
Parallel Processing - Spark

Amir H. Payberah
payberah@kth.se

12/09/2019

The Course Web Page

https://id2221kth.github.io

1 / 89

https://id2221kth.github.io

Where Are We?

2 / 89

MapReduce Reminder

3 / 89

Motivation (1/2)

I Acyclic data flow from stable storage to stable storage.

4 / 89

Motivation (2/2)

I MapReduce is expensive (slow), i.e., always goes to disk and HDFS.

5 / 89

So, Let’s Use Spark

6 / 89

Spark vs. MapReduce (1/2)

7 / 89

Spark vs. MapReduce (2/2)

8 / 89

Spark Application

9 / 89

Spark Applications Architecture

I Spark applications consist of
• A driver process
• A set of executor processes

[M. Zaharia et al., Spark: The Definitive Guide, O’Reilly Media, 2018]

10 / 89

Driver Process

I The heart of a Spark application

I Sits on a node in the cluster

I Runs the main() function

I Responsible for three things:
• Maintaining information about the Spark application
• Responding to a user’s program or input
• Analyzing, distributing, and scheduling work across the executors

11 / 89

Executors

I Responsible for two things:
• Executing code assigned to it by the driver
• Reporting the state of the computation on that executor back to the driver

12 / 89

SparkSession

I A driver process that controls a Spark application.

I Main entry point to Spark functionality.

I A one-to-one correspondence between a SparkSession and a Spark application.

I Available in console shell as spark.

SparkSession.builder.master(master).appName(appName).getOrCreate()

13 / 89

SparkContext

I The entry point for low-level API functionality.

I You access it through the SparkSession.

I You can access a SparkContext via spark.sparkContext.

I Available in console shell as sc.

val conf = new SparkConf().setMaster(master).setAppName(appName)

new SparkContext(conf)

14 / 89

SparkSession vs. SparkContext

I Prior to Spark 2.0.0, a the spark driver program uses SparkContext to connect to
the cluster.

I In order to use APIs of SQL, Hive and streaming, separate SparkContexts should
to be created.

I SparkSession provides access to all the spark functionalities that SparkContext

does, e.g., SQL, Hive and streaming.

I SparkSession internally has a SparkContext for actual computation.

15 / 89

Programming Model

16 / 89

Spark Programming Model

I Job is described based on directed acyclic graphs (DAG) data flow.

I A data flow is composed of any number of data sources, operators, and data sinks
by connecting their inputs and outputs.

I Parallelizable operators

17 / 89

Resilient Distributed Datasets (RDD) (1/3)

I A distributed memory abstraction.

I Immutable collections of objects spread across a cluster.
• Like a LinkedList <MyObjects>

18 / 89

Resilient Distributed Datasets (RDD) (2/3)

I An RDD is divided into a number of partitions, which are atomic pieces of information.

I Partitions of an RDD can be stored on different nodes of a cluster.

19 / 89

Resilient Distributed Datasets (RDD) (3/3)

I RDDs were the primary API in the Spark 1.x series.

I They are not commonly used in the Spark 2.x series.

I Virtually all Spark code you run, compiles down to an RDD.

20 / 89

Types of RDDs

I Two types of RDDs:
• Generic RDD
• Key-value RDD

I Both represent a collection of objects.

I Key-value RDDs have special operations, such as aggregation, and a concept of
custom partitioning by key.

21 / 89

When To Use RDDs?

I Short answer: you should not manually create RDDs unless you have a very specific
reason.

I They are a much lower-level API that provides a lot of power.

I But, lack of the optimizations that are available in the Structured APIs.

I The most likely reason to use RDDs: custom partitioning of data.
• Fine-grained control over the physical distribution of data.

22 / 89

Creating RDDs

23 / 89

Creating RDDs - Parallelized Collections

I Use the parallelize method on a SparkContext.

I This turns a single node collection into a parallel collection.

I You can also explicitly state the number of partitions.

I In the console shell, you can either use sc or spark.sparkContext

val numsCollection = Array(1, 2, 3)

val nums = sc.parallelize(numsCollection)

val wordsCollection = "take it easy, this is a test".split(" ")

val words = spark.sparkContext.parallelize(wordsCollection, 2)

24 / 89

Creating RDDs - External Datasets

I Create RDD from an external storage.
• E.g., local file system, HDFS, Cassandra, HBase, Amazon S3, etc.

I Text file RDDs can be created using textFile method.

val myFile1 = sc.textFile("file.txt")

val myFile2 = sc.textFile("hdfs://namenode:9000/path/file")

25 / 89

RDD Operations

26 / 89

RDD Operations

I RDDs support two types of operations:

• Transformations: allow us to build the logical plan

• Actions: allow us to trigger the computation

27 / 89

Transformations

28 / 89

Transformations

I Create a new RDD from an existing one.

I All transformations are lazy.
• Not compute their results right away.
• Remember the transformations applied to the base dataset.
• They are only computed when an action requires a result to be returned to the driver

program.

29 / 89

Lineage

I Lineage: transformations used to build an
RDD.

I RDDs are stored as a chain of objects cap-
turing the lineage of each RDD.

val file = sc.textFile("hdfs://...")

val sics = file.filter(_.contains("SICS"))

val cachedSics = sics.cache()

val ones = cachedSics.map(_ => 1)

val count = ones.reduce(_+_)

30 / 89

Generic RDD Transformations (1/3)

I distinct removes duplicates from the RDD.

I filter returns the RDD records that match some predicate function.

val nums = sc.parallelize(Array(1, 2, 3))

val even = nums.filter(x => x % 2 == 0)

// 2

val words = sc.parallelize("this it easy, this is a test".split(" "))

val distinctWords = words.distinct()

// a, this, is, easy,, test, it

def startsWithT(individual:String) = { individual.startsWith("t") }

val tWordList = words.filter(word => startsWithT(word))

// this, test

31 / 89

Generic RDD Transformations (2/3)

I map and flatMap apply a given function on
each RDD record independently.

val nums = sc.parallelize(Array(1, 2, 3))

val squares = nums.map(x => x * x)

// 1, 4, 9

val words = sc.parallelize("take it easy, this is a test".split(" "))

val tWords = words.map(word => (word, word.startsWith("t")))

// (take,true), (it,false), (easy,,false), (this,true), (is,false), (a,false), (test,true)

32 / 89

Generic RDD Transformations (3/3)

I sortBy sorts an RDD records.

val words = sc.parallelize("take it easy, this is a test".split(" "))

val sortedWords = words.sortBy(word => word.length())

// a, it, is, take, this, test, easy,

33 / 89

Key-Value RDD Transformations - Basics (1/2)

I In a (k, v) pairs, k is is the key, and v is the value.

I To make a key-value RDD:
• map over your current RDD to a basic key-value structure.
• Use the keyBy to create a key from the current value.
• Use the zip to zip together two RDD.

val words = sc.parallelize("take it easy, this is a test".split(" "))

val keyword1 = words.map(word => (word, 1))

// (take,1), (it,1), (easy,,1), (this,1), (is,1), (a,1), (test,1)

val keyword2 = words.keyBy(word => word.toSeq(0).toString)

// (t,take), (i,it), (e,easy,), (t,this), (i,is), (a,a), (t,test)

val numRange = sc.parallelize(0 to 6)

val keyword3 = words.zip(numRange)

// (take,0), (it,1), (easy,,2), (this,3), (is,4), (a,5), (test,6)

34 / 89

Key-Value RDD Transformations - Basics (2/2)

I keys and values extract keys and values, respectively.

I lookup looks up the values for a particular key with an RDD.

I mapValues maps over values.

val words = sc.parallelize("take it easy, this is a test".split(" "))

val keyword = words.keyBy(word => word.toLowerCase.toSeq(0).toString)

// (t,take), (i,it), (e,easy,), (t,this), (i,is), (a,a), (t,test)

val k = keyword.keys

val v = keyword.values

val tValues = keyword.lookup("t")

// take, this, test

val mapV = keyword.mapValues(word => word.toUpperCase)

// (t,TAKE), (i,IT), (e,EASY,), (t,THIS), (i,IS), (a,A), (t,TEST)

35 / 89

Key-Value RDD Transformations - Aggregation (1/2)

I Aggregate the values associated with each key.

val kvChars = ...

// (t,1), (a,1), (k,1), (e,1), (i,1), (t,1), (e,1), (a,1), (s,1), (y,1), (,,1), ...

val grpChar = kvChars.groupByKey().map(row => (row._1, row._2.reduce(addFunc)))

// (t,5), (h,1), (,,1), (e,3), (a,3), (i,3), (y,1), (s,4), (k,1))

def addFunc(left:Int, right:Int) = left + right

val redChar = kvChars.reduceByKey(addFunc)

// (t,5), (h,1), (,,1), (e,3), (a,3), (i,3), (y,1), (s,4), (k,1))

36 / 89

Key-Value RDD Transformations - Aggregation (2/2)

I groupByKey or reduceByKey?

I In groupByKey, each executor must hold all values for a given key in memory before
applying the function to them.

• This is problematic in massive skewed key.

I In reduceByKey, the reduce happens within each partition, and does not need to
put everything in memory.

37 / 89

Key-Value RDD Transformations - Join

I join performs an inner-join on the key.

I fullOtherJoin, leftOuterJoin, rightOuterJoin,
and cartesian.

val keyedChars = ...

// (t,4), (h,6), (,,9), (e,8), (a,3), (i,5), (y,2), (s,7), (k,0)

val kvChars = ...

// (t,1), (a,1), (k,1), (e,1), (i,1), (t,1), (e,1), (a,1), (s,1), (y,1), (,,1), ...

val joinedChars = kvChars.join(keyedChars)

// (t,(1,4)), (t,(1,4)), (t,(1,4)), (t,(1,4)), (t,(1,4)), (h,(1,6)), (,,(1,9)), (e,(1,8)), ...

38 / 89

Actions

39 / 89

Actions

I Transformations allow us to build up our logical transformation plan.

I We run an action to trigger the computation.
• Instructs Spark to compute a result from a series of transformations.

I There are three kinds of actions:
• Actions to view data in the console
• Actions to collect data to native objects in the respective language
• Actions to write to output data sources

40 / 89

RDD Actions (1/6)

I collect returns all the elements of the RDD as an array at the driver.

I first returns the first value in the RDD.

val nums = sc.parallelize(Array(1, 2, 3))

nums.collect()

// Array(1, 2, 3)

nums.first()

// 1

41 / 89

RDD Actions (2/6)

I take returns an array with the first n elements of the RDD.

I Variations on this function: takeOrdered and takeSample.

val words = sc.parallelize("take it easy, this is a test".split(" "))

words.take(5)

// Array(take, it, easy,, this, is)

words.takeOrdered(5)

// Array(a, easy,, is, it, take)

val withReplacement = true

val numberToTake = 6

val randomSeed = 100L

words.takeSample(withReplacement, numberToTake, randomSeed)

// Array(take, it, test, this, test, take)

42 / 89

RDD Actions (3/6)

I count returns the number of elements in the dataset.

I countByValue counts the number of values in a given RDD.

I countByKey returns a hashmap of (K, Int) pairs with the count of each key.
• Only available on key-valye RDDs, i.e., (K, V)

val words = sc.parallelize("take it easy, this is a test, take it easy".split(" "))

words.count()

// 10

words.countByValue()

// Map(this -> 1, is -> 1, it -> 2, a -> 1, easy, -> 1, test, -> 1, take -> 2, easy -> 1)

43 / 89

RDD Actions (4/6)

I max and min return the maximum and minimum values, respectively.

val nums = sc.parallelize(1 to 20)

val maxValue = nums.max()

// 20

val minValue = nums.min()

// 1

44 / 89

RDD Actions (5/6)

I reduce aggregates the elements of the dataset using a given function.

I The given function should be commutative and associative so that it can be computed
correctly in parallel.

sc.parallelize(1 to 20).reduce(_ + _)

// 210

def wordLengthReducer(leftWord:String, rightWord:String): String = {

if (leftWord.length > rightWord.length)

return leftWord

else

return rightWord

}

words.reduce(wordLengthReducer)

// easy,

45 / 89

RDD Actions (6/6)

I saveAsTextFile writes the elements of an RDD as a text file.
• Local filesystem, HDFS or any other Hadoop-supported file system.

I saveAsObjectFile explicitly writes key-value pairs.

val words = sc.parallelize("take it easy, this is a test".split(" "))

words.saveAsTextFile("file:/tmp/words")

46 / 89

Example

val textFile = sc.textFile("hdfs://...")

val words = textFile.flatMap(line => line.split(" "))

val ones = words.map(word => (word, 1))

val counts = ones.reduceByKey(_ + _)

counts.saveAsTextFile("hdfs://...")

47 / 89

Cache and Checkpoints

48 / 89

Caching

I When you cache an RDD, each node stores any partitions of it that it computes in
memory.

I An RDD that is not cached is re-evaluated each time an action is invoked on that
RDD.

I A node reuses the cached RDD in other actions on that dataset.

I There are two functions for caching an RDD:
• cache caches the RDD into memory
• persist(level) can cache in memory, on disk, or off-heap memory

val words = sc.parallelize("take it easy, this is a test".split(" "))

words.cache()

49 / 89

Checkpointing

I checkpoint saves an RDD to disk.

I Checkpointed data is not removed after SparkContext is destroyed.

I When we reference a checkpointed RDD, it will derive from the checkpoint instead
of the source data.

val words = sc.parallelize("take it easy, this is a test".split(" "))

sc.setCheckpointDir("/path/checkpointing")

words.checkpoint()

50 / 89

Execution Engine

51 / 89

More About Lineage

I A DAG representing the computations done on the RDD is called lineage graph.

val rdd = sc.textFile(...)

val filtered = rdd.map(...).filter(...).persist()

val count = filtered.count()

val reduced = filtered.reduce()

[https://github.com/rohgar/scala-spark-4/wiki/Wide-vs-Narrow-Dependencies]

52 / 89

Dependencies

I RDD dependencies encode when data must move across network.

[https://github.com/rohgar/scala-spark-4/wiki/Wide-vs-Narrow-Dependencies]

53 / 89

Two Types of Dependencies (1/2)

I Narrow transformations (dependencies)
• Each input partition will contribute to only one output partition.
• With narrow transformations, Spark can perform a pipelining

[https://github.com/rohgar/scala-spark-4/wiki/Wide-vs-Narrow-Dependencies]

54 / 89

Two Types of Dependencies (2/2)

I Wide transformations (dependencies)
• Each input partition will contribute to many output partition.
• Usually referred to as a shuffle

[https://github.com/rohgar/scala-spark-4/wiki/Wide-vs-Narrow-Dependencies]

55 / 89

Example

[https://github.com/rohgar/scala-spark-4/wiki/Wide-vs-Narrow-Dependencies]

56 / 89

Lineages and Fault Tolerance (1/2)

I No replication.

I Lineages are the key to fault tolerance in Spark.

I Recompute only the lost partitions of an RDD.

57 / 89

Lineages and Fault Tolerance (2/2)

I Assume one of the partitions fails.

I We only have to recompute the data shown below to get back on track.

[https://github.com/rohgar/scala-spark-4/wiki/Wide-vs-Narrow-Dependencies]

58 / 89

The Anatomy of a Spark Job

[H. Karau et al., High Performance Spark, O’Reilly Media, 2017]

59 / 89

Jobs

I A Spark job is the highest element of Spark’s execution hierarchy.
• Each Spark job corresponds to one action.
• Each action is called by the driver program of a Spark application.

[H. Karau et al., High Performance Spark, O’Reilly Media, 2017]

60 / 89

Stages

I Each job breaks down into a series of stages.
• Stages in Spark represent groups of tasks that can be executed together.
• Wide transformations define the breakdown of jobs into stages.

[H. Karau et al., High Performance Spark, O’Reilly Media, 2017]

61 / 89

Tasks

I A stage consists of tasks, which are the smallest execution unit.
• Each task represents one local computation.
• All of the tasks in one stage execute the same code on a different piece of the data.

[H. Karau et al., High Performance Spark, O’Reilly Media, 2017]

62 / 89

Advanced Spark Features

63 / 89

Distributed Shared Variables

64 / 89

Shared Variables (1/2)

I When Spark runs a function in parallel as a set of tasks on different nodes, it ships
a copy of each variable used in the function to each task.

I Sometimes, a variable needs to be shared across tasks, or between tasks and the
driver program.

I Example: the counter is referenced within the foreach function, it’s no longer the
counter on the driver node.

var counter = 0

val rdd = sc.parallelize(Array(1, 2, 3, 4))

// Wrong: Don’t do this!!

rdd.foreach(x => counter += x)

println("Counter value: " + counter)

65 / 89

Shared Variables (2/2)

I General read-write shared variables across tasks is inefficient.

I Two types of shared variables: accumulators and broadcast variables.

66 / 89

Accumulators

I Aggregating values from worker nodes back to the driver program.
• Example: counting events that occur during job execution.

I Worker code can add to the accumulator with its += method.

I The driver program can access the value by calling the value property on the accu-
mulator.

val accum = sc.accumulator(0)

val rdd = sc.parallelize(Array(1, 2, 3, 4))

rdd.foreach(x => accum += x)

println("Counter value: " + accum.value)

// Counter value: 10

67 / 89

Broadcast Variables (1/4)

I The broadcast values are sent to each node only once, and should be treated as
read-only variables.

I The process of using broadcast variables can access its value with the value property.

scala> val broadcastVar = sc.broadcast(Array(1, 2, 3))

broadcastVar: spark.Broadcast[Array[Int]] = spark.Broadcast(b5c40191-...)

scala> broadcastVar.value

res0: Array[Int] = Array(1, 2, 3)

68 / 89

Broadcast Variables (2/4)

// Load RDD of (URL, name) pairs

val pageNames = sc.textFile("pages.txt").map(...)

// Load RDD of (URL, visit) pairs

val visits = sc.textFile("visits.txt").map(...)

val joined = visits.join(pageNames)

69 / 89

Broadcast Variables (3/4)

// Load RDD of (URL, name) pairs

val pageNames = sc.textFile("pages.txt").map(...)

val pageMap = pageNames.collect().toMap()

// Load RDD of (URL, visit) pairs

val visits = sc.textFile("visits.txt").map(...)

val joined = visits.map(v => (v._1, (pageMap(v._1), v._2)))

70 / 89

Broadcast Variables (4/4)

// Load RDD of (URL, name) pairs

val pageNames = sc.textFile("pages.txt").map(...)

val pageMap = pageNames.collect().toMap()

val bc = sc.broadcast(pageMap)

// Load RDD of (URL, visit) pairs

val visits = sc.textFile("visits.txt").map(...)

val joined = visits.map(v => (v._1, (bc.value(v._1), v._2)))

71 / 89

Partitioning and Shuffle Operations

72 / 89

Shuffle Operations

I The shuffle is Spark’s mechanism for re-distributing data so that it’s grouped differ-
ently across partitions.

I This typically involves copying data across executors and machines, making the shuffle
a complex and costly operation.

73 / 89

Spark Built-in Partitioners

I Hash partitioner

I Range partitioner

74 / 89

Hash Partitioning (1/2)

I Hash partitioning attempts to spread data evenly across partitions based on the key.

I E.g., groupByKey
• First computes the partition p of each tuple (k, v):
p = k.hashCode() % numPartitions

• Then, all tuples in the same partition p are sent to the machine hosting p.

75 / 89

Hash Partitioning (2/2)

I Assume a key-value RDD, with keys k = [8, 96, 240, 400, 401, 800], and a
desired number of partitions of p = 4.

I Assume, that hashCode() is the identity, i.e., n.hashCode() = n.

I The hash partitioning distributes the keys as follows among the partitions
(p = k % 4):

• partition 0: [8, 96, 240, 400, 800]
• partition 1: [401]
• partition 2: []
• partition 3: []

I The result is a very unbalanced distribution which hurts performance.

76 / 89

Range Partitioning (1/2)

I Key-value RDDs may contain keys that have an ordering defined, e.g., Int, Char,
String, ...

I For such RDDs, range partitioning may be more efficient.

I Using a range partitioner, keys are partitioned according to:
• An ordering for keys
• A set of sorted ranges of keys

I Tuples with keys in the same range appear on the same machine.

77 / 89

Range Partitioning (2/2)

I Using range partitioning the distribution can be improved significantly:
• Assumptions: (a) keys non-negative, and (b) 800 is biggest key in the RDD
• Set of ranges: [1, 200], [201, 400], [401, 600], [601, 800]

I The range partitioning distributes the keys as follows among the partitions:
• partition 0: [8, 96]
• partition 1: [240, 400]
• partition 2: [401]
• partition 3: [800]

I The resulting partitioning is much more balanced.

78 / 89

Partition Operations (1/2)

I mapPartitions is similar to map, but runs separately on each partition of the RDD.

I mapPartitionsWithIndex applies the function on specific partitions.

I The given functions must be of type Iterator<T> => Iterator<U> when running
on an RDD of type T.

val words = sc.parallelize("take it easy, this is a test".split(" "), 2)

def func(partIndex:Int, withinPartIter: Iterator[String]) = {

withinPartIter.toList.map(value => s"Partition: $partIndex => $value").iterator

}

words.mapPartitionsWithIndex(func).collect()

// Array(Partition: 0 => take, Partition: 0 => it, Partition: 0 => easy,,

// Partition: 1 => this, Partition: 1 => is, Partition: 1 => a, Partition: 1 => test)

79 / 89

Partition Operations (2/2)

I foreachPartitions is similar to mapPartition, but does not return a return a
value.

val words = sc.parallelize("take it easy, this is a test".split(" "), 2)

words.foreachPartition { iter =>

import java.io._

import scala.util.Random

val rndName = new Random().nextInt()

val pw = new PrintWriter(new File(s"/tmp/file-${rndName}.txt"))

while (iter.hasNext) {

pw.write(iter.next())

}

pw.close()

}

80 / 89

Partitioning Data

I How do we set a partitioning for our data?

I There are two ways to create RDDs with specific partitionings:

1. Call partitionBy on an RDD, providing an explicit partitioner.
2. Using transformations that return RDDs with specific partitioners.

81 / 89

Partitioning Data Using partitionBy

I Invoking partitionBy creates an RDD with a specified partitioner.

val keyword = ...

// (t,1), (a,1), (k,1), (e,1), (i,1), (t,1), (e,1), (a,1), (s,1), (y,1), (,,1), ...

val tunedPartitioner = new RangePartitioner(3, keyword)

val partitioned = keyword.partitionBy(tunedPartitioner).persist()

partitioned.getNumPartitions

I The result of partitionBy should be persisted, otherwise the partitioning is re-
peatedly applied each time the partitioned RDD is used.

82 / 89

Partitioning Data Using Transformations

I Some operations on RDDs automatically result in an RDD with a known partitioner
- for when it makes sense.

I For example
• When using sortByKey, a RangePartitioner is used.
• When using groupByKey, a HashPartitioner is used.

83 / 89

Controlling Partitions (1/2)

I The challenge is that not all values for a single key necessarily reside on the same
partition, or even the same worker, but they must be co-located to compute the
result.

I For example, the reduceByKey generates a tuple of a key and the result of executing
a reduce function against all values associated with that key.

84 / 89

Controlling Partitions (2/2)

I With RDDs, you have control over how data is exactly physically distributed across
the cluster.

I coalesce effectively collapses partitions on the same worker in order to avoid a
shuffle.

I repartition operation allows you to repartition your data up or down.

val words = sc.parallelize("take it easy, this is a test".split(" "), 2)

words.coalesce(1).getNumPartitions

words.repartition(10)

85 / 89

Summary

86 / 89

Summary

I RDD: a distributed memory abstraction

I Two types of operations: transformations and actions

I Lineage graph

I Caching

I Wide vs. narrow dependencies

I Shared variables

I Paritioning and shuffle

87 / 89

References

I M. Zaharia et al., “Spark: The Definitive Guide”, O’Reilly Media, 2018 - Chapters
2, 12, 13, and 14

I M. Zaharia et al., “Resilient distributed datasets: A fault-tolerant abstraction for
in-memory cluster computing”, USENIX NSDI, 2012.

I Some slides were derived from Heather Miller’s slides:
http://heather.miller.am/teaching/cs4240/spring2018

88 / 89

Questions?

89 / 89

	

