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Where Are We?
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Graph Algorithms Challenges

I Difficult to extract parallelism based on partitioning of the data.

I Difficult to express parallelism based on partitioning of computation.
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Different Approached to Process Large Scale Graphs

I Think like a vertex

I Think like an edge

I Think like a table

I Think like a graph

I Think like a matrix
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Think Like a Table
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Graph-Parallel Processing Model

7 / 60



Data-Parallel vs. Graph-Parallel Computation
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Motivation (2/3)

I Graph-parallel computation: restricting the types of computation to achieve perfor-
mance.

I The same restrictions make it difficult and inefficient to express many stages in a
typical graph-analytics pipeline.
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Think Like a Table

I Unifies data-parallel and graph-parallel systems.

I Tables and Graphs are composable views of the same physical data.
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GraphX
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GraphX

I GraphX is the library to perform graph-parallel processing in Spark.

I In-memory caching.

I Lineage-based fault tolerance.
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The Property Graph Data Model

I Spark represent graph structured data as a property graph.

I It is logically represented as a pair of vertex and edge property collections.
• VertexRDD and EdgeRDD

// VD: the type of the vertex attribute

// ED: the type of the edge attribute

class Graph[VD, ED] {

val vertices: VertexRDD[VD]

val edges: EdgeRDD[ED]

}
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The Vertex Collection

I VertexRDD: contains the vertex properties keyed by the vertex ID.

class Graph[VD, ED] {

val vertices: VertexRDD[VD]

val edges: EdgeRDD[ED]

}

// VD: the type of the vertex attribute

abstract class VertexRDD[VD] extends RDD[(VertexId, VD)]
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The Edge Collection

I EdgeRDD: contains the edge properties keyed by the source and destination vertex
IDs.

class Graph[VD, ED] {

val vertices: VertexRDD[VD]

val edges: EdgeRDD[ED]

}

// ED: the type of the edge attribute

case class Edge[ED](srcId: VertexId, dstId: VertexId, attr: ED)

abstract class EdgeRDD[ED] extends RDD[Edge[ED]]
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The Triplet Collection

I The triplets collection consists of each edge and its corresponding source and desti-
nation vertex properties.

I It logically joins the vertex and edge properties: RDD[EdgeTriplet[VD, ED]].

I The EdgeTriplet class extends the Edge class by adding the srcAttr and dstAttr

members, which contain the source and destination properties respectively.
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Building a Property Graph

val users: RDD[(VertexId, (String, String))] = sc.parallelize(Array((3L, ("rxin", "student")),

(7L, ("jgonzal", "postdoc")), (5L, ("franklin", "prof")), (2L, ("istoica", "prof"))))

val relationships: RDD[Edge[String]] = sc.parallelize(Array(Edge(3L, 7L, "collab"),

Edge(5L, 3L, "advisor"), Edge(2L, 5L, "colleague"), Edge(5L, 7L, "pi"), Edge(5L, 1L, "-")))

val defaultUser = ("John Doe", "Missing")

val graph: Graph[(String, String), String] = Graph(users, relationships, defaultUser)
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Graph Operators

I Information about the graph

I Property operators

I Structural operators

I Joins

I Aggregation

I Iterative computation

I ...
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Information About The Graph (1/2)

I Information about the graph

val numEdges: Long

val numVertices: Long

val inDegrees: VertexRDD[Int]

val outDegrees: VertexRDD[Int]

val degrees: VertexRDD[Int]

I Views of the graph as collections

val vertices: VertexRDD[VD]

val edges: EdgeRDD[ED]

val triplets: RDD[EdgeTriplet[VD, ED]]
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Information About The Graph (2/2)

// Constructed from above

val graph: Graph[(String, String), String]

// Count all users which are postdocs

graph.vertices.filter { case (id, (name, pos)) => pos == "postdoc" }.count

// Count all the edges where src > dst

graph.edges.filter(e => e.srcId > e.dstId).count
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Property Operators

I Transform vertex and edge attributes

I Each of these operators yields a new graph with the vertex or edge properties modified
by the user defined map function.

def mapVertices[VD2](map: (VertexId, VD) => VD2): Graph[VD2, ED]

def mapEdges[ED2](map: Edge[ED] => ED2): Graph[VD, ED2]

def mapTriplets[ED2](map: EdgeTriplet[VD, ED] => ED2): Graph[VD, ED2]

val relations: RDD[String] = graph.triplets.map(triplet =>

triplet.srcAttr._1 + " is the " + triplet.attr + " of " + triplet.dstAttr._1)

relations.collect.foreach(println)

val newGraph = graph.mapTriplets(triplet =>

triplet.srcAttr._1 + " is the " + triplet.attr + " of " + triplet.dstAttr._1)

newGraph.edges.collect.foreach(println)
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Structural Operators

I reverse returns a new graph with all the edge directions reversed.

I subgraph takes vertex/edge predicates and returns the graph containing only the
vertices/edges that satisfy the given predicate.

I mask constructs a subgraph of the input graph.

def reverse: Graph[VD, ED]

def subgraph(epred: EdgeTriplet[VD, ED] => Boolean, vpred: (VertexId, VD) => Boolean):

Graph[VD, ED]

def mask[VD2, ED2](other: Graph[VD2, ED2]): Graph[VD, ED]

// Remove missing vertices as well as the edges to connected to them

val validGraph = graph.subgraph(vpred = (id, attr) => attr._2 != "Missing")

graph.vertices.collect.foreach(println)

validGraph.vertices.collect.foreach(println)

// Restrict the answer to the valid subgraph

val validUserGraph = graph.mask(validGraph)
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Join Operators

I joinVertices joins the vertices with the input RDD.
• Returns a new graph with the vertex properties obtained by applying the user defined
map function to the result of the joined vertices.

• Vertices without a matching value in the RDD retain their original value.

def joinVertices[U](table: RDD[(VertexId, U)])(map: (VertexId, VD, U) => VD): Graph[VD, ED]

val rdd: RDD[(VertexId, String)] = sc.parallelize(Array((3L, "phd")))

val joinedGraph = graph.joinVertices(rdd)((id, user, role) => (user._1, role + " " + user._2))

joinedGraph.vertices.collect.foreach(println)
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Aggregation (1/2)

I aggregateMessages applies a user defined sendMsg function to each edge triplet
in the graph and then uses the mergeMsg function to aggregate those messages at
their destination vertex.

def aggregateMessages[Msg: ClassTag](

sendMsg: EdgeContext[VD, ED, Msg] => Unit, // map

mergeMsg: (Msg, Msg) => Msg, // reduce

tripletFields: TripletFields = TripletFields.All):

VertexRDD[Msg]
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Aggregation (2/2)

// count and list the name of friends of each user

val profs: VertexRDD[(Int, String)] = validUserGraph.aggregateMessages[(Int, String)](

// map

triplet => {

triplet.sendToDst((1, triplet.srcAttr._1))

},

// reduce

(a, b) => (a._1 + b._1, a._2 + " " + b._2)

)

profs.collect.foreach(println)
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Iterative Computation (1/9)
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Iterative Computation (2/9)

i_val := val

for each message m

if m > val then val := m

if i_val == val then

vote_to_halt

else

for each neighbor v

send_message(v, val)
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Iterative Computation (4/9)
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Iterative Computation (5/9)

i_val := val

for each message m

if m > val then val := m

if i_val == val then

vote_to_halt

else

for each neighbor v

send_message(v, val)

31 / 60



Iterative Computation (6/9)

I pregel takes two argument lists: graph.pregel(list1)(list2).

I The first list contains configuration parameters
• The initial message, the maximum number of iterations, and the edge direction in

which to send messages.

I The second list contains the user defined functions.
• Gather: mergeMsg, Apply: vprog, Scatter: sendMsg

def pregel[A]

(initialMsg: A, maxIter: Int = Int.MaxValue, activeDir: EdgeDirection = EdgeDirection.Out)

(vprog: (VertexId, VD, A) => VD, sendMsg: EdgeTriplet[VD, ED] => Iterator[(VertexId, A)],

mergeMsg: (A, A) => A):

Graph[VD, ED]
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Iterative Computation (7/9)

import org.apache.spark._

import org.apache.spark.graphx._

import org.apache.spark.rdd.RDD

val initialMsg = -9999

val vertices: RDD[(VertexId, (Int, Int))] = sc.parallelize(Array((1L, (1, -1)),

(2L, (2, -1)), (3L, (3, -1)), (6L, (6, -1))))

val relationships: RDD[Edge[Boolean]] = sc.parallelize(Array(Edge(1L, 2L, true),

Edge(2L, 1L, true), Edge(2L, 6L, true), Edge(3L, 6L, true), Edge(6L, 1L, true),

Edge(6L, 3L, true)))

val graph = Graph(vertices, relationships)
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Iterative Computation (8/9)

// Gather: the function for combining messages

def mergeMsg(msg1: Int, msg2: Int): Int = math.max(msg1, msg2)

// Apply: the function for receiving messages

def vprog(vertexId: VertexId, value: (Int, Int), message: Int): (Int, Int) = {

if (message == initialMsg)

value

else

(math.max(message, value._1), value._1)

}

// Scatter: the function for computing messages

def sendMsg(triplet: EdgeTriplet[(Int, Int), Boolean]): Iterator[(VertexId, Int)] = {

val sourceVertex = triplet.srcAttr

if (sourceVertex._1 == sourceVertex._2)

Iterator.empty

else

Iterator((triplet.dstId, sourceVertex._1))

}

34 / 60



Iterative Computation (8/9)

// Gather: the function for combining messages

def mergeMsg(msg1: Int, msg2: Int): Int = math.max(msg1, msg2)

// Apply: the function for receiving messages

def vprog(vertexId: VertexId, value: (Int, Int), message: Int): (Int, Int) = {

if (message == initialMsg)

value

else

(math.max(message, value._1), value._1)

}

// Scatter: the function for computing messages

def sendMsg(triplet: EdgeTriplet[(Int, Int), Boolean]): Iterator[(VertexId, Int)] = {

val sourceVertex = triplet.srcAttr

if (sourceVertex._1 == sourceVertex._2)

Iterator.empty

else

Iterator((triplet.dstId, sourceVertex._1))

}

34 / 60



Iterative Computation (8/9)

// Gather: the function for combining messages

def mergeMsg(msg1: Int, msg2: Int): Int = math.max(msg1, msg2)

// Apply: the function for receiving messages

def vprog(vertexId: VertexId, value: (Int, Int), message: Int): (Int, Int) = {

if (message == initialMsg)

value

else

(math.max(message, value._1), value._1)

}

// Scatter: the function for computing messages

def sendMsg(triplet: EdgeTriplet[(Int, Int), Boolean]): Iterator[(VertexId, Int)] = {

val sourceVertex = triplet.srcAttr

if (sourceVertex._1 == sourceVertex._2)

Iterator.empty

else

Iterator((triplet.dstId, sourceVertex._1))

}

34 / 60



Iterative Computation (9/9)

val minGraph = graph.pregel(initialMsg,

Int.MaxValue,

EdgeDirection.Out)(

vprog, // apply

sendMsg, // scatter

mergeMsg) // gather

minGraph.vertices.collect.foreach{

case (vertexId, (value, original_value)) => println(value)

}
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GraphFrames

I GraphFrames extends GraphX to provide a DataFrame API.

I To build a GraphFrame we need to define the vertices and edges as DataFrames.

I spark-shell --packages graphframes:graphframes:0.6.0-spark2.3-s 2.11

• You may need to delete .ivy2 from your home folder.
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Querying the GraphFrames

import org.graphframes._

import org.apache.spark.sql.SQLContext

val sqlContext = new org.apache.spark.sql.SQLContext(sc)

val userDF = sqlContext.createDataFrame(Array(("rxin", "student"), ("jgonzal", "postdoc"),

("franklin", "prof"), ("istoica", "prof"))).toDF("id", "role")

val relationshipsDF = sqlContext.createDataFrame(Array(("rxin", "jgonzal", "collab"),

("franklin", "rxin", "advisor"), ("istoica", "franklin", "colleague"),

("franklin", "franklin", "pi"))).toDF("src", "dst", "relationship")

val graphDF = GraphFrame(userDF, relationshipsDF)

graphDF.edges.where("src = ’franklin’").groupBy("src", "dst").count().show
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Graph Representation

I Vertex-cut partitioning

I Representing graphs using two RDDs: edge-collection and vertex-collection

I Routing table: a logical map from a vertex id to the set of edge partitions that
contains adjacent edges.
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Think Like a Graph
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Motivation (1/2)

I Vertex-centric programming model.
• Operate on a vertex and its edges.
• Communication to other vertices, via message passing (Pregel), or shared memory

(GraphLab).

I Divide input graphs into partitions.
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Motivation (2/2)

I In the vertex-centric model, a vertex is very short sighted.
• A vertex has information about its immediate neighbors.
• Information is propagated through graphs slowly, one hop at a time.

I Graph-centric programming paradigm is proposed to overcome this limitation.
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Think Like a Graph

Think Like a Vertex Think Like a Graph

Partition A collection of vertices A proper subgraph

Computaion A vertex and its edges A subgraph

Communication 1-hop at a time, e.g., A → B → D Multiple-hops at a time, e.g., A → D
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Giraph++
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Giraph++

I Expose subgraphs to programmers.

I Internal vertices vs. boundary vertices.

• Information exchange between internal vertices of a partition is immediate.
• Messages are only sent from boundary vertices of a partition to internal vertices of a

different partition.

I A vertex is an internal vertex in exactly one subgraph, but it can be a boundary
vertex in zero or more subgraphs.
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Execution Model (1/2)

I A program is executed in sequence of supersteps.

I Supersteps are separated by global synchronization barriers.

I In each superstep, the computation is performed on the whole subgraph in a partition.

I Like in Pregel, each internal vertex of a partition has two states: active or inactive.

I A boundary vertex does not have any state.

45 / 60



Execution Model (1/2)

I A program is executed in sequence of supersteps.

I Supersteps are separated by global synchronization barriers.

I In each superstep, the computation is performed on the whole subgraph in a partition.

I Like in Pregel, each internal vertex of a partition has two states: active or inactive.

I A boundary vertex does not have any state.

45 / 60



Execution Model (1/2)

I A program is executed in sequence of supersteps.

I Supersteps are separated by global synchronization barriers.

I In each superstep, the computation is performed on the whole subgraph in a partition.

I Like in Pregel, each internal vertex of a partition has two states: active or inactive.

I A boundary vertex does not have any state.

45 / 60



Execution Model (2/2)

I Differentiate internal messages and external messages.

I What messages can be used in local computation?
• External messages from previous superstep (global synchronous computation).
• Internal messages from previous + current superstep (local asynchronous

computation).

I This is called hybrid execution model.
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Think Like a Matrix
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Graphs and Matrices (1/2)

I A graph can be represented by an adjacency matrix.

I Operations on graphs can be performed by algebraic operations on matrices.

I Linear algebra and matrix theory can be applied to solve graph problems.
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Graphs and Matrices (2/2)

I Given a graph G = (V, E)

I Adjacency matrix A(G), a |V| × |V| matrix

A[i][j] =


1 if i 6= j and (vi, vj) ∈ E

0 if i 6= j and (vi, vj) 6∈ E

0 if i = j
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Adjacency Matrix Example

I Produce a vector representing the neighbors of a vertex vi.

I By computing A · xvi
• xvi [i] = 1 and all other elements of xvi are 0.

I For example, to find the neighbors of vertex b
0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0

 ·


0
1
0
0

 = [1 0 1 1]

50 / 60



Adjacency Matrix Example

I Produce a vector representing the neighbors of a vertex vi.

I By computing A · xvi
• xvi [i] = 1 and all other elements of xvi are 0.

I For example, to find the neighbors of vertex b
0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0

 ·


0
1
0
0

 = [1 0 1 1]

50 / 60



Pegasus
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Generalized Iterated Matrix-Vector (GIM-V)

I Targets at iterative graph algorithms.

I Generalized Iterated Matrix-Vector multiplication (GIM-V)
• Matrix-vector multiplication
• Assume M is a n× n matrix, v is a vector of size n, and mi,j denotes the (i, j)

element of M.
• v←M · v, where vi ←

∑n
j=1 mi,jvj.

I Pegasus models each iteration of the graph computation by a GIM-V operation
• It is repeated until the vertex values in the vector converge.
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GIM-V Operators

I v←M · v, where vi ←
∑n

j=1 mi,jvj.

I combine2(i, j): to combine mi,j and vj into a value.

I combineAll(i): for each vi, to combine all the n intermediate results produced by
combine2 into a single value.

I assign: to overwrite the old value of vi with the new value.
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GIM-V Example: PageRank (1/3)
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GIM-V Example: PageRank (2/3)

I PageRank formula: v← (0.85ET + 0.15U) · v.
• v is a column vector with n elements.
• E is a is the row-normalized adjacency matrix.
• U is a n× n matrix, with all elements set to 1

n
.

A =

[
0 1 1 1
0 0 0 1
1 0 0 1
1 0 1 0

]
E =

[
0 1/3 1/3 1/3
0 0 0 1

1/2 0 0 1/2
1/2 0 1/2 0

]
U =

[
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4

]
vinit =

[
1/4
1/4
1/4
1/4

]
I If M = 0.85ET + 0.15U, then we can write the PageRank as v←M · v.
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GIM-V Example: PageRank (3/3)

I PageRank formula: v← (0.85ET + 0.15U) · v.

I combine2(i, j) = 0.85× mi,j × vj

I combineAll(i) = 0.15
n

+
∑n

j=1 combine2(i, j)

I assign: vi ← combineAll(i)
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Summary
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Summary

I Think like a table
• Graphx: unifies data-parallel and graph-parallel systems.

I Think like a graph
• Giraph++: exposes subgraphs to programmers

I Think like a matrix
• Pegasus: linear algebra and matrix theory to solve graph problems.
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Questions?
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