
Structured Data Processing - Spark SQL

Amir H. Payberah
payberah@kth.se

17/09/2019

The Course Web Page

https://id2221kth.github.io

1 / 87

https://id2221kth.github.io

Where Are We?

2 / 87

Motivation

3 / 87

Hive

I A system for managing and querying structured data built on top of MapReduce.

I Converts a query to a series of MapReduce phases.

I Initially developed by Facebook.

4 / 87

Hive Data Model

I Re-used from RDBMS:
• Database: Set of Tables.
• Table: Set of Rows that have the same schema (same columns).
• Row: A single record; a set of columns.
• Column: provides value and type for a single value.

5 / 87

Hive API (1/2)

I HiveQL: SQL-like query languages

I Data Definition Language (DDL) operations
• Create, Alter, Drop

-- DDL: creating a table with three columns

CREATE TABLE customer (id INT, name STRING, address STRING)

ROW FORMAT DELIMITED FIELDS TERMINATED BY ’\t’;

6 / 87

Hive API (2/2)

I Data Manipulation Language (DML) operations
• Load and Insert (overwrite)
• Does not support updating and deleting

-- DML: loading data from a flat file

LOAD DATA LOCAL INPATH ’data.txt’ OVERWRITE INTO TABLE customer;

I Query operations
• Select, Filter, Join, Groupby

-- Query: joining two tables

SELECT * FROM customer c JOIN order o ON (c.id = o.cus_id);

7 / 87

Executing SQL Questions

I Processes HiveQL statements and generates the execution plan through three-phase
processes.

1. Query parsing: transforms a query string to a parse tree representation.

2. Logical plan generation: converts the internal query representation to a logical plan,
and optimizes it.

3. Physical plan generation: split the optimized logical plan into multiple map/reduce
tasks.

8 / 87

Hive Architecure

9 / 87

Hive Architecure - Driver

I Manages the life cycle of a HiveQL statement during compilation, optimization and
execution.

10 / 87

Hive Architecure - Compiler (Parser/Query Optimizer)

I Translates the HiveQL statement into a a logical plan and optimizes it.

11 / 87

Hive Architecure - Physical Plan

I Transforms the logical plan into a DAG of Map/Reduce jobs.

12 / 87

Hive Architecure - Execution Engine

I The driver submits the individual mapreduce jobs from the DAG to the execution
engine in a topological order.

13 / 87

Spark SQL

14 / 87

Shark

I Shark modified the Hive backend to run over Spark.

15 / 87

Shark and Hive In-Memory Store

I Caching Hive records as JVM objects is inefficient.
• 12 to 16 bytes of overhead per object in JVM implementation:

I Shark employs column-oriented storage using arrays of primitive objects.

16 / 87

Shark Limitations

I Limited integration with Spark programs.

I Hive optimizer not designed for Spark.

17 / 87

From Shark to Spark SQL

I Borrows from Shark
• Hive data loading
• In-memory column store

I Adds by Spark
• RDD-aware optimizer (catalyst optimizer)
• Adds schema to RDD (DataFrame)
• Rich language interfaces

18 / 87

Spark and Spark SQL

19 / 87

Structured Data vs. RDD (1/2)

I case class Account(name: String, balance: Double, risk: Boolean)

I RDD[Account]

I RDDs don’t know anything about the schema of the data it’s dealing with.

20 / 87

Structured Data vs. RDD (2/2)

I case class Account(name: String, balance: Double, risk: Boolean)

I RDD[Account]

I A database/Hive sees it as a columns of named and typed values.

21 / 87

DataFrames and DataSets

I Spark has two notions of structured collections:
• DataFrames
• Datasets

I They are distributed table-like collections with well-defined rows and columns.

I They represent immutable lazily evaluated plans.

I When an action is performed on them, Spark performs the actual transformations
and return the result.

22 / 87

DataFrame

23 / 87

DataFrame

I Consists of a series of rows and a number of columns.

I Equivalent to a table in a relational database.

I Spark + RDD: functional transformations on partitioned collections of objects.

I SQL + DataFrame: declarative transformations on partitioned collections of tuples.

24 / 87

Schema

I Defines the column names and types of a DataFrame.

I Assume people.json file as an input:

{"name":"Michael", "age":15, "id":12}

{"name":"Andy", "age":30, "id":15}

{"name":"Justin", "age":19, "id":20}

{"name":"Andy", "age":12, "id":15}

{"name":"Jim", "age":19, "id":20}

{"name":"Andy", "age":12, "id":10}

val people = spark.read.format("json").load("people.json")

people.schema

// returns:

StructType(StructField(age,LongType,true),

StructField(id,LongType,true),

StructField(name,StringType,true))

25 / 87

Column (1/2)

I They are like columns in a table.

I col returns a reference to a column.

I expr performs transformations on a column.

I columns returns all columns on a DataFrame

val people = spark.read.format("json").load("people.json")

col("age")

exp("age + 5 < 32")

people.columns

// returns: Array[String] = Array(age, id, name)

26 / 87

Column (2/2)

I Different ways to refer to a column.

val people = spark.read.format("json").load("people.json")

people.col("name")

col("name")

column("name")

’name

$"name"

expr("name")

27 / 87

Row

I A row is a record of data.

I They are of type Row.

I Rows do not have schemas.
• The order of values should be the same order as the schema of the DataFrame to

which they might be appended.

I To access data in rows, you need to specify the position that you would like.

import org.apache.spark.sql.Row

val myRow = Row("Seif", 65, 0)

myRow(0) // type Any

myRow(0).asInstanceOf[String] // String

myRow.getString(0) // String

myRow.getInt(1) // Int

28 / 87

Creating a DataFrame

I Two ways to create a DataFrame:

1. From an RDD
2. From raw data sources

29 / 87

Creating a DataFrame - From an RDD

I The schema automatically inferred.

I You can use toDF to convert an RDD to DataFrame.

val tupleRDD = sc.parallelize(Array(("seif", 65, 0), ("amir", 40, 1))

val tupleDF = tupleRDD.toDF("name", "age", "id")

I If RDD contains case class instances, Spark infers the attributes from it.

case class Person(name: String, age: Int, id: Int)

val peopleRDD = sc.parallelize(Array(Person("seif", 65, 0), Person("amir", 40, 1)))

val peopleDF = peopleDF.toDF

30 / 87

Creating a DataFrame - From Data Source

I Data sources supported by Spark.
• CSV, JSON, Parquet, ORC, JDBC/ODBC connections, Plain-text files
• Cassandra, HBase, MongoDB, AWS Redshift, XML, etc.

val peopleJson = spark.read.format("json").load("people.json")

val peopleCsv = spark.read.format("csv")

.option("sep", ";")

.option("inferSchema", "true")

.option("header", "true")

.load("people.csv")

31 / 87

DataFrame Transformations (1/4)

I Add and remove rows or columns

I Transform a row into a column (or vice versa)

I Change the order of rows based on the values in columns

[M. Zaharia et al., Spark: The Definitive Guide, O’Reilly Media, 2018]

32 / 87

DataFrame Transformations (2/4)

I select and selectExpr allow to do the DataFrame equivalent of SQL queries on
a table of data.

// select

people.select("name", "age", "id").show(2)

people.select(col("name"), expr("age + 3")).show()

// selectExpr

people.selectExpr("*", "(age < 20) as teenager").show()

people.selectExpr("avg(age)", "count(distinct(name))", "sum(id)").show()

33 / 87

DataFrame Transformations (3/4)

I filter and where both filter rows.

I distinct can be used to extract unique rows.

people.filter(col("age") < 20).show()

people.where("age < 20").show()

people.select("name").distinct().show()

34 / 87

DataFrame Transformations (4/4)

I withColumn adds a new column to a DataFrame.

I withColumnRenamed renames a column.

I drop removes a column.

// withColumn

people.withColumn("teenager", expr("age < 20")).show()

// withColumnRenamed

people.withColumnRenamed("name", "username").columns

// drop

people.drop("name").columns

35 / 87

DataFrame Actions

I Like RDDs, DataFrames also have their own set of actions.

I collect: returns an array that contains all of rows in this DataFrame.

I count: returns the number of rows in this DataFrame.

I first and head: returns the first row of the DataFrame.

I show: displays the top 20 rows of the DataFrame in a tabular form.

I take: returns the first n rows of the DataFrame.

36 / 87

Aggregation

37 / 87

Aggregation

I In an aggregation you specify
• A key or grouping
• An aggregation function

I The given function must produce one result for each group.

38 / 87

Grouping Types

I Summarizing a complete DataFrame

I Group by

I Windowing

39 / 87

Grouping Types

I Summarizing a complete DataFrame

I Group by

I Windowing

40 / 87

Summarizing a Complete DataFrame Functions (1/2)

I count returns the total number of values.

I countDistinct returns the number of unique groups.

I first and last return the first and last value of a DataFrame.

val people = spark.read.format("json").load("people.json")

people.select(count("age")).show()

people.select(countDistinct("name")).show()

people.select(first("name"), last("age")).show()

41 / 87

Summarizing a Complete DataFrame Functions (2/2)

I min and max extract the minimum and maximum values from a DataFrame.

I sum adds all the values in a column.

I avg calculates the average.

val people = spark.read.format("json").load("people.json")

people.select(min("name"), max("age"), max("id")).show()

people.select(sum("age")).show()

people.select(avg("age")).show()

42 / 87

Grouping Types

I Summarizing a complete DataFrame

I Group by

I Windowing

43 / 87

Group By (1/3)

I Perform aggregations on groups in the data.

I Typically on categorical data.

I We do this grouping in two phases:

1. Specify the column(s) on which we would like to group.
2. Specify the aggregation(s).

44 / 87

Group By (2/3)

I Grouping with expressions
• Rather than passing that function as an expression into a select statement, we specify

it as within agg.

val people = spark.read.format("json").load("people.json")

people.groupBy("name").agg(count("age").alias("ageagg")).show()

45 / 87

Group By (3/3)

I Grouping with Maps
• Specify transformations as a series of Maps
• The key is the column, and the value is the aggregation function (as a string).

val people = spark.read.format("json").load("people.json")

people.groupBy("name").agg("age" -> "count", "age" -> "avg", "id" -> "max").show()

46 / 87

Grouping Types

I Summarizing a complete DataFrame

I Group by

I Windowing

47 / 87

Windowing (1/2)

I Computing some aggregation on a specific window of data.

I The window determines which rows will be passed in to this function.

I You define them by using a reference to the current data.

I A group of rows is called a frame.

[M. Zaharia et al., Spark: The Definitive Guide, O’Reilly Media, 2018]

48 / 87

Windowing (2/2)

I Unlike grouping, here each row can fall into one or more frames.

import org.apache.spark.sql.expressions.Window

import org.apache.spark.sql.functions.col

val people = spark.read.format("json").load("people.json")

val windowSpec = Window.rowsBetween(-1, 1)

val avgAge = avg(col("age")).over(windowSpec)

people.select(col("name"), col("age"), avgAge.alias("avg_age")).show

49 / 87

Joins

50 / 87

Joins

I Joins are relational constructs you use to combine relations together.

I Different join types: inner join, outer join, left outer join, right outer join, left semi
join, left anti join, cross join

51 / 87

Joins Example

val person = Seq((0, "Seif", 0), (1, "Amir", 1), (2, "Sarunas", 1))

.toDF("id", "name", "group_id")

val group = Seq((0, "SICS/KTH"), (1, "KTH"), (2, "SICS"))

.toDF("id", "department")

52 / 87

Joins Example - Inner

val joinExpression = person.col("group_id") === group.col("id")

var joinType = "inner"

person.join(group, joinExpression, joinType).show()

+---+-------+--------+---+----------+

| id| name|group_id| id|department|

+---+-------+--------+---+----------+

| 0| Seif| 0| 0| SICS/KTH|

| 1| Amir| 1| 1| KTH|

| 2|Sarunas| 1| 1| KTH|

+---+-------+--------+---+----------+

53 / 87

Joins Example - Outer

val joinExpression = person.col("group_id") === group.col("id")

var joinType = "outer"

person.join(group, joinExpression, joinType).show()

+----+-------+--------+---+----------+

| id| name|group_id| id|department|

+----+-------+--------+---+----------+

| 1| Amir| 1| 1| KTH|

| 2|Sarunas| 1| 1| KTH|

|null| null| null| 2| SICS|

| 0| Seif| 0| 0| SICS/KTH|

+----+-------+--------+---+----------+

54 / 87

Joins Communication Strategies

I Two different communication ways during joins:
• Shuffle join: big table to big table
• Broadcast join: big table to small table

55 / 87

Shuffle Join

I Every node talks to every other node.

I They share data according to which node has a certain key or set of keys.

[M. Zaharia et al., Spark: The Definitive Guide, O’Reilly Media, 2018]

56 / 87

Broadcast Join

I When the table is small enough to fit into the memory of a single worker node.

[M. Zaharia et al., Spark: The Definitive Guide, O’Reilly Media, 2018]

57 / 87

SQL

58 / 87

SQL

I You can run SQL queries on views/tables via the method sql on the SparkSession

object.

spark.sql("SELECT * from people_view").show()

+---+---+-------+

|age| id| name|

+---+---+-------+

| 15| 12|Michael|

| 30| 15| Andy|

| 19| 20| Justin|

| 12| 15| Andy|

| 19| 20| Jim|

| 12| 10| Andy|

+---+---+-------+

59 / 87

Temporary View

I createOrReplaceTempView creates (or replaces) a lazily evaluated view.

I You can use it like a table in Spark SQL.

people.createOrReplaceTempView("people_view")

val teenagersDF = spark.sql("SELECT name, age FROM people_view WHERE age BETWEEN 13 AND 19")

60 / 87

DataSet

61 / 87

Untyped API with DataFrame

I DataFrames elements are Rows, which are generic untyped JVM objects.

I Scala compiler cannot type check Spark SQL schemas in DataFrames.

I The following code compiles, but you get a runtime exception.
• id num is not in the DataFrame columns [name, age, id]

// people columns: ("name", "age", "id")

val people = spark.read.format("json").load("people.json")

people.filter("id_num < 20") // runtime exception

62 / 87

Why DataSet?

I Assume the following example

case class Person(name: String, age: BigInt, id: BigInt)

val peopleRDD = sc.parallelize(Array(Person("seif", 65, 0), Person("amir", 40, 1)))

val peopleDF = peopleRDD.toDF

I Now, let’s use collect to bring back it to the master.

val collectedPeople = peopleDF.collect()

// collectedPeople: Array[org.apache.spark.sql.Row]

I What is in Row?

63 / 87

Why DataSet?

I To be able to work with the collected values, we should cast the Rows.
• How many columns?
• What types?

// Person(name: Sting, age: BigInt, id: BigInt)

val collectedList = collectedPeople.map {

row => (row(0).asInstanceOf[String], row(1).asInstanceOf[Int], row(2).asInstanceOf[Int])

}

I But, what if we cast the types wrong?

I Wouldn’t it be nice if we could have both Spark SQL optimizations and typesafety?

64 / 87

DataSet

I Datasets can be thought of as typed distributed collections of data.

I Dataset API unifies the DataFrame and RDD APls.

I You can consider a DataFrame as an alias for Dataset[Row], where a Row is a
generic untyped JVM object.

type DataFrame = Dataset[Row]

[http://why-not-learn-something.blogspot.com/2016/07/apache-spark-rdd-vs-dataframe-vs-dataset.html]

65 / 87

Creating DataSets

I To convert a sequence or an RDD to a Dataset, we can use toDS().

I You can call as[SomeCaseClass] to convert the DataFrame to a Dataset.

case class Person(name: String, age: BigInt, id: BigInt)

val personSeq = Seq(Person("Max", 33, 0), Person("Adam", 32, 1))

val ds1 = sc.parallelize(personSeq).toDS

val ds2 = spark.read.format("json").load("people.json").as[Person]

66 / 87

DataSet Transformations

I Transformations on Datasets are the same as those that we had on DataFrames.

I Datasets allow us to specify more complex and strongly typed transformations.

case class Person(name: String, age: BigInt, id: BigInt)

val people = spark.read.format("json").load("people.json").as[Person]

people.filter(x => x.age < 40).show()

people.map(x => (x.name, x.age + 5, x.id)).show()

67 / 87

Structured Data Execution

68 / 87

Structured Data Execution Steps

I 1. Write DataFrame/Dataset/SQL Code.

I 2. If valid code, Spark converts this to a logical plan.

I 3. Spark transforms this logical plan to a Physical Plan
• Checking for optimizations along the way.

I 4. Spark then executes this physical plan (RDD manipulations) on the cluster.

[M. Zaharia et al., Spark: The Definitive Guide, O’Reilly Media, 2018]

69 / 87

Logical Planning (1/2)

I The logical plan represents a set of abstract transformations.

I This plan is unresolved.
• The code might be valid, the tables/columns that it refers to might not exist.

I Spark uses the catalog, a repository of all table and DataFrame information, to
resolve columns and tables in the analyzer.

[M. Zaharia et al., Spark: The Definitive Guide, O’Reilly Media, 2018]

70 / 87

Logical Planning (2/2)

I The analyzer might reject the unresolved logical plan.

I If the analyzer can resolve it, the result is passed through the Catalyst optimizer.

I It converts the user’s set of expressions into the most optimized version.

[M. Zaharia et al., Spark: The Definitive Guide, O’Reilly Media, 2018]

71 / 87

Physical Planning

I The physical plan specifies how the logical plan will execute on the cluster.

I Physical planning results in a series of RDDs and transformations.

[M. Zaharia et al., Spark: The Definitive Guide, O’Reilly Media, 2018]

72 / 87

Execution

I Upon selecting a physical plan, Spark runs all of this code over RDDs.

I Spark performs further optimizations at runtime.

I Finally the result is returned to the user.

73 / 87

Optimization

74 / 87

Optimization

I Spark SQL comes with two specialized backend components:
• Catalyst: a query optimizer
• Tungsten: off-heap serializer

75 / 87

Catalyst Optimizer

76 / 87

Catalyst Optimizer

I Catalyst is Spark SQL query optimizer.

I It compiles Spark SQL queries to RDDs and transformations.

I Optimization includes
• Reordering operations
• Reduce the amount of data we must read
• Pruning unneed partitioning

77 / 87

Catalyst Optimizer - Logical Optimization

I Applies standard rule-based optimizations to the logical plan.

val users = sqlContext.read.parquet("...")

val events = sqlContext.read.parquet("...")

val joined = events.join(users, ...)

val result = joined.select(...)

78 / 87

Tungsten

79 / 87

Tungsten

I Spark workloads are increasingly bottlenecked by CPU and memory use rather than
IO and network communication.

I Tungsten improves the memory and CPU efficiency of Spark backend execution and
push performance closer to the limits of modern hardware.

I It provides
• Highly-specialized data encoders
• Column-based datastore
• Off-heap memory management

80 / 87

Tungsten - Data Encoder

I Tungsten can take schema information and tightly pack serialized data into memory.

I More data can fit in memory.

I We have faster serialization and deserialization.

81 / 87

Tungsten - Column-Based

I Most table operations are on specific columns/attributes of a dataset.

I To store data, group them by column, instead of row.

I Faster lookup of data associated with specific column/attribute.

82 / 87

Tungsten - Off-Heap

I Perform manual memory management instead of relying on Java objects.

I Eliminate garbage collection overheads.

I Use java.unsafe and off heap memory.

83 / 87

Summary

84 / 87

Summary

I RDD vs. DataFrame vs. DataSet

I Logical and physical plans

I Catalyst optmizer

I Tungsten project

85 / 87

References

I M. Zaharia et al., “Spark: The Definitive Guide”, O’Reilly Media, 2018 - Chapters
4-11.

I M. Armbrust et al., “Spark SQL: Relational data processing in spark”, ACM SIG-
MOD, 2015.

I Some slides were derived from Heather Miller’s slides:
http://heather.miller.am/teaching/cs4240/spring2018

86 / 87

Questions?

87 / 87

	

