Parallel Processing - Spark

Amir H. Payberah
payberah@kth.se
12/09/2019
Where Are We?

Data Processing

<table>
<thead>
<tr>
<th>Batch Data</th>
<th>Streaming Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>MapReduce, Dryad</td>
<td>Storm, SEEP, Naiad, Spark Streaming, Flink, Millwheel, Google Dataflow</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Graph Data</th>
<th>Structured Data</th>
<th>Machine Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pregel, GraphLab, PowerGraph, GraphX, X-Streem, Chaos</td>
<td>Spark SQL</td>
<td>MLlib, Tensorflow</td>
</tr>
</tbody>
</table>

Data Storage

<table>
<thead>
<tr>
<th>Distributed File Systems</th>
<th>NoSQL Databases</th>
<th>Distributed Messaging Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFS, Flat FS</td>
<td>Dynamo, BigTable, Cassandra</td>
<td>Kafka</td>
</tr>
</tbody>
</table>

Resource Management

| Mesos, YARN |
MapReduce Reminder

Map → Shuffle → Reduce
Accyclic data flow from stable storage to stable storage.
Motivation (1/2)

- **Acyclic data flow** from stable storage to stable storage.
MapReduce is expensive (slow), i.e., always goes to disk and HDFS.
So, Let’s Use Spark
Spark vs. MapReduce (1/2)
Spark vs. MapReduce (1/2)
Spark vs. MapReduce (2/2)
Spark Application
Spark applications consist of

- A driver process
- A set of executor processes

[M. Zaharia et al., Spark: The Definitive Guide, O'Reilly Media, 2018]
Driver Process

- The heart of a Spark application
- Sits on a node in the cluster
- Runs the main() function
Driver Process

- The **heart** of a Spark application
- Sits on a **node** in the cluster
- Runs the **main()** function
- Responsible for **three** things:
 - Maintaining information about the Spark application
 - Responding to a user’s program or input
 - Analyzing, distributing, and scheduling work across the **executors**
Executors

- Responsible for two things:
 - Executing code assigned to it by the driver
 - Reporting the state of the computation on that executor back to the driver
SparkSession

- A **driver process** that controls a Spark application.
- Main entry point to Spark functionality.
- A **one-to-one correspondence** between a SparkSession and a Spark application.
- Available in console shell as **spark**.

\[
\text{SparkSession}.\text{builder.master(master).appName(appName).getOrCreate()}
\]
SparkContext

- The entry point for low-level API functionality.
- You access it through the SparkSession.
- You can access a SparkContext via spark.sparkContext.
- Available in console shell as sc.

```scala
val conf = new SparkConf().setMaster(master).setAppName(appName)
new SparkContext(conf)
```
SparkSession vs. SparkContext

- Prior to Spark 2.0.0, a spark driver program uses SparkContext to connect to the cluster.

- In order to use APIs of SQL, Hive and streaming, separate SparkContexts should be created.
SparkSession vs. SparkContext

- Prior to Spark 2.0.0, a spark driver program uses SparkContext to connect to the cluster.

- In order to use APIs of SQL, Hive and streaming, separate SparkContexts should be created.

- SparkSession provides access to all the spark functionalities that SparkContext does, e.g., SQL, Hive and streaming.

- SparkSession internally has a SparkContext for actual computation.
Programming Model
Spark Programming Model

- Job is described based on directed acyclic graphs (DAG) data flow.
Spark Programming Model

- **Job** is described based on **directed acyclic graphs (DAG)** data flow.

- A data flow is composed of any number of **data sources, operators, and data sinks** by connecting their inputs and outputs.
Spark Programming Model

- Job is described based on directed acyclic graphs (DAG) data flow.
- A data flow is composed of any number of data sources, operators, and data sinks by connecting their inputs and outputs.
- Parallelizable operators
Resilient Distributed Datasets (RDD) (1/3)

- A distributed memory abstraction.

- Immutable collections of objects spread across a cluster.
 - Like a LinkedList <MyObjects>
An RDD is divided into a number of partitions, which are atomic pieces of information.

Partitions of an RDD can be stored on different nodes of a cluster.
Resilient Distributed Datasets (RDD) (3/3)

- RDDs were the primary API in the Spark 1.x series.

- They are not commonly used in the Spark 2.x series.

- Virtually all Spark code you run, compiles down to an RDD.
Types of RDDs

- **Two** types of RDDs:
 - Generic RDD
 - Key-value RDD

- Both represent a **collection of objects**.

- **Key-value RDDs** have special operations, such as aggregation, and a concept of custom partitioning by key.
When To Use RDDs?

- **Short answer:** you *should not manually* create RDDs unless you have a very *specific* reason.
When To Use RDDs?

- **Short answer:** you should not manually create RDDs unless you have a very specific reason.

- They are a much lower-level API that provides a lot of power.

- But, lack of the optimizations that are available in the Structured APIs.
When To Use RDDs?

- **Short answer:** you **should not manually** create RDDs unless you have a very **specific** reason.

- They are a much **lower-level API** that provides a lot of power.

- But, **lack of the optimizations** that are available in the Structured APIs.

- The most likely reason to use RDDs: **custom partitioning of data.**
 - **Fine-grained control** over the physical distribution of data.
Creating RDDs
Creating RDDs - Parallelized Collections

- Use the `parallelize` method on a SparkContext.
- This turns a single node collection into a parallel collection.
- You can also explicitly state the number of partitions.
- In the console shell, you can either use `sc` or `spark.sparkContext`
Creating RDDs - Parallelized Collections

- Use the `parallelize` method on a `SparkContext`.
- This turns a single node collection into a parallel collection.
- You can also explicitly state the number of partitions.
- In the console shell, you can either use `sc` or `spark.sparkContext`

```scala
val numsCollection = Array(1, 2, 3)
val nums = sc.parallelize(numsCollection)
val wordsCollection = "take it easy, this is a test".split(" ")
val words = spark.sparkContext.parallelize(wordsCollection, 2)
```
Creating RDDs - Parallelized Collections

- Use the `parallelize` method on a `SparkContext`.
- This turns a single node collection into a parallel collection.
- You can also explicitly state the number of partitions.
- In the console shell, you can either use `sc` or `spark.sparkContext`

```scala
val numsCollection = Array(1, 2, 3)
val nums = sc.parallelize(numsCollection)
val wordsCollection = "take it easy, this is a test".split(" ")
val words = spark.sparkContext.parallelize(wordsCollection, 2)
```
Creating RDDs - External Datasets

- Create RDD from an external storage.
 - E.g., local file system, HDFS, Cassandra, HBase, Amazon S3, etc.

- Text file RDDs can be created using `textFile` method.

```scala
val myFile1 = sc.textFile("file.txt")
val myFile2 = sc.textFile("hdfs://namenode:9000/path/file")
```
RDD Operations
RDD Operations

- RDDs support two types of operations:

 - **Transformations**: allow us to **build the logical plan**

 - **Actions**: allow us to **trigger the computation**
Transformations
Transformations

- Create a new RDD from an existing one.

- All transformations are lazy.
 - Not compute their results right away.
 - Remember the transformations applied to the base dataset.
 - They are only computed when an action requires a result to be returned to the driver program.
Lineage

- **Lineage**: transformations used to build an RDD.

- **RDDs** are stored as a chain of objects capturing the **lineage** of each RDD.

```scala
val file = sc.textFile("hdfs://...")
val sics = file.filter(_.contains("SICS"))
val cachedSics = sics.cache()
val ones = cachedSics.map(_ => 1)
val count = ones.reduce(_+_)
```
Generic RDD Transformations (1/3)

- **distinct** removes duplicates from the RDD.
- **filter** returns the RDD records that match some predicate function.

```scala
val nums = sc.parallelize(Array(1, 2, 3))
val even = nums.filter(x => x % 2 == 0)
// 2

val words = sc.parallelize("this it easy, this is a test".split(" "))
val distinctWords = words.distinct()
// a, this, is, easy,, test, it

def startsWithT(individual:String) = { individual.startsWith("t") }
val tWordList = words.filter(word => startsWithT(word))
// this, test
```
- **distinct** removes duplicates from the RDD.
- **filter** returns the RDD records that match some predicate function.

```scala
val nums = sc.parallelize(Array(1, 2, 3))
val even = nums.filter(x => x % 2 == 0)
// 2

val words = sc.parallelize("this it easy, this is a test".split(" "))
val distinctWords = words.distinct()
// a, this, is, easy, test, it
```
Generic RDD Transformations (1/3)

- **distinct** removes duplicates from the RDD.
- **filter** returns the RDD records that match some predicate function.

```scala
val nums = sc.parallelize(Array(1, 2, 3))
val even = nums.filter(x => x % 2 == 0)
// 2

val words = sc.parallelize("this it easy, this is a test".split(" "))
val distinctWords = words.distinct()
// a, this, is, easy, , test, it

def startsWithT(individual:String) = { individual.startsWith("t") }
val tWordList = words.filter(word => startsWithT(word))
// this, test
```
map and flatMap apply a given function on each RDD record independently.

```scala
val nums = sc.parallelize(Array(1, 2, 3))
val squares = nums.map(x => x * x)
// 1, 4, 9
```
map and flatMap apply a given function on each RDD record independently.

```scala
val nums = sc.parallelize(Array(1, 2, 3))
val squares = nums.map(x => x * x)
// 1, 4, 9

val words = sc.parallelize("take it easy, this is a test".split(" "))
val tWords = words.map(word => (word, word.startsWith("t")))
// (take,true), (it,false), (easy,,false), (this,true), (is,false), (a,false), (test,true)
```
sortBy sorts an RDD records.

```scala
val words = sc.parallelize("take it easy, this is a test".split(" "))
val sortedWords = words.sortBy(word => word.length())
// a, it, is, take, this, test, easy,
```
In a \((k, v)\) pairs, \(k\) is the key, and \(v\) is the value.

To make a key-value RDD:

```scala
val words = sc.parallelize("take it easy, this is a test".split(" "))
val keyword1 = words.map(word => (word, 1))
// (take,1), (it,1), (easy,,1), (this,1), (is,1), (a,1), (test,1)
val keyword2 = words.keyBy(word => word.toSeq(0).toString)
// (t,take), (i,it), (e,easy,), (t,this), (i,is), (a,a), (t,test)
val numRange = sc.parallelize(0 to 6)
val keyword3 = words.zip(numRange)
// (take,0), (it,1), (easy,,2), (this,3), (is,4), (a,5), (test,6)
```
In a \((k, v)\) pairs, \(k\) is the key, and \(v\) is the value.

To make a key-value RDD:
- **map** over your current RDD to a basic key-value structure.
- **keyBy** to create a key from the current value.
- **zip** to zip together two RDD.

```scala
val words = sc.parallelize("take it easy, this is a test".split(" "))
val keyword1 = words.map(word => (word, 1))
  // (take,1), (it,1), (easy,,1), (this,1), (is,1), (a,1), (test,1)
val keyword2 = words.keyBy(word => word.toSeq(0).toString)
  // (t,take), (i,it), (e,easy,), (t,this), (i,is), (a,a), (t,test)
val numRange = sc.parallelize(0 to 6)
val keyword3 = words.zip(numRange)
  // (take,0), (it,1), (easy,,2), (this,3), (is,4), (a,5), (test,6)
```
Key-Value RDD Transformations - Basics (1/2)

- In a \((k, v)\) pairs, \(k\) is the key, and \(v\) is the value.

- To make a key-value RDD:

 - **map** over your current RDD to a basic **key-value** structure.

 - Use the **keyBy** to create a key from the current value.

```scala
val words = sc.parallelize("take it easy, this is a test".split(" "))
val keyword1 = words.map(word => (word, 1))
// (take,1), (it,1), (easy,,1), (this,1), (is,1), (a,1), (test,1)

val keyword2 = words.keyBy(word => word.toSeq(0).toString)
// (t,take), (i,it), (e,easy,), (t,this), (i,is), (a,a), (t,test)
```
In a \((k, v)\) pairs, \(k\) is is the key, and \(v\) is the value.

To make a key-value RDD:
- Use the `map` over your current RDD to a basic key-value structure.
- Use the `keyBy` to create a key from the current value.
- Use the `zip` to zip together two RDD.

```scala
val words = sc.parallelize("take it easy, this is a test".split(" "))
val keyword1 = words.map(word => (word, 1))
// (take,1), (it,1), (easy,,1), (this,1), (is,1), (a,1), (test,1)

val keyword2 = words.keyBy(word => word.toSeq(0).toString)
// (t,take), (i,it), (e,easy,), (t,this), (i,is), (a,a), (t,test)

val numRange = sc.parallelize(0 to 6)
val keyword3 = words.zip(numRange)
// (take,0), (it,1), (easy,,2), (this,3), (is,4), (a,5), (test,6)
```
- **keys** and **values** extract keys and values, respectively.

```scala
val words = sc.parallelize("take it easy, this is a test".split(" "))
val keyword = words.keyBy(word => word.toLowerCase.toSeq(0).toString)
// (t,take), (i,it), (e,easy,), (t,this), (i,is), (a,a), (t,test)
val k = keyword.keys
val v = keyword.values
```
- **keys** and **values** extract keys and values, respectively.
- **lookup** looks up the values for a particular key with an RDD.

```scala
val words = sc.parallelize("take it easy, this is a test".split(" "))
val keyword = words.keyBy(word => word.toLowerCase.toSeq(0).toString)
// (t,take), (i,it), (e,easy,), (t,this), (i,is), (a,a), (t,test)
val k = keyword.keys
val v = keyword.values

val tValues = keyword.lookup("t")
// take, this, test
```
Key-Value RDD Transformations - Basics (2/2)

- **keys** and **values** extract keys and values, respectively.
- **lookup** looks up the values for a particular key with an RDD.
- **mapValues** maps over values.

```scala
val words = sc.parallelize("take it easy, this is a test".split(" "))
val keyword = words.keyBy(word => word.toLowerCase.toSeq(0).toString)
// (t,take), (i,it), (e,easy,), (t,this), (i,is), (a,a), (t,test)
val k = keyword.keys
val v = keyword.values

val tValues = keyword.lookup("t")
// take, this, test

val mapV = keyword.mapValues(word => word.toUpperCase)
// (t,TAKE), (i,IT), (e,EASY,), (t,THIS), (i,IS), (a,A), (t,TEST)
```
Aggregate the values associated with each key.

```
val kvChars = ...
// (t,1), (a,1), (k,1), (e,1), (i,1), (t,1), (e,1), (a,1), (s,1), (y,1), (,,1), ...

val grpChar = kvChars.groupByKey().map(row => (row._1, row._2.reduce(addFunc)))
// (t,5), (h,1), (,,1), (e,3), (a,3), (i,3), (y,1), (s,4), (k,1))
```
Key-Value RDD Transformations - Aggregation (1/2)

- Aggregate the values associated with each key.

```scala
val kvChars = ...
// (t,1), (a,1), (k,1), (e,1), (i,1), (t,1), (e,1), (a,1), (s,1), (y,1), (,,1), ...
val grpChar = kvChars.groupByKey().map(row => (row._1, row._2.reduce(addFunc)))
// (t,5), (h,1), (,,1), (e,3), (a,3), (i,3), (y,1), (s,4), (k,1))

def addFunc(left:Int, right:Int) = left + right
val redChar = kvChars.reduceByKey(addFunc)
// (t,5), (h,1), (,,1), (e,3), (a,3), (i,3), (y,1), (s,4), (k,1))
```
groupByKey or reduceByKey?
Key-Value RDD Transformations - Aggregation (2/2)

- `groupByKey` or `reduceByKey`?

 - In `groupByKey`, each executor must hold all values for a given key in memory before applying the function to them.
 - This is problematic in massive skewed key.

 - In `reduceByKey`, the reduce happens within each partition, and does not need to put everything in memory.
join performs an inner-join on the key.

fullOuterJoin, leftOuterJoin, rightOuterJoin, and cartesian.

val keyedChars = ...
// (t,4), (h,6), (,,9), (e,8), (a,3), (i,5), (y,2), (s,7), (k,0)

val kvChars = ...
// (t,1), (a,1), (k,1), (e,1), (i,1), (t,1), (e,1), (a,1), (s,1), (y,1), (,,1), ...

val joinedChars = kvChars.join(keyedChars)
// (t,(1,4)), (t,(1,4)), (t,(1,4)), (t,(1,4)), (t,(1,4)), (h,(1,6)), (,,(1,9)), (e,(1,8)), ...
Actions
Transformations allow us to build up our logical transformation plan.

We run an action to trigger the computation.
 • Instructs Spark to compute a result from a series of transformations.
Actions

- Transformations allow us to build up our logical transformation plan.

- We run an action to trigger the computation.
 - Instructs Spark to compute a result from a series of transformations.

- There are three kinds of actions:
 - Actions to view data in the console
 - Actions to collect data to native objects in the respective language
 - Actions to write to output data sources
- `collect` returns all the elements of the RDD as an array at the driver.

- `first` returns the first value in the RDD.

```scala
val nums = sc.parallelize(Array(1, 2, 3))

nums.collect()  // Array(1, 2, 3)

nums.first()    // 1
```
- `take` returns an array with the first n elements of the RDD.

```scala
val words = sc.parallelize("take it easy, this is a test".split(" "))
words.take(5)
// Array(take, it, easy,, this, is)
```
 RDD Actions (2/6)

- `take` returns an array with the first n elements of the RDD.
- Variations on this function: `takeOrdered` and `takeSample`.

```scala
val words = sc.parallelize("take it easy, this is a test".split(" "))

words.take(5)
// Array(take, it, easy,, this, is)

words.takeOrdered(5)
// Array(a, easy,, is, it, take)

val withReplacement = true
val numberToTake = 6
val randomSeed = 100L
words.takeSample(withReplacement, numberToTake, randomSeed)
// Array(take, it, test, this, test, take)
```
RDD Actions (3/6)

- **count** returns the number of elements in the dataset.
- **countByValue** counts the number of values in a given RDD.
- **countByKey** returns a hashmap of \((K, Int)\) pairs with the count of each key.
 - Only available on key-value RDDs, i.e., \((K, V)\)

```scala
val words = sc.parallelize("take it easy, this is a test, take it easy".split(" "))

words.count()
// 10

words.countByValue()
// Map(this -> 1, is -> 1, it -> 2, a -> 1, easy, -> 1, test, -> 1, take -> 2, easy -> 1)
```
max and min return the maximum and minimum values, respectively.

```scala
def max(min): val nums = sc.parallelize(1 to 20)
val maxValue = nums.max()
// 20
val minValue = nums.min()
// 1
```
 RDD Actions (5/6)

- **reduce** aggregates the elements of the dataset using a **given function**.
- The given function should be **commutative and associative** so that it can be computed correctly in **parallel**.

```scala
sc.parallelize(1 to 20).reduce(_ + _)
// 210

def wordLengthReducer(leftWord:String, rightWord:String): String = {
  if (leftWord.length > rightWord.length)
    return leftWord
  else
    return rightWord
}

words.reduce(wordLengthReducer)
// easy,
```
saveAsTextFile writes the elements of an RDD as a text file.
 • Local filesystem, HDFS or any other Hadoop-supported file system.

saveAsObjectFile explicitly writes key-value pairs.

```scala
val words = sc.parallelize("take it easy, this is a test".split(" "))
words.saveAsTextFile("file:/tmp/words")
```
Example

```scala
val textFile = sc.textFile("hdfs://...")
val words = textFile.flatMap(line => line.split(" "))
val ones = words.map(word => (word, 1))
val counts = ones.reduceByKey(_ + _)
counts.saveAsTextFile("hdfs://...")
```
Cache and Checkpoints
Caching

- When you cache an RDD, each node stores any partitions of it that it computes in memory.
- An RDD that is not cached is re-evaluated each time an action is invoked on that RDD.
- A node reuses the cached RDD in other actions on that dataset.
Caching

- When you cache an RDD, each node stores any partitions of it that it computes in memory.

- An RDD that is not cached is re-evaluated each time an action is invoked on that RDD.

- A node reuses the cached RDD in other actions on that dataset.

- There are two functions for caching an RDD:
 - `cache` caches the RDD into memory
 - `persist(level)` can cache in memory, on disk, or off-heap memory

```scala
val words = sc.parallelize("take it easy, this is a test".split(" "))

words.cache()
```
Checkpointing

- `checkpoint` saves an RDD to disk.
- Checkpointed data is **not removed** after `SparkContext` is destroyed.
- When we reference a checkpointed RDD, it will derive from the `checkpoint` instead of the source data.

```scala
val words = sc.parallelize("take it easy, this is a test".split(" "))
sc.setCheckpointDir("/path/checkpointing")
words.checkpoint()
```
Execution Engine
More About Lineage

- A **DAG** representing the **computations** done on the RDD is called **lineage graph**.

```scala
val rdd = sc.textFile(...) 
val filtered = rdd.map(...).filter(...).persist() 
val count = filtered.count() 
val reduced = filtered.reduce()
```

[https://github.com/rohgar/scala-spark-4/wiki/Wide-vs-Narrow-Dependencies]
• RDD dependencies encode when data must move across network.

[https://github.com/rohgar/scala-spark-4/wiki/Wide-vs-Narrow-Dependencies]
Two Types of Dependencies (1/2)

- **Narrow transformations (dependencies)**
 - Each input partition will contribute to only one output partition.
 - With narrow transformations, Spark can perform a pipelining.

[https://github.com/rohgar/scala-spark-4/wiki/Wide-vs-Narrow-Dependencies]
Two Types of Dependencies (2/2)

- **Wide** transformations (dependencies)
 - Each input partition will contribute to many output partition.
 - Usually referred to as a shuffle

[Wide dependencies:
Each partition of the parent RDD may be depended on by multiple child partitions.

`groupByKey`
`join`
with inputs not co-partitioned](https://github.com/rohgar/scala-spark-4/wiki/Wide-vs-Narrow-Dependencies)
Example

- A → B: groupBy
- C → D: map
- D → F: union
- B → G: join
- F → G
- E → F
Example

[https://github.com/rohgar/scala-spark-4/wiki/Wide-vs-Narrow-Dependencies]
Lineages and Fault Tolerance (1/2)

- No replication.
- Lineages are the key to fault tolerance in Spark.
- Recompute only the lost partitions of an RDD.
Assume one of the partitions fails.
Lineages and Fault Tolerance (2/2)

- Assume one of the partitions fails.
- We only have to **recompute** the data shown below to get back on track.

[https://github.com/rohgar/scala-spark-4/wiki/Wide-vs-Narrow-Dependencies]
The Anatomy of a Spark Job

[H. Karau et al., High Performance Spark, O’Reilly Media, 2017]
Jobs

- A Spark job is the highest element of Spark’s execution hierarchy.
 - Each Spark job corresponds to one action.
 - Each action is called by the driver program of a Spark application.

[H. Karau et al., High Performance Spark, O’Reilly Media, 2017]
Each job breaks down into a series of stages.

- Stages in Spark represent groups of tasks that can be executed together.
- Wide transformations define the breakdown of jobs into stages.

[H. Karau et al., High Performance Spark, O’Reilly Media, 2017]
A **stage** consists of **tasks**, which are the **smallest execution unit**.

- Each task represents one **local computation**.
- All of the **tasks in one stage** execute the same code on a different piece of the data.

[H. Karau et al., High Performance Spark, O’Reilly Media, 2017]
Advanced Spark Features
Distributed Shared Variables
When Spark runs a function in parallel as a set of tasks on different nodes, it ships a copy of each variable used in the function to each task.
Shared Variables (1/2)

- When Spark runs a function in parallel as a set of tasks on different nodes, it ships a copy of each variable used in the function to each task.

- Sometimes, a variable needs to be shared across tasks, or between tasks and the driver program.

Example: the counter is referenced within the foreach function, it's no longer the counter on the driver node.

```scala
var counter = 0
val rdd = sc.parallelize(Array(1, 2, 3, 4))  
// Wrong: Don't do this!!
rdd.foreach(x => counter += x)
println("Counter value: " + counter)
```
Shared Variables (1/2)

- When Spark runs a function in parallel as a set of tasks on different nodes, it ships a copy of each variable used in the function to each task.

- Sometimes, a variable needs to be shared across tasks, or between tasks and the driver program.

- Example: the `counter` is referenced within the `foreach` function, it’s no longer the `counter` on the driver node.

```scala
var counter = 0
val rdd = sc.parallelize(Array(1, 2, 3, 4))

// Wrong: Don't do this!!
rdd.foreach(x => counter += x)
println("Counter value: " + counter)
```
Shared Variables (2/2)

- General read-write shared variables across tasks is inefficient.

- Two types of shared variables: accumulators and broadcast variables.
Accumulators

- **Aggregating** values from worker nodes back to the driver program.
 - Example: counting events that occur during job execution.

- Worker code can **add** to the accumulator with its `+=` method.

- The driver program can **access** the value by calling the `value` property on the accumulator.

```scala
val accum = sc.accumulator(0)
val rdd = sc.parallelize(Array(1, 2, 3, 4))
rdd.foreach(x => accum += x)
println("Counter value: " + accum.value)
// Counter value: 10
```
The broadcast values are sent to each node only once, and should be treated as read-only variables.

The process of using broadcast variables can access its value with the value property.

```
scala> val broadcastVar = sc.broadcast(Array(1, 2, 3))
broadcastVar: spark.Broadcast[Array[Int]] = spark.Broadcast(b5c40191-...)

scala> broadcastVar.value
res0: Array[Int] = Array(1, 2, 3)
```
// Load RDD of (URL, name) pairs
val pageNames = sc.textFile("pages.txt").map(...)

// Load RDD of (URL, visit) pairs
val visits = sc.textFile("visits.txt").map(...)

val joined = visits.join(pageNames)
// Load RDD of (URL, name) pairs
val pageNames = sc.textFile("pages.txt").map(...)
val pageMap = pageNames.collect().toMap()

// Load RDD of (URL, visit) pairs
val visits = sc.textFile("visits.txt").map(...)

val joined = visits.map(v => (v._1, (pageMap(v._1), v._2)))
// Load RDD of (URL, name) pairs
val pageNames = sc.textFile("pages.txt").map(...)
val pageMap = pageNames.collect().toMap()
val bc = sc.broadcast(pageMap)

// Load RDD of (URL, visit) pairs
val visits = sc.textFile("visits.txt").map(...)
val joined = visits.map(v => (v._1, (bc.value(v._1), v._2)))
Partitioning and Shuffle Operations
The **shuffle** is Spark’s mechanism for **re-distributing data** so that it’s grouped differently across partitions.

This typically involves **copying data** across **executors and machines**, making the shuffle a **complex and costly** operation.
Spark Built-in Partitioners

- Hash partitioner
- Range partitioner
Hash Partitioning (1/2)

- Hash partitioning attempts to spread data evenly across partitions based on the key.

- E.g., `groupByKey`
 - First computes the partition p of each tuple (k, v):
 \[p = k.hashCode() \% \text{numPartitions} \]
 - Then, all tuples in the same partition p are sent to the machine hosting p.
Assume a key-value RDD, with keys \(k = [8, 96, 240, 400, 401, 800] \), and a desired number of partitions of \(p = 4 \).

Assume, that \(\text{hashCode()} \) is the identity, i.e., \(n.\text{hashCode()} = n \).
Assume a key-value RDD, with keys $k = [8, 96, 240, 400, 401, 800]$, and a desired number of partitions of $p = 4$.

Assume, that $hashCode()$ is the identity, i.e., $n.hashCode() = n$.

The hash partitioning distributes the keys as follows among the partitions ($p = k \% 4$):

- partition 0: $[8, 96, 240, 400, 800]$
- partition 1: $[401]$
- partition 2: $[]$
- partition 3: $[]$

The result is a very unbalanced distribution which hurts performance.
Assume a key-value RDD, with keys $k = [8, 96, 240, 400, 401, 800]$, and a desired number of partitions of $p = 4$.

Assume, that `hashCode()` is the identity, i.e., $n.hashCode() = n$.

The hash partitioning distributes the keys as follows among the partitions ($p = k \% 4$):

- partition 0: $[8, 96, 240, 400, 800]$
- partition 1: $[401]$
- partition 2: $[]$
- partition 3: $[]$

The result is a very unbalanced distribution which hurts performance.
Range Partitioning (1/2)

- Key-value RDDs may contain keys that have an ordering defined, e.g., Int, Char, String, ...

- For such RDDs, range partitioning may be more efficient.

- Using a range partitioner, keys are partitioned according to:
 - An ordering for keys
 - A set of sorted ranges of keys

- Tuples with keys in the same range appear on the same machine.
Using range partitioning the distribution can be improved significantly:

- Assumptions: (a) keys non-negative, and (b) 800 is biggest key in the RDD
- Set of ranges: $[1, 200], [201, 400], [401, 600], [601, 800]$
Using range partitioning the **distribution can be improved** significantly:

- Assumptions: (a) keys **non-negative**, and (b) 800 is **biggest key** in the RDD
- Set of ranges: \([1, 200], \ [201, 400], \ [401, 600], \ [601, 800]\)

The **range partitioning** distributes the keys as follows among the partitions:

- **partition 0**: \([8, 96]\)
- **partition 1**: \([240, 400]\)
- **partition 2**: \([401]\)
- **partition 3**: \([800]\)
Using range partitioning the distribution can be improved significantly:

- Assumptions: (a) keys non-negative, and (b) 800 is biggest key in the RDD
- Set of ranges: \([1, 200], [201, 400], [401, 600], [601, 800]\)

The range partitioning distributes the keys as follows among the partitions:

- partition 0: \([8, 96]\)
- partition 1: \([240, 400]\)
- partition 2: \([401]\)
- partition 3: \([800]\)

The resulting partitioning is much more balanced.
Partition Operations (1/2)

- **mapPartitions** is similar to **map**, but runs separately on each partition of the RDD.

```scala
val words = sc.parallelize("take it easy, this is a test".split(" "), 2)
def func(partIndex: Int, withinPartIter: Iterator[String]) = {
  withinPartIter.toList.map(value => s"Partition: $partIndex => $value").iterator
}

words.mapPartitionsWithIndex(func).collect()
// Array(Partition: 0 => take, Partition: 0 => it, Partition: 0 => easy,,
// Partition: 1 => this, Partition: 1 => is, Partition: 1 => a, Partition: 1 => test)
```
Partition Operations (1/2)

- **mapPartitions** is similar to **map**, but runs separately on each partition of the RDD.
- **mapPartitionsWithIndex** applies the function on specific partitions.

```scala
val words = sc.parallelize("take it easy, this is a test".split(" "), 2)
def func(partIndex: Int, withinPartIter: Iterator[String]) = {
  withinPartIter.toList.map(value => s"Partition: $partIndex => $value").iterator
}

words.mapPartitionsWithIndex(func).collect()
// Array(Partition: 0 => take, Partition: 0 => it, Partition: 0 => easy,,
// Partition: 1 => this, Partition: 1 => is, Partition: 1 => a, Partition: 1 => test)
```
Partition Operations (1/2)

- **mapPartitions** is similar to **map**, but runs **separately on each partition** of the RDD.
- **mapPartitionsWithIndex** applies the function on **specific partitions**.
- The given functions must be of type `Iterator<T> => Iterator<U>` when running on an RDD of type `T`.

```scala
val words = sc.parallelize("take it easy, this is a test".split(" "), 2)
def func(partIndex:Int, withinPartIter: Iterator[String]) = {
  withinPartIter.toList.map(value => s"Partition: $partIndex => $value").iterator
}

words.mapPartitionsWithIndex(func).collect()
// Array(Partition: 0 => take, Partition: 0 => it, Partition: 0 => easy,,
// Partition: 1 => this, Partition: 1 => is, Partition: 1 => a, Partition: 1 => test)
```
Partition Operations (2/2)

- `foreachPartitions` is similar to `mapPartition`, but does not return a value.

```scala
val words = sc.parallelize("take it easy, this is a test".split(" "), 2)

words.foreachPartition { iter =>
  import java.io._
  import scala.util.Random
  val rndName = new Random().nextInt()
  val pw = new PrintWriter(new File(s"/tmp/file-${rndName}.txt"))
  while (iter.hasNext) {
    pw.write(iter.next())
  }
  pw.close()
}
```
How do we set a partitioning for our data?

There are two ways to create RDDs with specific partitionings:

1. Call `partitionBy` on an RDD, providing an explicit partitioner.
2. Using transformations that return RDDs with specific partitioners.
Invoking `partitionBy` creates an RDD with a specified partitioner.

```scala
val keyword = ...
// (t,1), (a,1), (k,1), (e,1), (i,1), (t,1), (e,1), (a,1), (s,1), (y,1), (,,1), ...

val tunedPartitioner = new RangePartitioner(3, keyword)
val partitioned = keyword.partitionBy(tunedPartitioner).persist()
partitioned.getNumPartitions
```

The result of `partitionBy` should be persisted, otherwise the partitioning is repeatedly applied each time the partitioned RDD is used.
Partitioning Data Using `partitionBy`

- Invoking `partitionBy` creates an RDD with a specified partitioner.

```scala
val keyword = ...
// (t,1), (a,1), (k,1), (e,1), (i,1), (t,1), (e,1), (a,1), (s,1), (y,1), (,,1), ...

val tunedPartitioner = new RangePartitioner(3, keyword)

val partitioned = keyword.partitionBy(tunedPartitioner).persist()

partitioned.getNumPartitions
```

- The result of `partitionBy` should be persisted, otherwise the partitioning is repeatedly applied each time the partitioned RDD is used.
Some operations on RDDs automatically result in an RDD with a known partitioner - for when it makes sense.

For example

- When using `sortByKey`, a `RangePartitioner` is used.
- When using `groupByKey`, a `HashPartitioner` is used.
The challenge is that not all values for a single key necessarily reside on the same partition, or even the same worker, but they must be co-located to compute the result.

For example, the `reduceByKey` generates a tuple of a key and the result of executing a reduce function against all values associated with that key.
With RDDs, you have control over how data is exactly physically distributed across the cluster.

- **coalesce** effectively collapses partitions on the same worker in order to avoid a shuffle.
- **repartition** operation allows you to repartition your data up or down.

```scala
val words = sc.parallelize("take it easy, this is a test".split(" "), 2)

words.coalesce(1).getNumPartitions

words.repartition(10)
```
Summary
 RDD: a distributed memory abstraction

Two types of operations: transformations and actions

Lineage graph

Caching

Wide vs. narrow dependencies

Shared variables

Partitioning and shuffle
References

- M. Zaharia et al., “Spark: The Definitive Guide”, O’Reilly Media, 2018 - Chapters 2, 12, 13, and 14

- Some slides were derived from Heather Miller’s slides: http://heather.miller.am/teaching/cs4240/spring2018
Questions?