Resource Management - Mesos and YARN

Amir H. Payberah
payberah@Qkth.se
12/10/2018




The Course Web Page

https://id2221kth.github.io


https://id2221kth.github.io

Where Are We?

Data Processing

Pregel, GraphLab, PowerGraph Spark SQL Milib
GraphX, X-Streem, Chaos Tensorflow

MapReduce, Dryad Storm, SEEP, Naiad, Spark Streaming, Flink,
FlumeJava, Spark Millwheel, Google Dataflow

Data Storage

Dynamo, BigTable,
GFS, Flat FS Cassandra

Resource Management




Motivation

» Rapid innovation in cloud computing.
» No single framework optimal for all applications.

» Running each framework on its dedicated cluster:

e Expensive
* Hard to share data




Proposed Solution

» Running multiple frameworks on a single cluster.

» Maximize utilization and share data between frameworks.

» Two resource management systems:

* Mesos
* YARN




Mesos




» Mesos is a common resource sharing layer, over which diverse frameworks can run.

- T
oce{nodeJiorefnoce vocefnode]noce]voce|




Computation Model

» A framework (e.g., Hadoop, Spark) manages and runs one or more jobs.

Executor Executor
S| (e.g., task tracker) S| (e.g., task tracker)
= ~.

— . EraEwork
{ Scheduler
cutor (e.g., job tracker)

Executor < )
: . (e.g., task tracker) ~ (e.g., task tracker) '
ol Task 3 =




Computation Model

» A framework (e.g., Hadoop, Spark) manages and runs one or more jobs.

> A job consists of one or more tasks.

Executor Executor
S| (e.g., task tracker) S| (e.g., task tracker)
= ~.

— . EraEwork
{ Scheduler
cutor (e.g., job tracker)

Executor < )
: . (e.g., task tracker) ~ (e.g., task tracker) '
ol Task 3 =




Computation Model

» A framework (e.g., Hadoop, Spark) manages and runs one or more jobs.
> A job consists of one or more tasks.

» A task (e.g., map, reduce) consists of one or more processes running on same ma-
chine.

Executor Executor
"j (e.g., task tracker) S| (e.g., task tracker) :
= = ~... i
- ’ S Framework
| Scheduler
Executor = (e.g., job tracker)

Executor -
: . (e.g., task tracker) ~ (e.g., task tracker) -
L I§ S




Mesos Design Elements

» Fine-grained sharing

» Resource offers




Fine-Grained Sharing

» Allocation at the level of tasks within a job.

» Improves utilization, latency, and data locality.

Coarse-grained sharing Fine-grained sharing




--s--
~88s
-888

ju hwunﬁ@o

| shared screens

A Exit

=X
..I z...
==l

<« ,,,,v

which tasks to launch.

-
L
-
@)

)

O

-

=

O

(%2}

O
o

» Offer available resources to frameworks, let them pick which resources to use and

» Keeps Mesos simple, lets it support future frameworks.




Question?
How to schedule resource offering among frameworks?




Schedule Frameworks

» Global scheduler

» Distributed scheduler




» Job requirements
e Response time
e Throughput
e Availability

Global Scheduler (1/2)

Organization policies -
Resource availability -
Job requirements -
Job execution plan -
Estimates -

Global
Scheduler

-Task schedule




» Job requirements

e Response time
e Throughput
e Availability

» Job execution plan

e Task DAG
e Inputs/outputs

Global Scheduler (1/2)

Organization policies -
Resource availability -
Job requirements -
Job execution plan -
Estimates -

Global
Scheduler

-Task schedule




» Job requirements

e Response time
e Throughput
e Availability

» Job execution plan

e Task DAG
e Inputs/outputs

» Estimates
e Task duration
e Input sizes
e Transfer sizes

Global Scheduler (1/2)

Organization policies -
Resource availability -
Job requirements -
Job execution plan -
Estimates -

Global
Scheduler

-Task schedule



Global Scheduler (2/2)

» Advantages
e Can achieve optimal schedule.

» Disadvantages
e Complexity: hard to scale and ensure resilience.
e Hard to anticipate future frameworks requirements.
e Need to refactor existing frameworks.




Distributed Scheduler (1/3)

Organization
policies

Resource

availability Framework

schedule




Distributed Scheduler (2/3)

» Unit of allocation: resource offer

» Vector of available resources on a node
e For example, nodel: (1CPU, 1GB), node2: (4CPU, 16GB)

» Master sends resource offers to frameworks.

» Frameworks select which offers to accept and which tasks to run.




Distributed Scheduler (3/3)

» Advantages

e Simple: easier to scale and make resilient.
e Easy to port existing frameworks, support new ones.

» Disadvantages

 Distributed scheduling decision: not optimal.




Mesos Architecture (1/4)

Framework 1

Framework 2

Job1 [ Job2

Job1 [ Job2

FW Scheduler

FW Scheduler

<s1, 4cpu, 4gb, ... > 9 e
AW

<task1, s1, 2cpu, 1gb, .__ >
<task2, s1, 1cpu, 2gb, . >

]

Allocation
module

Mesos
master

<s1, 4cpu, 4gb, ... > o

/ \
<fw1, task1, 2¢cpu, 1gb, ... >

<fw1, task2, 1cpu, 2gb, ... >

Slave 1

______________

] Slave 2

Executor

» Slaves continuously send status updates

about resources to the Master.




Mesos Architecture (2/4)

Framework 1

Framework 2

Job1 [ Job2

Job1 [ Job2

FW Scheduler

FW Scheduler

<s1, 4cpu, 4gb, ... > 9 e
AW

<task1, s1, 2cpu, 1gb, .__ >
<task2, s1, 1cpu, 2gb, . >

]

Allocation
module

Mesos
master

<s1, 4cpu, 4gb, ... > o

/ \
<fw1, task1, 2¢cpu, 1gb, ... >

<fw1, task2, 1cpu, 2gb, ... >

Slave 1

______________

] Slave 2

Executor

» Pluggable scheduler picks framework to send an offer to.




Mesos Architecture (3/4)

Framework 1

Framework 2

Job1 [ Job2

Job1 [ Job2

FW Scheduler

FW Scheduler

<s1, 4cpu, 4gb, ... > 9 e
AW

<task1, s1, 2cpu, 1gb, .__ >
<task2, s1, 1cpu, 2gb, . >

]

Allocation
module

Mesos
master

<s1, 4cpu, 4gb, ... > o

/ \
<fw1, task1, 2¢cpu, 1gb, ... >

<fw1, task2, 1cpu, 2gb, ... >

Slave 1

______________

] Slave 2

Executor

» Framework scheduler selects resources and provides tasks.




Mesos Architecture (4/4)

Framework 1
Job1 [ Job2
FW Scheduler

Framework 2
Job1 [ Job2
FW Scheduler

<lask1, s1, 2cpu, 1gb, ... > ]

<s1,4cpu, 4gb, > e e <task2, s1, 1cpu, 2gb, ... >
AW

Allocation Mesos
module master
i

<s1, 4cpu, 4gb, ... > o

<fw1, task1, 2cpu, 1gb, .._ >
<fw1, task2, 1cpu, 2gb, >

Slave 1 ] Slave 2

1
Executor i Executor

1
| e T e
| | Task |} Task | !

» Framework executors launch tasks.




Question?
How to allocate resources of different types?




Single Resource: Fair Sharing

> n users want to share a resource, e.g., CPU.

e Solution: allocate each 1—11 of the shared resource.




Single Resource: Fair Sharing

> n users want to share a resource, e.g., CPU.
e Solution: allocate each 1—11 of the shared resource.

» Generalized by max-min fairness.

e Handles if a user wants less than its fair share.
« E.g., user 1 wants no more than 20%.




Single Resource: Fair Sharing

> n users want to share a resource, e.g., CPU.
e Solution: allocate each 1—11 of the shared resource.

» Generalized by max-min fairness.

e Handles if a user wants less than its fair share.
« E.g., user 1 wants no more than 20%.

» Generalized by weighted max-min fairness.

e Give weights to users according to importance.
e E.g., user 1 gets weight 1, user 2 weight 2.




Max-Min Fairness - Example

» 1 resource: CPU

Total resources: 20 CPU

v

v

User 1 has x tasks and wants (1CPU) per task

v

User 2 has y tasks and wants (2CPU) per task




Max-Min Fairness - Example

» 1 resource: CPU

Total resources: 20 CPU

v

v

User 1 has x tasks and wants (1CPU) per task

v

User 2 has y tasks and wants (2CPU) per task

max(x,y) (maximize allocation)




Max-Min Fairness - Example

» 1 resource: CPU

Total resources: 20 CPU

v

User 1 has x tasks and wants (1CPU) per task

v

v

User 2 has y tasks and wants (2CPU) per task

max(x,y) (maximize allocation)
subject to

x + 2y < 20 (CPU constraint)
x =2y




>

v

v

Max-Min Fairness - Example

1 resource: CPU

Total resources: 20 CPU

User 1 has x tasks and wants (1CPU) per task
User 2 has y tasks and wants (2CPU) per task

max(x,y) (maximize allocation)
subject to

x + 2y < 20 (CPU constraint)
x =2y

so

x =10

y =




Properties of Max-Min Fairness

» Share guarantee

e Each user can get at least % of the resource.
e But will get less if her demand is less.

» Strategy proof

e Users are not better off by asking for more than they need.
» Users have no reason to lie.




Properties of Max-Min Fairness

>

Share guarantee

e Each user can get at least % of the resource.
e But will get less if her demand is less.

v

Strategy proof

e Users are not better off by asking for more than they need.
» Users have no reason to lie.

v

Max-Min fairness is the only reasonable mechanism with these two properties.

v

Widely used: OS, networking, datacenters, ...




Question?
When is Max-Min Fairness NOT Enough?




Question?
When is Max-Min Fairness NOT Enough?

Need to schedule multiple, heterogeneous resources, e.g.,
CPU, memory, etc.




Problem

» Single resource example
* 1 resource: CPU
e User 1 wants (1CPU) per task
o User 2 wants (2CPU) per task

100%- 7




Problem

» Single resource example
* 1 resource: CPU
e User 1 wants (1CPU) per task
o User 2 wants (2CPU) per task

» Multi-resource example
e 2 resources: CPUs and mem
e User 1 wants (1CPU, 4GB) per task
e User 2 wants (2CPU, 1GB) per task

100% t
50%-
0%-
100%
wonel-2- 12|
0“/.; ---------- |
CPU mem




Problem

» Single resource example 100%
e 1 resource: CPU

e User 1 wants (1CPU) per task
e User 2 wants (2CPU) per task 50%

: 100%

» Multi-resource example
e 2 resources: CPUs and mem B S -
e User 1 wants (1CPU, 4GB) per task sool -} -2
e User 2 wants (2CPU, 1GB) per task

e What is a fair allocation?

CPU  'mem




A Natural Policy (1/2)

» Asset fairness: give weights to resources (e.g., 1 CPU = 1 GB) and equalize total
value given to each user.




A Natural Policy (1/2)

» Asset fairness: give weights to resources (e.g., 1 CPU = 1 GB) and equalize total
value given to each user.

» Total resources: 28 CPU and 56GB RAM (e.g., 1 CPU = 2 GB)

e User 1 has x tasks and wants (1CPU, 2GB) per task
e User 2 has y tasks and wants (1CPU, 4GB) per task




A Natural Policy (1/2)

» Asset fairness: give weights to resources (e.g., 1 CPU = 1 GB) and equalize total
value given to each user.

» Total resources: 28 CPU and 56GB RAM (e.g., 1 CPU = 2 GB)

e User 1 has x tasks and wants (1CPU, 2GB) per task

e User 2 has y tasks and wants (1CPU, 4GB) per task I User 1[] User 2

100%j -

> Asset fairness yields:

max(x,y) 50%
x+y <28

2x 4 4y < 56 0%
2x =3y

User 1: x = 12: (43%CPU, 43%GB) (. = 86%)
User 2: y = 8: (28%CPU, 57%GB) (> = 86%)




A Natural Policy (2/2)

I User 1 [] User 2

100%¢

50%
- i57%
28%
O% N bl
CPU RAM

» Problem: violates share grantee.

» User 1 gets less than 50% of both CPU and RAM.

» Better off in a separate cluster with half the resources.




Challenge

» Can we find a fair sharing policy that provides:

e Share guarantee
e Strategy-proofness

» Can we generalize max-min fairness to multiple resources?




Proposed Solution

Dominant Resource Fairness (DRF)




Dominant Resource Fairness (DRF) (1/2)

» Dominant resource of a user: the resource that user has the biggest share of.

e Total resources: (8CPU,5GB)

e User 1 allocation: (2CPU, 1GB): 2 = 25% CPU and £ = 20% RAM

+ Dominant resource of User 1 is CPU (25% > 20%)




Dominant Resource Fairness (DRF) (1/2)

» Dominant resource of a user: the resource that user has the biggest share of.
e Total resources: (8CPU,5GB)
e User 1 allocation: (2CPU, 1GB): 2 = 25% CPU and £ = 20% RAM
+ Dominant resource of User 1 is CPU (25% > 20%)

» Dominant share of a user: the fraction of the dominant resource she is allocated.
o User 1 dominant share is 25%.




Dominant Resource Fairness (DRF) (2/2)

» Apply max-min fairness to dominant shares: give every user an equal share of her
dominant resource.




Dominant Resource Fairness (DRF) (2/2)

» Apply max-min fairness to dominant shares: give every user an equal share of her
dominant resource.

» Equalize the dominant share of the users.
e Total resources: (9CPU, 18GB)

« User 1 wants (1CPU, 4GB); Dominant resource: RAM (1 < %)
e User 2 wants (3CPU, 1GB); Dominant resource: CPU (£ >

-

8

)

&l




Dominant Resource Fairness (DRF) (2/2)

» Apply max-min fairness to dominant shares: give every user an equal share of her

dominant resource.

» Equalize the dominant share of the users.
e Total resources: (9CPU, 18GB)

« User 1 wants (1CPU, 4GB); Dominant resource: RAM (1 < %)
« User 2 wants (3CPU, 1GB); Dominant resource: CPU (£ > 1)
> max(x,y) 100% § 3CPUs 12GB
x+3y <9
dx +y <18 s0%
4x _ 3y {66%

18 = 9
User 1: x = 3: (33%CPU, 66%GB) 0%
User 2: y = 2: (66%CPU, 16%GB) (o o)

& 6CPUs

mem

(18 total)

O user1

W user2




YARN




YARN Architecture

» Resource Manager (RM)
» Application Master (AM)
» Node Manager (NM)

ResourceManager
-—'m
Client - RM Scheduler
client

AMService

RM - AM

mpr | Container [
- Container « 1 J

MR
AM

Umbilical
Container

RM -- NodeManager

3
_

{ Node Manager J [ Node Manager J

!

L

Node Manager

|

~)

<)



YARN Architecture - Resource Manager (1/2)

» One per cluster
e Central: global view

» Job requests are submitted to RM.

e To start a job, RM finds a container to spawn AM. s
Scheduler

cue nt - RM
((client }————|

AMServlce

» Container: logical bundle of resources (CPU/memory) - w

»m
Umblll al Container

[ Node Manager ] [ Node Manager ] - [ Nodel‘danager J




YARN Architecture - Resource Manager (2/2)

» Only handles an overall resource profile for each job.
e Local optimization is up to the job.

» Preemption

e Request resources back from an job.
e Checkpoint jobs

ResourceManager

Client - RM Scheduler

RM -- NodeManager
3 N

client .
AMService
RM - AM
LALED 4. MR Umbilical Container
{ Node Manager J [ Node Manager J - Node Manager

L I : —




YARN Architecture - Application Manager

» The head of a job.
» Runs as a container.

» Request resources from RM (num. of containers/resource per container/locality ...)

ResourceManager
RM -- NodeManager
(etient ) Cliont — RM Scheduler 2 ~)
client .
AMService
RM - AM I
—»| Container
hA:II hA’II\? Umbilical Container
U i)
{ Node Manager J [ Node Manager J - Node Manager
L I : 2

|




YARN Architecture - Node Manager (1/2)

>

The worker daemon.

> Registers with RM.
[ResourceManager|
RM - NodeManager
» One per node. G} [ sonedier |3
=

v

Report resources to RM: memory, CPU, ...

Umbilical Container
S o)

[ Node Manager r] [ Node Manager ] . [ Node I‘Janager ]

U . S

2




YARN Architecture - Node Manager (2/2)

» Configure the environment for task execution.

» Garbage collection.

» Auxiliary services.

* A process may produce data that persist beyond the life of the container.
e Output intermediate data between map and reduce tasks.

RM - NodeManager

(oot oo [ seneauer ] |3
e

RM - AM
—+ (Container
e E Mo | umbilical Container
| )
o | (e ] .

=

N S 2




YARN Framework (1/2)

» Containers are described by a Container Launch Context (CLC).

e The command necessary to create the process
e Environment variables
 Security tokens




YARN Framework (1/2)

» Containers are described by a Container Launch Context (CLC).

e The command necessary to create the process
e Environment variables
 Security tokens

» Submitting the job: passing a CLC for the AM to the RM.




YARN Framework (1/2)

» Containers are described by a Container Launch Context (CLC).
e The command necessary to create the process
e Environment variables
 Security tokens

» Submitting the job: passing a CLC for the AM to the RM.

» When RM starts the AM, it should register with the RM.
 Periodically advertise its liveness and requirements over the heartbeat protocol.




YARN Framework (2/2)

» Once the RM allocates a container, AM can construct a CLC to launch the container
on the corresponding NM.
It monitors the status of the running container and stop it when the resource should
be reclaimed.

» Once the AM is done with its work, it should unregister from the RM and exit cleanly.




Summary




Summary

» Mesos

o Offered-based
* Max-Min fairness: DRF

» YARN

» Request-based
« RM, AM, NM




References

» B. Hindman et al., “Mesos: A Platform for Fine-Grained Resource Sharing in the
Data Center”, NSDI 2011

» V. Vavilapalli et al., “Apache hadoop yarn: Yet another resource negotiator”, ACM
Cloud Computing 2013




Questions?

Acknowledgements

Some slides were derived from lon Stoica and Ali Ghodsi slides (Berkeley University),
and Wei-Chiu Chuang slides (Purdue University).




