators

- joinVertices joins the vertices with the input RDD.
- Returns a new graph with the vertex properties obtained by applying the user defined map function to the result of the joined vertices.
- Vertices without a matching value in the RDD retain their original value.

```
def joinVertices[U](table: RDD[(VertexId, U)])(map: (VertexId, VD, U) => VD): Graph[VD, ED]
val rdd: RDD[(VertexId, String)] = sc.parallelize(Array((3L, "phd")))
val joinedGraph = graph.joinVertices(rdd)((id, user, role) => (user._1, role + " " + user._2))
joinedGraph.vertices.collect.foreach(println)
```


Aggregation (1/2)

- aggregateMessages applies a user defined sendMsg function to each edge triplet in the graph and then uses the mergeMsg function to aggregate those messages at their destination vertex.

```
def aggregateMessages[Msg: ClassTag](
    sendMsg: EdgeContext[VD, ED, Msg] => Unit, // map
    mergeMsg: (Msg, Msg) => Msg, // reduce
    tripletFields: TripletFields = TripletFields.All):
    VertexRDD [Msg]
```


Aggregation (2/2)

```
// count and list the name of friends of each user
val profs: VertexRDD[(Int, String)] = validUserGraph.aggregateMessages[(Int, String)](
    // map
    triplet => {
        triplet.sendToDst((1, triplet.srcAttr._1))
    },
    // reduce
    (a,b) => (a._1 + b._1, a._2 + " " + b._2)
)
profs.collect.foreach(println)
```


Iterative Computation (1/9)

Iterative Computation (2/9)

```
i_val := val
for each message m
    if m > val then val := m
if i_val == val then
    vote_to_halt
else
    for each neighbor v
        send_message(v, val)
```


Iterative Computation (3/9)

```
i_val := val
for each message m
    if m > val then val := m
if i_val == val then
    vote_to_halt
else
    for each neighbor v
        send_message(v, val)
```


Iterative Computation (4/9)

```
i_val := val
for each message m
    if m > val then val := m
if i_val == val then
    vote_to_halt
else
    for each neighbor v
        send_message(v, val)
```


Iterative Computation (5/9)

```
i_val := val
for each message m
    if m > val then val := m
if i_val == val then
    vote_to_halt
else
    for each neighbor v
        send_message(v, val)
```


Iterative Computation (6/9)

- pregel takes two argument lists: graph.pregel(list1)(list2).

```
def pregel[A]
    (initialMsg: A, maxIter: Int = Int.MaxValue, activeDir: EdgeDirection = EdgeDirection.Out)
    (vprog: (VertexId, VD, A) => VD, sendMsg: EdgeTriplet[VD, ED] => Iterator[(VertexId, A)],
        mergeMsg: (A, A) => A):
    Graph [VD, ED]
```


Iterative Computation (6/9)

- pregel takes two argument lists: graph.pregel(list1)(list2).
- The first list contains configuration parameters
- The initial message, the maximum number of iterations, and the edge direction in which to send messages.

```
def pregel[A]
    (initialMsg: A, maxIter: Int = Int.MaxValue, activeDir: EdgeDirection = EdgeDirection.Out)
    (vprog: (VertexId, VD, A) => VD, sendMsg: EdgeTriplet[VD, ED] => Iterator[(VertexId, A)],
        mergeMsg: (A, A) => A):
    Graph [VD, ED]
```


Iterative Computation (6/9)

- pregel takes two argument lists: graph.pregel(list1)(list2).
- The first list contains configuration parameters
- The initial message, the maximum number of iterations, and the edge direction in which to send messages.
- The second list contains the user defined functions.
- Gather: mergeMsg, Apply: vprog, Scatter: sendMsg

```
def pregel[A]
    (initialMsg: A, maxIter: Int = Int.MaxValue, activeDir: EdgeDirection = EdgeDirection.Out)
    (vprog: (VertexId, VD, A) => VD, sendMsg: EdgeTriplet[VD, ED] => Iterator[(VertexId, A)],
        mergeMsg: (A, A) => A):
    Graph[VD, ED]
```


Iterative Computation (7/9)

```
import org.apache.spark._
import org.apache.spark.graphx._
import org.apache.spark.rdd.RDD
val initialMsg = -9999
val vertices: RDD[(VertexId, (Int, Int))] = sc.parallelize(Array((1L, (1, -1)),
    (2L, (2, -1)), (3L, (3, -1)), (6L, (6, -1))))
val relationships: RDD[Edge[Boolean]] = sc.parallelize(Array(Edge(1L, 2L, true),
    Edge(2L, 1L, true), Edge(2L, 6L, true), Edge(3L, 6L, true), Edge(6L, 1L, true),
    Edge(6L, 3L, true)))
val graph = Graph(vertices, relationships)
```


Iterative Computation (8/9)
// Gather: the function for combining messages
def mergeMsg(msg1: Int, msg2: Int): Int = math.max (msg1, msg2)

Iterative Computation (8/9)

```
// Gather: the function for combining messages
def mergeMsg(msg1: Int, msg2: Int): Int = math.max(msg1, msg2)
```

```
// Apply: the function for receiving messages
def vprog(vertexId: VertexId, value: (Int, Int), message: Int): (Int, Int) = {
    if (message == initialMsg)
        value
    else
        (math.max(message, value._1), value._1)
}
```


Iterative Computation (8/9)

```
// Gather: the function for combining messages
def mergeMsg(msg1: Int, msg2: Int): Int = math.max(msg1, msg2)
```

```
// Apply: the function for receiving messages
def vprog(vertexId: VertexId, value: (Int, Int), message: Int): (Int, Int) = {
    if (message == initialMsg)
        value
    else
        (math.max(message, value._1), value._1)
}
```

// Scatter: the function for computing messages
def sendMsg(triplet: EdgeTriplet[(Int, Int), Boolean]): Iterator[(VertexId, Int)] = \{
val sourceVertex = triplet.srcAttr
if (sourceVertex._1 == sourceVertex._2)
Iterator.empty
else
Iterator((triplet.dstId, sourceVertex._1))
\}

Iterative Computation (9/9)

```
val minGraph = graph.pregel(initialMsg,
    Int.MaxValue,
    EdgeDirection.Out)(
    vprog, // apply
    sendMsg, // scatter
    mergeMsg) // gather
minGraph.vertices.collect.foreach{
    case (vertexId, (value, original_value)) => println(value)
}
```


GraphFrames

- GraphFrames extends GraphX to provide a DataFrame API.
- To build a GraphFrame we need to define the vertices and edges as DataFrames.
- spark-shell --packages graphframes:graphframes:0.6.0-spark2.3-s_2.11
- You may need to delete .ivy2 from your home folder.

Querying the GraphFrames

```
import org.graphframes._
import org.apache.spark.sql.SQLContext
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
val userDF = sqlContext.createDataFrame(Array(("rxin", "student"), ("jgonzal", "postdoc"),
    ("franklin", "prof"), ("istoica", "prof"))).toDF("id", "role")
val relationshipsDF = sqlContext.createDataFrame(Array(("rxin", "jgonzal", "collab"),
    ("franklin", "rxin", "advisor"), ("istoica", "franklin", "colleague"),
    ("franklin", "franklin", "pi"))).toDF("src", "dst", "relationship")
val graphDF = GraphFrame(userDF, relationshipsDF)
graphDF.edges.where("src = 'franklin'").groupBy("src", "dst").count().show
```

Graph Representation

- Vertex-cut partitioning
- Representing graphs using two RDDs: edge-collection and vertex-collection
- Routing table: a logical map from a vertex id to the set of edge partitions that contains adjacent edges.

Property Graph	Vertex Table (RDD)	$\begin{aligned} & \text { Routing } \\ & \text { Tatbob } \\ & \text { (RDD) } \end{aligned}$	Edge Table (RDD)
		A) 12 B) 1 C) 1	$\begin{aligned} & \text { A }=-B \\ & \text { A }=-(C) \\ & B=-C \\ & \text { C }=-D \end{aligned}$
			$\begin{aligned} & \text { (A) }=-(E) \\ & (A)=-(F \\ & \text { (E) }=-D \\ & \text { (E) }=-(\mathrm{F} \end{aligned}$

Think Like a Graph

Motivation (1/2)

- Vertex-centric programming model.
- Operate on a vertex and its edges.
- Communication to other vertices, via message passing (Pregel), or shared memory (GraphLab).
- Divide input graphs into partitions.

Partition	Vertex	Edge List
P1	(A)	B
	(B)	
P2	(C)	A E
	(D)	
P3	(E)	A F
	(F)	A D

Motivation (2/2)

- In the vertex-centric model, a vertex is very short sighted.
- A vertex has information about its immediate neighbors.
- Information is propagated through graphs slowly, one hop at a time.
- Graph-centric programming paradigm is proposed to overcome this limitation.

Think Like a Graph

	Think Like a Vertex	Think Like a Graph
Partition	A collection of vertices	A proper subgraph
Computaion	A vertex and its edges	A subgraph
Communication	1-hop at a time, e.g., $\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{D}$	Multiple-hops at a time, e.g., A $\rightarrow \mathrm{D}$

Partition	Vertex	Edge List
P1	(A)	B
	(B)	D F
P2	(C)	
	(D)	
P3	(E)	A F
	(F)	A D

Giraph++

Giraph++

- Expose subgraphs to programmers.
- Internal vertices vs. boundary vertices.

Giraph++

- Expose subgraphs to programmers.
- Internal vertices vs. boundary vertices.
- Information exchange between internal vertices of a partition is immediate.
- Messages are only sent from boundary vertices of a partition to internal vertices of a different partition.

Giraph++

- Expose subgraphs to programmers.
- Internal vertices vs. boundary vertices.
- Information exchange between internal vertices of a partition is immediate.
- Messages are only sent from boundary vertices of a partition to internal vertices of a different partition.
- A vertex is an internal vertex in exactly one subgraph, but it can be a boundary vertex in zero or more subgraphs.

Execution Model (1/2)

- A program is executed in sequence of supersteps.
- Supersteps are separated by global synchronization barriers.

Execution Model (1/2)

- A program is executed in sequence of supersteps.
- Supersteps are separated by global synchronization barriers.
- In each superstep, the computation is performed on the whole subgraph in a partition.

Execution Model (1/2)

- A program is executed in sequence of supersteps.
- Supersteps are separated by global synchronization barriers.
- In each superstep, the computation is performed on the whole subgraph in a partition.
- Like in Pregel, each internal vertex of a partition has two states: active or inactive.
- A boundary vertex does not have any state.

Execution Model (2/2)

- Differentiate internal messages and external messages.

Execution Model (2/2)

- Differentiate internal messages and external messages.
- What messages can be used in local computation?
- External messages from previous superstep (global synchronous computation).
- Internal messages from previous + current superstep (local asynchronous computation).

Execution Model (2/2)

- Differentiate internal messages and external messages.
- What messages can be used in local computation?
- External messages from previous superstep (global synchronous computation).
- Internal messages from previous + current superstep (local asynchronous computation).
- This is called hybrid execution model.

Think Like a Matrix

Graphs and Matrices (1/2)

- A graph can be represented by an adjacency matrix.
- Operations on graphs can be performed by algebraic operations on matrices.
- Linear algebra and matrix theory can be applied to solve graph problems.

Graphs and Matrices (2/2)

- Given a graph $G=(V, E)$
- Adjacency matrix $\mathrm{A}(\mathrm{G})$, a $|\mathrm{V}| \times|\mathrm{V}|$ matrix

$$
A[i][j]= \begin{cases}1 & \text { if } i \neq j \text { and }\left(v_{i}, v_{j}\right) \in E \\ 0 & \text { if } i \neq j \text { and }\left(v_{i}, v_{j}\right) \notin E \\ 0 & \text { if } i=j\end{cases}
$$

Adjacency Matrix Example

- Produce a vector representing the neighbors of a vertex v_{i}.

Adjacency Matrix Example

- Produce a vector representing the neighbors of a vertex v_{i}.
- By computing $\mathbf{A} \cdot \mathbf{x}_{\mathrm{v}_{\mathrm{i}}}$
- $\mathbf{x}_{\mathrm{v}_{\mathrm{i}}}[\mathrm{i}]=1$ and all other elements of $\mathbf{x}_{\mathrm{V}_{\mathrm{i}}}$ are 0 .
- For example, to find the neighbors of vertex b

$$
\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right] \cdot\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 1 & 1
\end{array}\right]
$$

Pegasus

Generalized Iterated Matrix-Vector (GIM-V)

- Targets at iterative graph algorithms.
- Generalized Iterated Matrix-Vector multiplication (GIM-V)
- Matrix-vector multiplication
- Assume \mathbf{M} is a $\mathrm{n} \times \mathrm{n}$ matrix, v is a vector of size n , and $m_{i, j}$ denotes the (i, j) element of M .
$\mathbf{~ - ~} \mathbf{v} \leftarrow \mathbf{M} \cdot \mathbf{v}$, where $\mathrm{v}_{\mathrm{i}} \leftarrow \sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{m}_{\mathrm{i}, \mathrm{j}} \mathrm{v}_{\mathrm{j}}$.

Generalized Iterated Matrix-Vector (GIM-V)

- Targets at iterative graph algorithms.
- Generalized Iterated Matrix-Vector multiplication (GIM-V)
- Matrix-vector multiplication
- Assume \mathbf{M} is a $n \times n$ matrix, v is a vector of size n, and $m_{i, j}$ denotes the (i, j) element of M .
$\mathbf{- v} \leftarrow \mathbf{M} \cdot \mathbf{v}$, where $\mathrm{v}_{\mathrm{i}} \leftarrow \sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{m}_{\mathrm{i}, \mathrm{j}} \mathrm{v}_{\mathrm{j}}$.
- Pegasus models each iteration of the graph computation by a GIM-V operation
- It is repeated until the vertex values in the vector converge.
- $\mathbf{v} \leftarrow \mathbf{M} \cdot \mathbf{v}$, where $\mathrm{v}_{\mathrm{i}} \leftarrow \sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{m}_{\mathrm{i}, \mathrm{j}} \mathrm{v}_{\mathrm{j}}$.
$\mathbf{v} \leftarrow \mathbf{M} \cdot \mathbf{v}$, where $\mathrm{v}_{\mathrm{i}} \leftarrow \sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{m}_{\mathrm{i}, \mathrm{j}} \mathrm{v}_{\mathrm{j}}$.
- combine2 (i, j) : to combine $\mathrm{m}_{\mathrm{i}, \mathrm{j}}$ and v_{j} into a value.

GIM-V Operators

- $\mathbf{v} \leftarrow \mathbf{M} \cdot \mathbf{v}$, where $\mathrm{v}_{\mathrm{i}} \leftarrow \sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{m}_{\mathrm{i}, \mathrm{j}} \mathrm{v}_{\mathrm{j}}$.
- combine2 (i, j) : to combine $m_{i, j}$ and v_{j} into a value.
- combineAll (i): for each v_{i}, to combine all the n intermediate results produced by combine2 into a single value.

GIM-V Operators

- $\mathbf{v} \leftarrow \mathbf{M} \cdot \mathbf{v}$, where $\mathrm{v}_{\mathrm{i}} \leftarrow \sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{m}_{\mathrm{i}, \mathrm{j}} \mathrm{v}_{\mathrm{j}}$.
- combine2 (i, j) : to combine $\mathrm{m}_{\mathrm{i}, \mathrm{j}}$ and v_{j} into a value.
- combineAll(i): for each v_{i}, to combine all the n intermediate results produced by combine2 into a single value.
- assign: to overwrite the old value of v_{i} with the new value.

GIM-V Example: PageRank (1/3)

GIM-V Example: PageRank (2/3)

- PageRank formula: $\mathbf{v} \leftarrow\left(0.85 \mathbf{E}^{\mathrm{T}}+0.15 \mathbf{U}\right) \cdot \mathbf{v}$.
- \mathbf{v} is a column vector with n elements.
- \mathbf{E} is a is the row-normalized adjacency matrix.

- U is a $\mathrm{n} \times \mathrm{n}$ matrix, with all elements set to $\frac{1}{\mathrm{n}}$.

$$
\boldsymbol{A}=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right]=\left[\begin{array}{cccc}
0 & 1 / 3 & 1 / 3 & 1 / 3 \\
0 & 0 & 0 & 1 \\
1 / 2 & 0 & 0 & 1 / 2 \\
1 / 2 & 0 & 1 / 2 & 0
\end{array}\right] \boldsymbol{Z}=\left[\begin{array}{llll}
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4
\end{array}\right] \mathbf{v}_{\text {init }}=\left[\begin{array}{l}
1 / 4 \\
1 / 4 \\
1 / 4 \\
1 / 4
\end{array}\right]
$$

- If $M=0.85 E^{T}+0.15 \mathbf{U}$, then we can write the PageRank as $\mathbf{v} \leftarrow \mathbf{M} \cdot \mathbf{v}$.

GIM-V Example: PageRank (3/3)

- PageRank formula: $\mathbf{v} \leftarrow\left(0.85 \mathbf{E}^{\mathrm{T}}+0.15 \mathbf{U}\right) \cdot \mathbf{v}$.
- combine2(i, $j)=0.85 \times m_{i, j} \times v_{j}$
- combineAll $(i)=\frac{0.15}{n}+\sum_{j=1}^{n} \operatorname{combine2}(i, j)$
- assign: $\mathrm{v}_{\mathrm{i}} \leftarrow$ combineAll(i)

Summary

Summary

- Think like a table
- Graphx: unifies data-parallel and graph-parallel systems.
- Think like a graph
- Giraph++: exposes subgraphs to programmers
- Think like a matrix
- Pegasus: linear algebra and matrix theory to solve graph problems.

References

- J. Gonzalez et al., "GraphX: Graph Processing in a Distributed Dataflow Framework", OSDI 2014
- Y. Tian et al., "From think like a vertex to think like a graph", VLDB 2013
- U. Kang et al., "PEGASUS: mining peta-scale graphs", Knowledge and information systems 2011

Questions?

