
Resource Management - Mesos and YARN

Amir H. Payberah
payberah@kth.se

12/10/2018



The Course Web Page

https://id2221kth.github.io

1 / 46

https://id2221kth.github.io


Where Are We?

2 / 46



Motivation

I Rapid innovation in cloud computing.

I No single framework optimal for all applications.

I Running each framework on its dedicated cluster:
• Expensive
• Hard to share data

3 / 46



Proposed Solution

I Running multiple frameworks on a single cluster.

I Maximize utilization and share data between frameworks.

I Two resource management systems:
• Mesos
• YARN

4 / 46



Mesos

5 / 46



Mesos

I Mesos is a common resource sharing layer, over which diverse frameworks can run.

6 / 46



Computation Model

I A framework (e.g., Hadoop, Spark) manages and runs one or more jobs.

I A job consists of one or more tasks.

I A task (e.g., map, reduce) consists of one or more processes running on same ma-
chine.

7 / 46



Computation Model

I A framework (e.g., Hadoop, Spark) manages and runs one or more jobs.

I A job consists of one or more tasks.

I A task (e.g., map, reduce) consists of one or more processes running on same ma-
chine.

7 / 46



Computation Model

I A framework (e.g., Hadoop, Spark) manages and runs one or more jobs.

I A job consists of one or more tasks.

I A task (e.g., map, reduce) consists of one or more processes running on same ma-
chine.

7 / 46



Mesos Design Elements

I Fine-grained sharing

I Resource offers

8 / 46



Fine-Grained Sharing

I Allocation at the level of tasks within a job.

I Improves utilization, latency, and data locality.

Coarse-grained sharing Fine-grained sharing

9 / 46



Resource Offer

I Offer available resources to frameworks, let them pick which resources to use and
which tasks to launch.

I Keeps Mesos simple, lets it support future frameworks.

10 / 46



Question?
How to schedule resource offering among frameworks?

11 / 46



Schedule Frameworks

I Global scheduler

I Distributed scheduler

12 / 46



Global Scheduler (1/2)

I Job requirements
• Response time
• Throughput
• Availability

I Job execution plan
• Task DAG
• Inputs/outputs

I Estimates
• Task duration
• Input sizes
• Transfer sizes

13 / 46



Global Scheduler (1/2)

I Job requirements
• Response time
• Throughput
• Availability

I Job execution plan
• Task DAG
• Inputs/outputs

I Estimates
• Task duration
• Input sizes
• Transfer sizes

13 / 46



Global Scheduler (1/2)

I Job requirements
• Response time
• Throughput
• Availability

I Job execution plan
• Task DAG
• Inputs/outputs

I Estimates
• Task duration
• Input sizes
• Transfer sizes

13 / 46



Global Scheduler (2/2)

I Advantages
• Can achieve optimal schedule.

I Disadvantages
• Complexity: hard to scale and ensure resilience.
• Hard to anticipate future frameworks requirements.
• Need to refactor existing frameworks.

14 / 46



Distributed Scheduler (1/3)

15 / 46



Distributed Scheduler (2/3)

I Unit of allocation: resource offer
• Vector of available resources on a node
• For example, node1: 〈1CPU, 1GB〉, node2: 〈4CPU, 16GB〉

I Master sends resource offers to frameworks.

I Frameworks select which offers to accept and which tasks to run.

16 / 46



Distributed Scheduler (3/3)

I Advantages
• Simple: easier to scale and make resilient.
• Easy to port existing frameworks, support new ones.

I Disadvantages
• Distributed scheduling decision: not optimal.

17 / 46



Mesos Architecture (1/4)

I Slaves continuously send status updates about resources to the Master.

18 / 46



Mesos Architecture (2/4)

I Pluggable scheduler picks framework to send an offer to.

19 / 46



Mesos Architecture (3/4)

I Framework scheduler selects resources and provides tasks.

20 / 46



Mesos Architecture (4/4)

I Framework executors launch tasks.

21 / 46



Question?
How to allocate resources of different types?

22 / 46



Single Resource: Fair Sharing

I n users want to share a resource, e.g., CPU.
• Solution: allocate each 1

n
of the shared resource.

CPU

I Generalized by max-min fairness.
• Handles if a user wants less than its fair share.
• E.g., user 1 wants no more than 20%.

I Generalized by weighted max-min fairness.
• Give weights to users according to importance.
• E.g., user 1 gets weight 1, user 2 weight 2.

23 / 46



Single Resource: Fair Sharing

I n users want to share a resource, e.g., CPU.
• Solution: allocate each 1

n
of the shared resource.

CPU

I Generalized by max-min fairness.
• Handles if a user wants less than its fair share.
• E.g., user 1 wants no more than 20%.

I Generalized by weighted max-min fairness.
• Give weights to users according to importance.
• E.g., user 1 gets weight 1, user 2 weight 2.

23 / 46



Single Resource: Fair Sharing

I n users want to share a resource, e.g., CPU.
• Solution: allocate each 1

n
of the shared resource.

CPU

I Generalized by max-min fairness.
• Handles if a user wants less than its fair share.
• E.g., user 1 wants no more than 20%.

I Generalized by weighted max-min fairness.
• Give weights to users according to importance.
• E.g., user 1 gets weight 1, user 2 weight 2.

23 / 46



Max-Min Fairness - Example

I 1 resource: CPU

I Total resources: 20 CPU

I User 1 has x tasks and wants 〈1CPU〉 per task

I User 2 has y tasks and wants 〈2CPU〉 per task

max(x, y) (maximize allocation)
subject to
x + 2y ≤ 20 (CPU constraint)
x = 2y

so
x = 10

y = 5

24 / 46



Max-Min Fairness - Example

I 1 resource: CPU

I Total resources: 20 CPU

I User 1 has x tasks and wants 〈1CPU〉 per task

I User 2 has y tasks and wants 〈2CPU〉 per task

max(x, y) (maximize allocation)

subject to
x + 2y ≤ 20 (CPU constraint)
x = 2y

so
x = 10

y = 5

24 / 46



Max-Min Fairness - Example

I 1 resource: CPU

I Total resources: 20 CPU

I User 1 has x tasks and wants 〈1CPU〉 per task

I User 2 has y tasks and wants 〈2CPU〉 per task

max(x, y) (maximize allocation)
subject to
x + 2y ≤ 20 (CPU constraint)
x = 2y

so
x = 10

y = 5

24 / 46



Max-Min Fairness - Example

I 1 resource: CPU

I Total resources: 20 CPU

I User 1 has x tasks and wants 〈1CPU〉 per task

I User 2 has y tasks and wants 〈2CPU〉 per task

max(x, y) (maximize allocation)
subject to
x + 2y ≤ 20 (CPU constraint)
x = 2y

so
x = 10

y = 5

24 / 46



Properties of Max-Min Fairness

I Share guarantee
• Each user can get at least 1

n of the resource.
• But will get less if her demand is less.

I Strategy proof
• Users are not better off by asking for more than they need.
• Users have no reason to lie.

I Max-Min fairness is the only reasonable mechanism with these two properties.

I Widely used: OS, networking, datacenters, ...

25 / 46



Properties of Max-Min Fairness

I Share guarantee
• Each user can get at least 1

n of the resource.
• But will get less if her demand is less.

I Strategy proof
• Users are not better off by asking for more than they need.
• Users have no reason to lie.

I Max-Min fairness is the only reasonable mechanism with these two properties.

I Widely used: OS, networking, datacenters, ...

25 / 46



Question?
When is Max-Min Fairness NOT Enough?

Need to schedule multiple, heterogeneous resources, e.g.,
CPU, memory, etc.

26 / 46



Question?
When is Max-Min Fairness NOT Enough?

Need to schedule multiple, heterogeneous resources, e.g.,
CPU, memory, etc.

26 / 46



Problem

I Single resource example
• 1 resource: CPU
• User 1 wants 〈1CPU〉 per task
• User 2 wants 〈2CPU〉 per task

I Multi-resource example
• 2 resources: CPUs and mem
• User 1 wants 〈1CPU, 4GB〉 per task
• User 2 wants 〈2CPU, 1GB〉 per task

• What is a fair allocation?

27 / 46



Problem

I Single resource example
• 1 resource: CPU
• User 1 wants 〈1CPU〉 per task
• User 2 wants 〈2CPU〉 per task

I Multi-resource example
• 2 resources: CPUs and mem
• User 1 wants 〈1CPU, 4GB〉 per task
• User 2 wants 〈2CPU, 1GB〉 per task

• What is a fair allocation?

27 / 46



Problem

I Single resource example
• 1 resource: CPU
• User 1 wants 〈1CPU〉 per task
• User 2 wants 〈2CPU〉 per task

I Multi-resource example
• 2 resources: CPUs and mem
• User 1 wants 〈1CPU, 4GB〉 per task
• User 2 wants 〈2CPU, 1GB〉 per task

• What is a fair allocation?

27 / 46



A Natural Policy (1/2)

I Asset fairness: give weights to resources (e.g., 1 CPU = 1 GB) and equalize total
value given to each user.

I Total resources: 28 CPU and 56GB RAM (e.g., 1 CPU = 2 GB)
• User 1 has x tasks and wants 〈1CPU, 2GB〉 per task
• User 2 has y tasks and wants 〈1CPU, 4GB〉 per task

I Asset fairness yields:

max(x, y)
x + y ≤ 28

2x + 4y ≤ 56

2x = 3y

User 1: x = 12: 〈43%CPU, 43%GB〉 (
∑

= 86%)
User 2: y = 8: 〈28%CPU, 57%GB〉 (

∑
= 86%)

28 / 46



A Natural Policy (1/2)

I Asset fairness: give weights to resources (e.g., 1 CPU = 1 GB) and equalize total
value given to each user.

I Total resources: 28 CPU and 56GB RAM (e.g., 1 CPU = 2 GB)
• User 1 has x tasks and wants 〈1CPU, 2GB〉 per task
• User 2 has y tasks and wants 〈1CPU, 4GB〉 per task

I Asset fairness yields:

max(x, y)
x + y ≤ 28

2x + 4y ≤ 56

2x = 3y

User 1: x = 12: 〈43%CPU, 43%GB〉 (
∑

= 86%)
User 2: y = 8: 〈28%CPU, 57%GB〉 (

∑
= 86%)

28 / 46



A Natural Policy (1/2)

I Asset fairness: give weights to resources (e.g., 1 CPU = 1 GB) and equalize total
value given to each user.

I Total resources: 28 CPU and 56GB RAM (e.g., 1 CPU = 2 GB)
• User 1 has x tasks and wants 〈1CPU, 2GB〉 per task
• User 2 has y tasks and wants 〈1CPU, 4GB〉 per task

I Asset fairness yields:

max(x, y)
x + y ≤ 28

2x + 4y ≤ 56

2x = 3y

User 1: x = 12: 〈43%CPU, 43%GB〉 (
∑

= 86%)
User 2: y = 8: 〈28%CPU, 57%GB〉 (

∑
= 86%)

28 / 46



A Natural Policy (2/2)

I Problem: violates share grantee.

I User 1 gets less than 50% of both CPU and RAM.

I Better off in a separate cluster with half the resources.

29 / 46



Challenge

I Can we find a fair sharing policy that provides:
• Share guarantee
• Strategy-proofness

I Can we generalize max-min fairness to multiple resources?

30 / 46



Proposed Solution

Dominant Resource Fairness (DRF)

31 / 46



Dominant Resource Fairness (DRF) (1/2)

I Dominant resource of a user: the resource that user has the biggest share of.

• Total resources: 〈8CPU, 5GB〉
• User 1 allocation: 〈2CPU, 1GB〉: 2

8
= 25% CPU and 1

5
= 20% RAM

• Dominant resource of User 1 is CPU (25% > 20%)

I Dominant share of a user: the fraction of the dominant resource she is allocated.
• User 1 dominant share is 25%.

32 / 46



Dominant Resource Fairness (DRF) (1/2)

I Dominant resource of a user: the resource that user has the biggest share of.

• Total resources: 〈8CPU, 5GB〉
• User 1 allocation: 〈2CPU, 1GB〉: 2

8
= 25% CPU and 1

5
= 20% RAM

• Dominant resource of User 1 is CPU (25% > 20%)

I Dominant share of a user: the fraction of the dominant resource she is allocated.
• User 1 dominant share is 25%.

32 / 46



Dominant Resource Fairness (DRF) (2/2)

I Apply max-min fairness to dominant shares: give every user an equal share of her
dominant resource.

I Equalize the dominant share of the users.
• Total resources: 〈9CPU, 18GB〉
• User 1 wants 〈1CPU, 4GB〉; Dominant resource: RAM ( 1

9
< 4

18
)

• User 2 wants 〈3CPU, 1GB〉; Dominant resource: CPU ( 3
9
> 1

18
)

I max(x, y)
x + 3y ≤ 9

4x + y ≤ 18
4x
18

= 3y
9

User 1: x = 3: 〈33%CPU, 66%GB〉
User 2: y = 2: 〈66%CPU, 16%GB〉

33 / 46



Dominant Resource Fairness (DRF) (2/2)

I Apply max-min fairness to dominant shares: give every user an equal share of her
dominant resource.

I Equalize the dominant share of the users.
• Total resources: 〈9CPU, 18GB〉
• User 1 wants 〈1CPU, 4GB〉; Dominant resource: RAM ( 1

9
< 4

18
)

• User 2 wants 〈3CPU, 1GB〉; Dominant resource: CPU ( 3
9
> 1

18
)

I max(x, y)
x + 3y ≤ 9

4x + y ≤ 18
4x
18

= 3y
9

User 1: x = 3: 〈33%CPU, 66%GB〉
User 2: y = 2: 〈66%CPU, 16%GB〉

33 / 46



Dominant Resource Fairness (DRF) (2/2)

I Apply max-min fairness to dominant shares: give every user an equal share of her
dominant resource.

I Equalize the dominant share of the users.
• Total resources: 〈9CPU, 18GB〉
• User 1 wants 〈1CPU, 4GB〉; Dominant resource: RAM ( 1

9
< 4

18
)

• User 2 wants 〈3CPU, 1GB〉; Dominant resource: CPU ( 3
9
> 1

18
)

I max(x, y)
x + 3y ≤ 9

4x + y ≤ 18
4x
18

= 3y
9

User 1: x = 3: 〈33%CPU, 66%GB〉
User 2: y = 2: 〈66%CPU, 16%GB〉

33 / 46



YARN

34 / 46



YARN Architecture

I Resource Manager (RM)

I Application Master (AM)

I Node Manager (NM)

35 / 46



YARN Architecture - Resource Manager (1/2)

I One per cluster
• Central: global view

I Job requests are submitted to RM.
• To start a job, RM finds a container to spawn AM.

I Container: logical bundle of resources (CPU/memory).

36 / 46



YARN Architecture - Resource Manager (2/2)

I Only handles an overall resource profile for each job.
• Local optimization is up to the job.

I Preemption
• Request resources back from an job.
• Checkpoint jobs

37 / 46



YARN Architecture - Application Manager

I The head of a job.

I Runs as a container.

I Request resources from RM (num. of containers/resource per container/locality ...)

38 / 46



YARN Architecture - Node Manager (1/2)

I The worker daemon.

I Registers with RM.

I One per node.

I Report resources to RM: memory, CPU, ...

39 / 46



YARN Architecture - Node Manager (2/2)

I Configure the environment for task execution.

I Garbage collection.

I Auxiliary services.
• A process may produce data that persist beyond the life of the container.
• Output intermediate data between map and reduce tasks.

40 / 46



YARN Framework (1/2)

I Containers are described by a Container Launch Context (CLC).
• The command necessary to create the process
• Environment variables
• Security tokens
• ...

I Submitting the job: passing a CLC for the AM to the RM.

I When RM starts the AM, it should register with the RM.
• Periodically advertise its liveness and requirements over the heartbeat protocol.

41 / 46



YARN Framework (1/2)

I Containers are described by a Container Launch Context (CLC).
• The command necessary to create the process
• Environment variables
• Security tokens
• ...

I Submitting the job: passing a CLC for the AM to the RM.

I When RM starts the AM, it should register with the RM.
• Periodically advertise its liveness and requirements over the heartbeat protocol.

41 / 46



YARN Framework (1/2)

I Containers are described by a Container Launch Context (CLC).
• The command necessary to create the process
• Environment variables
• Security tokens
• ...

I Submitting the job: passing a CLC for the AM to the RM.

I When RM starts the AM, it should register with the RM.
• Periodically advertise its liveness and requirements over the heartbeat protocol.

41 / 46



YARN Framework (2/2)

I Once the RM allocates a container, AM can construct a CLC to launch the container
on the corresponding NM.

• It monitors the status of the running container and stop it when the resource should
be reclaimed.

I Once the AM is done with its work, it should unregister from the RM and exit cleanly.

42 / 46



Summary

43 / 46



Summary

I Mesos
• Offered-based
• Max-Min fairness: DRF

I YARN
• Request-based
• RM, AM, NM

44 / 46



References

I B. Hindman et al., “Mesos: A Platform for Fine-Grained Resource Sharing in the
Data Center”, NSDI 2011

I V. Vavilapalli et al., “Apache hadoop yarn: Yet another resource negotiator”, ACM
Cloud Computing 2013

45 / 46



Questions?

Acknowledgements
Some slides were derived from Ion Stoica and Ali Ghodsi slides (Berkeley University),

and Wei-Chiu Chuang slides (Purdue University).

46 / 46


