b

k.
EFXTHE

NSKAP
3% OCH KONST 3%

S

Large Scale Graph Processing - GraphX, Giraph++, and Pegasus

Amir H. Payberah
payberah@Qkth.se
09/10/2018

The Course Web Page

https://id2221kth.github.io

https://id2221kth.github.io

Where Are We?

Data Processing

Pregel, GraphLab, PowerGrapl| Spark SQL Milib
‘ GraphX, X-Streem, Chaos, Tensorflow

MapReduce, Dryad Storm, SEEP, Naiad, Spark Streaming, Flink,
FlumeJava, Spark Millwheel, Google Dataflow

Data Storage

Dynamo, BigTable,
GFS, Flat FS Cassandra

Resource Management

Mesos, YARN

SOUNDCLOUD

i

Graph Algorithms Challenges

» Difficult to extract parallelism based on partitioning of the data.

» Difficult to express parallelism based on partitioning of computation.

Different Approached to Process Large Scale Graphs

Think like a vertex

>

v

Think like an edge

Think like a table

v

v

Think like a graph

Think like a matrix

v

Think Like a Table

Data-Parallel vs. Graph-Parallel Computation

Data-Parallel Graph-Parallel

1
A 1
ChEREED | o
|) \ i .,4‘:‘,
Pregel GraphLab" # &%
Soark’ | ohiab" £sd
Table : Property Graph
“Fov i
e] |
—— L Result X
“Row I .
T 0 1 |
o] . e—g—e
1

Motivation (2/3)

» Graph-parallel computation: restricting the types of computation to achieve perfor-
mance.

Motivation (2/3)

>

Graph-parallel computation: restricting the types of computation to achieve perfor-
mance.

The same restrictions make it difficult and inefficient to express many stages in a
typical graph-analytics pipeline.

v

Preprocessin; Compute Post Proc.
@ nlab %“
= .
1 1 7
Raw | ;
Compute
Fo) :
i Initial | PageRank
! Graph

Motivation

(3/3)

Mahout/Hadoop
Naive Spark
Giraph

GraphX
GraphlLab

Live-Journal: 69 Million Edges

1340
B 354
B 207
W 68
12
0 200 400 600 800 1000 1200 1400 1600

Runtime (in seconds, PageRank for 10 iterations)

Motivation (3/3)

Live-Journal: 69 Million Edges

Mahout/Hadoop 1340
Naive Spark R 354
Giraph W, 207
GraphX [l 68
Graphlab I 22
0 200 400 600 800 1000 1200 1400 1600

Runtime (in seconds, PageRank for 10 iterations)

Raw Wikipedia Hyperlinks PageRank Top 20 Pages
—
- Pl
5ok Freprocess — \Colbie Y Soark Fos. 3
Spark “ S
Giraph + Spark J 605
GraphX_ | 342
GraphLab + Spark Ll | 375

0 200 400 600 800 1000 1200 1400 1600
Total Runtime (in Seconds)

Think Like a Table

» Unifies data-parallel and graph-parallel systems.

» Tables and Graphs are composable views of the same physical data.

17 == —=

e —
Table View W Graph View

Representation

GraphX

» GraphX is the library to perform graph-parallel processing in Spark.
» In-memory caching.

» Lineage-based fault tolerance.

=Graph X

The Property Graph Data Model

» Spark represent graph structured data as a property graph.

» It is logically represented as a pair of vertex and edge property collections.
e VertexRDD and EdgeRDD

Property Graph Vertex Table
Id Property (V)
3 (rin, student)
// VD: the type of the vertex attribute e
// ED: the type of the edge attribute 2 (toin professor
class Graph[VD, ED] { Edge Table
val vertices: VertexRDD[VD] g
Srcld | Dstld Property (E)
val edges: EdgeRDD[ED] 3 7 CO‘Eb:,:m,
} S 3 Advisor
2 5 Colleague
5 7 PI

The Vertex Collection

» VertexRDD: contains the vertex properties keyed by the vertex ID.

class Graph[VD, ED] {
val vertices: VertexRDD[VD]
val edges: EdgeRDD [ED]

}

// VD: the type of the wertex attribute
abstract class VertexRDD[VD] extends RDD[(VertexId, VD)]

Property Graph Vertex Table

Id Property (V)

3 (i student)

7 (jgonzal, postdoc)
5 (franki, professor)
2

(i pofo) Vertices:@
@

Edge Table

Srcld | Dsud | Property (E)

3 7 Collaborator
5 3 Advsor
2 5 Colleague
5 7 i

The Edge Collection

> EdgeRDD: contains the edge properties keyed by the source and destination vertex

IDs.

class Graph[VD, ED] {
val vertices: VertexRDD[VD]

val edges: EdgeRDD [ED]
}

// ED: the type of the edge attribute
case class Edge[ED] (srcId: VertexId, dstId: VertexId, attr: ED)

abstract class EdgeRDD[ED] extends RDD[Edge [ED]]

Property Graph Vertex Table
] Property (V)
B 3 (i stucent)
(o QI) poste
5 (rankin.prof
p (iocn profess =
Edges:
Edge Table & Q 9

Srcld | Dsud [Property (8)
3 7 Colaborator.
Advisor

7 2 s 3
2 5 Colleague
5 7

]

The Triplet Collection

> The triplets collection consists of each edge and its corresponding source and desti-
nation vertex properties.

» It logically joins the vertex and edge properties: RDD [EdgeTriplet [VD, ED]].

» The EdgeTriplet class extends the Edge class by adding the srcAttr and dstAttr
members, which contain the source and destination properties respectively.

Vertices: % Edges: Triplets:

Building a Property Graph

Property Graph Vertex Table

d Property (V)
(e, student)

3
7 (gonzal, postdoc)
5 (franki, professor)
2 (istoica, professor)

Edge Table

Sreld | Dstld | Property (E)
3 7 Colaborator

5 3 Advisor

2 5 Colleague

5 7 Pl

val users: RDD[(VertexId, (String, String))] = sc.parallelize(Array((3L, ("rxin", "student")),
(7L, ("jgonzal", "postdoc")), (5L, ("franklin", "prof")), (2L, ("istoica", "prof"))))

val relationships: RDD[Edge[Stringl] = sc.parallelize(Array(Edge(3L, 7L, "collab"),
Edge(5L, 3L, "advisor"), Edge(2L, 5L, "colleague"), Edge(5L, 7L, "pi"), Edge(5L, 1L, "-")))

val defaultUser = ("John Doe", "Missing")

val graph: Graph[(String, String), String] = Graph(users, relationships, defaultUser)

Graph Operators

>

Information about the graph

v

Property operators

v

Structural operators

» Joins

v

Aggregation

v

Iterative computation

>

val
val
val
val
val

val
val
val

Information About The Graph (1/2)

Information about the graph

numEdges: Long
numVertices: Long
inDegrees: VertexRDD[Int]
outDegrees: VertexRDD[Int]
degrees: VertexRDD[Int]

Views of the graph as collections

vertices: VertexRDD[VD]
edges: EdgeRDD[ED]
triplets: RDD[EdgeTriplet[VD, ED]]

Information About The Graph (2/2)

Property Graph Vertex Table

1d Property (V)
(nin, student)

3
7 (gonzal, postdoc)
5 (rankin, professor
2 (st fessor)

Edge Table

Srld | Dsud | Property (B)

3 7 Collaborator
5 3 Advisor.
2 5 Colleague
5 7]

// Constructed from above
val graph: Graph[(String, String), String]

// Count all users which are postdocs
graph.vertices.filter { case (id, (name, pos)) => pos == "postdoc" }.count

// Count all the edges where src > dst
graph.edges.filter(e => e.srcId > e.dstId).count

Property Operators

» Transform vertex and edge attributes

» Each of these operators yields a new graph with the vertex or edge properties modified
by the user defined map function.

def mapVertices[VD2] (map: (VertexId, VD) => VD2): Graph[VD2, ED]
def mapEdges[ED2] (map: Edge[ED] => ED2): Graph[VD, ED2]
def mapTriplets[ED2] (map: EdgeTriplet[VD, ED] => ED2): Graph[VD, ED2]

Property Operators

» Transform vertex and edge attributes

» Each of these operators yields a new graph with the vertex or edge properties modified
by the user defined map function.

def mapVertices[VD2] (map: (VertexId, VD) => VD2): Graph[VD2, ED]
def mapEdges[ED2] (map: Edge[ED] => ED2): Graph[VD, ED2]
def mapTriplets[ED2] (map: EdgeTriplet[VD, ED] => ED2): Graph[VD, ED2]

val relations: RDD[String] = graph.triplets.map(triplet =>
triplet.srcAttr._1 + " is the " + triplet.attr + " of " + triplet.dstAttr._1)
relations.collect.foreach(println)

Property Operators

» Transform vertex and edge attributes

» Each of these operators yields a new graph with the vertex or edge properties modified
by the user defined map function.

def mapVertices[VD2] (map: (VertexId, VD) => VD2): Graph[VD2, ED]
def mapEdges[ED2] (map: Edge[ED] => ED2): Graph[VD, ED2]
def mapTriplets[ED2] (map: EdgeTriplet[VD, ED] => ED2): Graph[VD, ED2]

val relations: RDD[String] = graph.triplets.map(triplet =>
triplet.srcAttr._1 + " is the " + triplet.attr + " of " + triplet.dstAttr._1)
relations.collect.foreach(println)

val newGraph = graph.mapTriplets(triplet =>
triplet.srcAttr._1 + " is the " + triplet.attr + " of " + triplet.dstAttr._1)
newGraph.edges.collect.foreach(println)

Structural Operators

» reverse returns a new graph with all the edge directions reversed.

def reverse: Graph[VD, ED]

def subgraph(epred: EdgeTriplet[VD, ED] => Boolean, vpred: (VertexId, VD) => Boolean):
Graph[VD, ED]

def mask[VD2, ED2] (other: Graph[VD2, ED2]): Graph[VD, ED]

Structural Operators

» reverse returns a new graph with all the edge directions reversed.

» subgraph takes vertex/edge predicates and returns the graph containing only the
vertices/edges that satisfy the given predicate.

def reverse: Graph[VD, ED]

def subgraph(epred: EdgeTriplet[VD, ED] => Boolean, vpred: (VertexId, VD) => Boolean):
Graph [VD, ED]

def mask[VD2, ED2] (other: Graph[VD2, ED2]): Graph[VD, ED]

// Remove missing vertices as well as the edges to connected to them

val validGraph = graph.subgraph(vpred = (id, attr) => attr._2 != "Missing")
graph.vertices.collect.foreach(println)
validGraph.vertices.collect.foreach(println)

// Restrict the answer to the valid subgraph
val validUserGraph = graph.mask(validGraph)

Structural Operators

» reverse returns a new graph with all the edge directions reversed.

» subgraph takes vertex/edge predicates and returns the graph containing only the
vertices/edges that satisfy the given predicate.

» mask constructs a subgraph of the input graph.

def reverse: Graph[VD, ED]

def subgraph(epred: EdgeTriplet[VD, ED] => Boolean, vpred: (VertexId, VD) => Boolean):
Graph [VD, ED]

def mask[VD2, ED2] (other: Graph[VD2, ED2]): Graph[VD, ED]

// Remove missing vertices as well as the edges to connected to them

val validGraph = graph.subgraph(vpred = (id, attr) => attr._2 != "Missing")
graph.vertices.collect.foreach(println)
validGraph.vertices.collect.foreach(println)

// Restrict the answer to the valid subgraph
val validUserGraph = graph.mask(validGraph)

Join Operators

> joinVertices joins the vertices with the input RDD.
e Returns a new graph with the vertex properties obtained by applying the user defined
map function to the result of the joined vertices.
» Vertices without a matching value in the RDD retain their original value.

def joinVertices[U] (table: RDD[(VertexId, U)]) (map: (VertexId, VD, U) => VD): Graph[VD, ED]

Join Operators

> joinVertices joins the vertices with the input RDD.

e Returns a new graph with the vertex properties obtained by applying the user defined
map function to the result of the joined vertices.
» Vertices without a matching value in the RDD retain their original value.

def joinVertices[U] (table: RDD[(VertexId, U)]) (map: (VertexId, VD, U) => VD): Graph[VD, ED]

val rdd: RDD[(VertexId, String)] = sc.parallelize(Array((3L, "phd")))
val joinedGraph = graph.joinVertices(rdd) ((id, user, role) => (user._1, role + " " + user._2))
joinedGraph.vertices.collect.foreach(println)

Aggregation (1/2)

> aggregateMessages applies a user defined sendMsg function to each edge triplet
in the graph and then uses the mergeMsg function to aggregate those messages at
their destination vertex.

def aggregateMessages[Msg: ClassTag] (
sendMsg: EdgeContext[VD, ED, Msgl => Unit, // map
mergeMsg: (Msg, Msg) => Msg, // reduce
tripletFields: TripletFields = TripletFields.All):
VertexRDD [Msg]

Aggregation (2/2)

// count and list the name of friends of each user
val profs: VertexRDD[(Int, String)] = validUserGraph.aggregateMessages[(Int, String)](
// map
triplet => {
triplet.sendToDst((1, triplet.srcAttr._1))

¥y
// reduce
(a, b) => (a._1 +b._1, a._ 2 +" " + b._2)

)

profs.collect.foreach(println)

lterative Computation (1/9)

Jdalieg

compute communicate

Iterative Computation (2/9)

i_val := val

for each message m

if m > val then val :=m “

if i_val == val then Super step 0
vote_to_halt
else

for each neighbor v
send_message (v, val)

Iterative Computation (3/9)

i_val := val

for each message m Super step 0

if m > val then val :=m
if i_val == val then
vote_to_halt
else

Super step 1

for each neighbor v
send_message (v, val)

lterative Computation (4/9)

Super step 0
i_val := val

for each message m

if m > val then val :=m

if i_val == val then Super step 1
vote_to_halt

else

for each neighbor v
send_message (v, val)

Super step 2

lterative Computation (5/9)

Super step 0

i_val := val

for each message m Super step 1

if m > val then val :=m
if i_val == val then
vote_to_halt
else

. Super step 2
for each neighbor v

send_message (v, val)

Super step 3

Iterative Computation (6/9)

> pregel takes two argument lists: graph.pregel(list1) (1ist2).

def pregell[A]
(initialMsg: A, maxIter: Int = Int.MaxValue, activeDir: EdgeDirection = EdgeDirection.Out)
(vprog: (VertexId, VD, A) => VD, sendMsg: EdgeTriplet[VD, ED] => Iterator[(VertexId, A)],
mergeMsg: (A, A) => A):
Graph[VD, ED]

Iterative Computation (6/9)

> pregel takes two argument lists: graph.pregel(list1) (1ist2).

» The first list contains configuration parameters

e The initial message, the maximum number of iterations, and the edge direction in
which to send messages.

def pregell[A]
(initialMsg: A, maxIter: Int = Int.MaxValue, activeDir: EdgeDirection = EdgeDirection.Out)
(vprog: (VertexId, VD, A) => VD, sendMsg: EdgeTriplet[VD, ED] => Iterator[(VertexId, A)],
mergeMsg: (A, A) => A):
Graph[VD, ED]

Iterative Computation (6/9)

> pregel takes two argument lists: graph.pregel(list1) (1ist2).

» The first list contains configuration parameters

e The initial message, the maximum number of iterations, and the edge direction in
which to send messages.

» The second list contains the user defined functions.
¢ Gather: mergeMsg, Apply: vprog, Scatter: sendMsg

def pregell[A]
(initialMsg: A, maxIter: Int = Int.MaxValue, activeDir: EdgeDirection = EdgeDirection.Out)
(vprog: (VertexId, VD, A) => VD, sendMsg: EdgeTriplet[VD, ED] => Iterator[(VertexId, A)],
mergeMsg: (A, A) => A):
Graph[VD, ED]

lterative Computation (7/9)

import org.apache.spark._
import org.apache.spark.graphx._
import org.apache.spark.rdd.RDD

val initialMsg = -9999

val vertices: RDD[(VertexId, (Int, Int))] = sc.parallelize(Array((1L, (1, -1)),
(@I, (@) D), (@hy &5 Sl (@h; (35 D))

val relationships: RDD[Edge[Boolean]] = sc.parallelize(Array(Edge(iL, 2L, true),
Edge(2L, 1L, true), Edge(2L, 6L, true), Edge(3L, 6L, true), Edge(6L, 1L, true),
Edge (6L, 3L, true)))

val graph = Graph(vertices, relationships)

Super step 0

lterative Computation (8/9)

// Gather: the function for combining messages
def mergeMsg(msgl: Int, msg2: Int): Int = math.max(msgl, msg2)

lterative Computation (8/9)

// Gather: the function for combining messages
def mergeMsg(msgl: Int, msg2: Int): Int = math.max(msgl, msg2)

// Apply: the function for receiving messages
def vprog(vertexId: VertexId, value: (Int, Int), message: Int): (Int, Int) = {
if (message == initialMsg)
value

else
(math.max (message, value._1), value._1)

lterative Computation (8/9)

// Gather: the function for combining messages
def mergeMsg(msgl: Int, msg2: Int): Int = math.max(msgl, msg2)

// Apply: the function for receiving messages
def vprog(vertexId: VertexId, value: (Int, Int), message: Int): (Int, Int) = {
if (message == initialMsg)
value
else
(math.max (message, value._1), value._1)

// Scatter: the function for computing messages
def sendMsg(triplet: EdgeTriplet[(Int, Int), Boolean]): Iterator[(VertexId, Int)] = {
val sourceVertex = triplet.srcAttr
if (sourceVertex._1 == sourceVertex._2)
Iterator.empty
else
Iterator((triplet.dstId, sourceVertex._1))

lterative Computation (9/9)

val minGraph = graph.pregel(initialMsg,
Int.MaxValue,
EdgeDirection.0Out) (
vprog, // apply
sendMsg, // scatter
mergeMsg) // gather

minGraph.vertices.collect.foreach{
case (vertexId, (value, original_value)) => println(value)

}

GraphFrames

» GraphFrames extends GraphX to provide a DataFrame API.

» To build a GraphFrame we need to define the vertices and edges as DataFrames.

» spark-shell --packages graphframes:graphframes:0.6.0-spark2.3-s_2.11

e You may need to delete .ivy2 from your home folder.

Querying the GraphFrames

import org.graphframes._
import org.apache.spark.sql.SQLContext

val sqlContext = new org.apache.spark.sql.SQLContext(sc)

val userDF = sqlContext.createDataFrame(Array(("rxin", "student"), ("jgonzal", "postdoc"),
("franklin", "prof"), ("istoica", "prof"))).toDF("id", "role")

val relationshipsDF = sqlContext.createDataFrame (Array(("rxin", "jgonzal", "collab"),
("franklin", "rxin", "advisor"), ("istoica", "franklin", "colleague"),

("franklin", "franklin", "pi"))).toDF("src", "dst", "relationship")

val graphDF = GraphFrame(userDF, relationshipsDF)

graphDF . edges.where("src = ’franklin’").groupBy("src", "dst").count().show

Graph Representation

» Vertex-cut partitioning
» Representing graphs using two RDDs: edge-collection and vertex-collection

» Routing table: a logical map from a vertex id to the set of edge partitions that
contains adjacent edges.

VertexTable: Routing Edge Tabi
Property Graph RDD) Table ROD)
= (ROD)

Part. | IR \

_ @ [om

@ |en | |G

\ 2D Vertex Cut Heuristic e oﬂ
W e o

’

@ | |08 | | ek

Part2 e ()8l)

Think Like a Graph

Motivation (1/2)

> Vertex-centric programming model.

e Operate on a vertex and its edges.
« Communication to other vertices, via message passing (Pregel), or shared memory
(GraphLab).

» Divide input graphs into partitions.

P1 @
. ©
@ [

@®
g

Motivation (2/2)

> In the vertex-centric model, a vertex is very short sighted.

e A vertex has information about its immediate neighbors.
* Information is propagated through graphs slowly, one hop at a time.

» Graph-centric programming paradigm is proposed to overcome this limitation.

Think Like a Graph

Think Like a Vertex Think Like a Graph
Partition A collection of vertices A proper subgraph
Computaion A vertex and its edges A subgraph
Communication | 1-hop at a time, e.g., A — B — D | Multiple-hops at a time, e.g., A — D

Partition Vertex Edge List Subgraph

®—@®
P1 ® G1 ©
e ®
_____________________ A
o © - @:@ ®
® [J

OJQ)
3
4

Giraph++

Giraph+-+

» Expose subgraphs to programmers.

» Internal vertices vs. boundary vertices.

internal vertex

Parition Vertex Edge List Subgraph (primary copy)

® ®.
BH—r® g ¢ I “ oy
”””””””””””””””””””””” (’-D T T T [message
NP e e
® G, ® [®

y © EF] = i‘_\@
® o]

Giraph++

» Expose subgraphs to programmers.

» Internal vertices vs. boundary vertices.
e Information exchange between internal vertices of a partition is immediate.
e Messages are only sent from boundary vertices of a partition to internal vertices of a
different partition.

internal vertex

Partition Vertex Edge List Subgraph (primary copy)

0—»? ®
o G P1 G1 n(maclo\gr)lex
""""""""""""""""""" ® [essege
NP e e
& ® ®

y © EF] = i:(@
® o]

Giraph++

» Expose subgraphs to programmers.

» Internal vertices vs. boundary vertices.
e Information exchange between internal vertices of a partition is immediate.
e Messages are only sent from boundary vertices of a partition to internal vertices of a
different partition.

» A vertex is an internal vertex in exactly one subgraph, but it can be a boundary
vertex in zero or more subgraphs.

internal vertex

Partition Vertex Edge List Subgraph (primary copy)

® ®.
BH—r® g ¢ I “ ooy
_________________________ (’-D T T T [message
NP e e
® G, ® [®

y © EF] = i:(@
® o]

Execution Model (1/2)

» A program is executed in sequence of supersteps.

» Supersteps are separated by global synchronization barriers.

Execution Model (1/2)

» A program is executed in sequence of supersteps.

» Supersteps are separated by global synchronization barriers.

» In each superstep, the computation is performed on the whole subgraph in a partition.

Execution Model (1/2)

» A program is executed in sequence of supersteps.

v

Supersteps are separated by global synchronization barriers.

v

In each superstep, the computation is performed on the whole subgraph in a partition.

v

Like in Pregel, each internal vertex of a partition has two states: active or inactive.

v

A boundary vertex does not have any state.

Execution Model (2/2)

» Differentiate internal messages and external messages.

Execution Model (2/2)

» Differentiate internal messages and external messages.

» What messages can be used in local computation?

e External messages from previous superstep (global synchronous computation).
e Internal messages from previous + current superstep (local asynchronous
computation).

Execution Model (2/2)

» Differentiate internal messages and external messages.

» What messages can be used in local computation?
e External messages from previous superstep (global synchronous computation).
e Internal messages from previous + current superstep (local asynchronous
computation).

» This is called hybrid execution model.

Think Like a Matrix

Graphs and Matrices (1/2)

» A graph can be represented by an adjacency matrix.

» Operations on graphs can be performed by algebraic operations on matrices.

» Linear algebra and matrix theory can be applied to solve graph problems.

Graphs and Matrices (2/2)

» Given a graph G = (V,E)
» Adjacency matrix A(G), a |V| x |[V| matrix

1 if i# jand (vi,vj) €E
Al][H] =40 if i#jand (vi,vy) €E
0 if i=]

Adjacency Matrix Example

» Produce a vector representing the neighbors of a vertex v;.

Adjacency Matrix Example

>

Produce a vector representing the neighbors of a vertex v;.

v

By computing A - Xy,

* Xy, [1] = 1 and all other elements of x,, are 0.

v

For example, to find the neighbors of vertex b

1
0
. —[1011]
1

O O = O
= O = O
O = = O
O O = O

Pegasus

Generalized lterated Matrix-Vector (GIM-V)

> Targets at iterative graph algorithms.

» Generalized lterated Matrix-Vector multiplication (GIM-V)

e Matrix-vector multiplication
* Assume M is a n x n matrix, v is a vector of size n, and m; ; denotes the (i,3)

element of M.
e v M-v, where v; < Z?:lmi_jvj.

Generalized lterated Matrix-Vector (GIM-V)

> Targets at iterative graph algorithms.

» Generalized lterated Matrix-Vector multiplication (GIM-V)

e Matrix-vector multiplication
* Assume M is a n x n matrix, v is a vector of size n, and m; ; denotes the (i,3)

element of M.
e v M-v, where v; + Z?:l m; jVj.

» Pegasus models each iteration of the graph computation by a GIM-V operation
o It is repeated until the vertex values in the vector converge.

GIM-V Operators

> v M-v, where vi < >5_; ms jv;.

GIM-V Operators

> v M-v, where vi < >5_; ms jv;.

» combine2(i, j): to combine m; j and vj into a value.

GIM-V Operators

» v M-v, where v; < Z?:1 i iV

» combine2(i, j): to combine m; j and vj into a value.

> combineAll(i): for each v;, to combine all the n intermediate results produced by
combine? into a single value.

GIM-V Operators

n
» v M- v, where vy + Zj:l mj jVy.
» combine2(i, j): to combine m; j and vj into a value.

> combineAll(i): for each v;, to combine all the n intermediate results produced by
combine? into a single value.

> assign: to overwrite the old value of v; with the new value.

GIM-V Example: PageRank (1/3)

GIM-V Example: PageRank (2/3)

» PageRank formula: v < (0.85E” + 0.15U) - v.

e v is a column vector with n elements.
e E is a is the row-normalized adjacency matrix. o °
* U is a n x n matrix, with all elements set to ﬁ

11 o 1/3 1/3 1/3 1/4 1/4 1/4 1/4 1/4
o 1l E— |0 0 0 Llu= |4 vs 4 14 _ |1/a
0o 1 — l12 o 0o 1/2 = |14 174 174 1/4| Vinit = |14
10 0

1/2 /2 0 1/4 1/4 1/4 1/4 1/4

0 1
0 0
A:|:1 0
10

» If M = 0.85ET 4 0.15U, then we can write the PageRank as v <+~ M - v.

GIM-V Example: PageRank (3/3)

>

PageRank formula: v < (0.85ET + 0.15U) - v.

> COIHbiIleQ(i,j) = 0.85 X mj j X Vj

v

combineAll(i) = % + >0, combine2(i, j)

n

> assign: v; < combineAll(i)

Summary

Summary

» Think like a table
e Graphx: unifies data-parallel and graph-parallel systems.

» Think like a graph
e Giraph++: exposes subgraphs to programmers

» Think like a matrix
e Pegasus: linear algebra and matrix theory to solve graph problems.

References

>

J. Gonzalez et al., "GraphX: Graph Processing in a Distributed Dataflow Framework™,
0OSDI 2014

» Y. Tian et al., “From think like a vertex to think like a graph”, VLDB 2013

v

U. Kang et al., "PEGASUS: mining peta-scale graphs”, Knowledge and information
systems 2011

Questions?

	

