

An Introduction to Data Intensive Computing

Amir H. Payberah payberah@kth.se 2020-08-26

Course Information

- Provide students with a solid foundation for understanding large scale distributed systems used for storing and processing massive data.
- Cover a wide variety of advanced topics in data intensive computing platforms, i.e., the frameworks to store and process big data.

► ILO1: explaining fundamental concepts of data-intensive computing platforms, and also explain how such platforms work.

- ► ILO1: explaining fundamental concepts of data-intensive computing platforms, and also explain how such platforms work.
- ILO2: storing and retrieving data in distributed stores, e.g., distributed file systems or NoSQL databases.

- ► ILO1: explaining fundamental concepts of data-intensive computing platforms, and also explain how such platforms work.
- ILO2: storing and retrieving data in distributed stores, e.g., distributed file systems or NoSQL databases.
- ILO3: processing different types of data, e.g., structured, streaming and graph, using data-intensive computing platforms, such as Spark.

- ► ILO1: explaining fundamental concepts of data-intensive computing platforms, and also explain how such platforms work.
- ILO2: storing and retrieving data in distributed stores, e.g., distributed file systems or NoSQL databases.
- ILO3: processing different types of data, e.g., structured, streaming and graph, using data-intensive computing platforms, such as Spark.
- ► ILO4: building advanced applications using data-intensive platforms, and make scalable applications on a cluster of computers.

The Course Assessment

► Task1: the review questions.

The Course Assessment

- ► Task1: the review questions.
- ► Task2: the lab assignments.

The Course Assessment

- ► Task1: the review questions.
- ► Task2: the lab assignments.
- ► Task3: the final project.

How Each ILO is Assessed?

	Task1	Task2	Task3
ILO1	Х	Х	Х
ILO2		Х	Х
ILO3		Х	Х
ILO4		Х	х

Task1: The Review Questions (A-F)

- One review question per week.
- Questions about the lectures.
- ► The review questions are graded (A-F).

▶ Two lab assignments: source code and oral presentation.

- **•** Two lab assignments: source code and oral presentation.
- E: source code

- **•** Two lab assignments: source code and oral presentation.
- E: source code
- C: source code + basic questions

- ► Two lab assignments: source code and oral presentation.
- E: source code
- ► C: source code + basic questions
- A: source code + advanced questions

- One final project: source code and oral presentation.
- ▶ Proposed by students and confirmed by the teacher: A-level or C-level proposals.

- ▶ One final project: source code and oral presentation.
- ▶ Proposed by students and confirmed by the teacher: A-level or C-level proposals.
- D: source code C-level proposal

- ▶ One final project: source code and oral presentation.
- ▶ Proposed by students and confirmed by the teacher: A-level or C-level proposals.
- D: source code C-level proposal
- ► C: source code C-level proposal + questions

- ▶ One final project: source code and oral presentation.
- ▶ Proposed by students and confirmed by the teacher: A-level or C-level proposals.
- D: source code C-level proposal
- ► C: source code C-level proposal + questions
- B: source code A-level proposal

- ▶ One final project: source code and oral presentation.
- ▶ Proposed by students and confirmed by the teacher: A-level or C-level proposals.
- D: source code C-level proposal
- C: source code C-level proposal + questions
- B: source code A-level proposal
- ► A: source code A-level proposal + questions

▶ The final grade is the average of the two labs, the project, and the review questions.

- ▶ The final grade is the average of the two labs, the project, and the review questions.
- ► To compute it, map A-F to 5-1, and take the average.

- ► The final grade is the average of the two labs, the project, and the review questions.
- ► To compute it, map A-F to 5-1, and take the average.
- ► The floating values are rounded up, if they are more than half, otherwise they are rounded down.
 - E.g., 3.6 will be rounded to 4, and 4.2 will be rounded to 4.

- ► The final grade is the average of the two labs, the project, and the review questions.
- ► To compute it, map A-F to 5-1, and take the average.
- ► The floating values are rounded up, if they are more than half, otherwise they are rounded down.
 - E.g., 3.6 will be rounded to 4, and 4.2 will be rounded to 4.
- ► The half grades will be rounded up, if you submit the assignments before their deadlines, otherwise they will be rounded down.

How to Submit the Assignments?

- ► Through the Canvas site.
- Students will work in groups of two on all the Tasks.

The Course Material

- Mainly based on research papers.
- ▶ We also cover the following books.

The Course Web Page

https://id2221kth.github.io

The Questions-Answers Page

https://tinyurl.com/y4qph82u

The Course Overview

Cloud Computing and Big Data

- ► The main trends:
 - Computers not getting any faster
 - Internet connections getting faster
 - More people connected to the Internet

Cloud Computing and Big Data

Conclusion Move the computation and storage of big data to the cloud!

Cisco predicts that by 2020, 92% of IT market workloads will be processed by cloud data centers, while only 8% will be processed by traditional data centers.

Cloud Computing

Cloud Computing Definition

- Cloud Computing refers to both:
 - 1. The applications delivered as services over the Internet
 - 2. The hardware and systems software in the datacenters that provide those services

Cloud Computing Definition

- Cloud Computing refers to both:
 - 1. The applications delivered as services over the Internet
 - 2. The hardware and systems software in the datacenters that provide those services
- ► The services: called Software as a Service (SaaS)

Cloud Computing Definition

- Cloud Computing refers to both:
 - 1. The applications delivered as services over the Internet
 - 2. The hardware and systems software in the datacenters that provide those services
- ► The services: called Software as a Service (SaaS)
- ► The datacenter hardware and software is called cloud

- ► The NIST definition:
 - Five characteristics
 - Three service models
 - Four deployment models

National Institute of Standards and Technology

Technology Administration, U.S. Department of Commerce

Cloud Characteristics

Cloud Characteristics

[http://aka.ms/532]

► A consumer can independently provision computing capabilities without human interaction with the service provider.

On-demand self-service

Cloud Characteristics - Ubiquitous Network Access

- Available over the network
- Accessed through mobile phones, laptops, ...

Ubiquitous network access

Cloud Characteristics - Resource Pooling

- Provider's computing resources are pooled to serve consumers
- Location transparent

Location transparent resource pooling

► Capabilities can be rapidly and elastically provisioned, in some cases automatically.

Cloud Characteristics - Measured Service

Resource usage can be monitored, controlled, and reported providing transparency for both the provider and consumer.

Measured service with pay per use

Cloud Service Models

Cloud Service Models

[http://aka.ms/532]

 Assume, you just moved to a city and you are looking for a place to live.

► What is your choice?

- ► What is your choice?
 - Build a new house?
 - Buy an empty house?
 - Live in a hotel?

Let's build a new house!

- Let's build a new house!
- You can fully control everything you like your new house to have.
- But that is a hard work.

What if you buy an empty house?

- What if you buy an empty house?
- ► You can customize some part of your house.
- But never change the original architecture.

► How about living in a hotel?

- How about living in a hotel?
- Living in a hotel will be a good idea if the only thing you care is about enjoying your life.
- There is nothing you can do with the house except living in it.

Let's translate it to Cloud Computing

- ► Infrastructure as a Service (laaS): similar to building a new house.
- ► Platform as a Service (PaaS): similar to buying an empty house.
- ► Software as a Service (SaaS): similar to living in a hotel.

- ▶ Vendor provides resources, e.g., processing, storage, network, ...
- Consumer is provided customized virtual machines.
- ► Example: Amazon Web Services (EC2 instances and S3 storage)

- ► Vendor provides hardware and development environment.
- Example: Google app engine

- ▶ Vendor provides applications accessed over the network.
- ► Example: Gmail, Github

IaaS - PaaS - SaaS

[https://goo.gl/xMko1z]

Deployment Models

Deployment Models

[https://goo.gl/fWmcGK]

Public Cloud Infrastructure Vendors

- Amazon Web Services (AWS)
- Microsoft Azure
- Google Cloud Platform
- IBM Bluemix

...

Main Services

- ► Computing
- ► Storage
- Database
- Big data analytics
- ► ...

Computing Services

VIDTUAL MACHINE

- Virtual machines
- Container services
- Serverless compute

	INTOAL MACTIN	4L.								
	Application Application Libraries Middleware Language interpreter Operating system Device		Application Application Libraries Middleware Language interpreter Operating system Device		CONTAINER Application Libraries Middleware Language interpreter	Application Libraries Middleware Language interpreter		Application Application me Libraries Middlewa	Application anager re	
	drivers drivers			Container manager		1	Language inter	preter		
_	Hypervisor				Operating system Device drivers				Operating system Device drivers	
	Hypervisor device drivers									
	Hardware				Hardware		- 1	Hardware		

VIRTUAL MACHINES

CONTAINERS

SERVERLESS

Storage Services

- ► Relational Database Management Services (RDBMS)
- NoSQL databases
- In-Memory data services

Big Data Analytics

- Big Data Managed Cluster-as-a-Service
- Data warehouse
- Data streaming
- Data queuing

Big Data

"THAT'S your Ark for the Big Data flood? Noah, you will need a lot more storage space!"

[https://www.kdnuggets.com/2012/12/cartoon-preparing-for-big-data-flood.html]

What is Big Data?

[https://www.sue-anderson.com.au/index.php/2017/08/18/cursing-curious-work]

Big data is the data characterized by 4 key attributes: volume, variety, velocity and value.

Big data is the data characterized where attributes: volume, variety, velocity and value.

Big Data in Simple Words

Small Data is when is fit in RAM. Big Data is when is crash because is not fit in RAM.

2/6/13, 8:22 AM

The Four Dimensions of Big Data

- Volume: data size
- Velocity: data generation rate
- ► Variety: data heterogeneity
- This 4th V is for Vacillation: Veracity/Variability/Value

Big Data Sources

How Much Data?

How To Store and Process Big Data?

- ► Traditional platforms fail to show the expected performance.
- ▶ Need new systems to store and process large-scale data

Scale Up vs. Scale Out (1/2)

- Scale up or scale vertically: adding resources to a single node in a system.
- ► Scale out or scale horizontally: adding more nodes to a system.

Scale Up vs. Scale Out (2/2)

- Scale up: more expensive than scaling out.
- ► Scale out: more challenging for fault tolerance and software development.

Big Data Stack

		Da	ta Processing			
	Graph Data Pregel, GraphLab, Pow GraphX, X-Streem, (verGraph Chaos	Structured Data Spark SQL	Machine Learning Mllib Tensorflow		
	Batch Data MapReduce, Dryad FlumeJava, Spark	Batch Data MapReduce, Dryad FlumeJava, Spark		Streaming Data orm, SEEP, Naiad, Spark Streaming, Flink, Millwheel, Google Dataflow		
		C	Data Storage			
	Distributed File Systems GFS, Flat FS	NoS Dyna C	QL Databases mo, BigTable, assandra	Distributed Messaging Systems Kafka		
Resource Management						
		N	lesos, YARN			

Resource Management

- Manage resources of a cluster
- Share them among the platforms
- ► Mesos, YARN, Borg, ...

Data Storage - Distributed File Systems

- Store and retrieve files on/from distributed disks
- ► GFS, HDFS, FlatFS, ...

Data Storage - NoSQL Databases

- BASE instead of ACID
- ▶ BigTable, Dyanamo, Cassandra, ...

Data Storage - Messaging Systems

- Store streaming data
- ► Kafka, Flume, ActiveMQ, ...

Data Processing - Batch Data

- Process data-at-rest
- Data-parallel processing model
- ► MapReduce, FlumeJava, Spark, ...

Data Processing - Streaming Data

- Process data-in-motion
- ► Storm, Flink, Spark Streaming, ...

Data Processing - Linked Data (Graph)

- Graph-parallel processing model
- Vertex-centric and Edge-centric programming model
- ▶ Pregel, GraphLab, GraphX, ...

Data Processing - Structured Data

- ► Take advantage of schemas in data to process
- ► Hive, Spark SQL, ...

Data Processing - Machine Learning

- ▶ Data analysis, e.g., supervised and unsupervised learning
- ▶ Mahout, TensorFlow, MLlib, ...

Spark Processing Engine

Summary

[http://aka.ms/532]

Summary

Structured Data Spark SQL	Machine Learning				
	Tensorflow				
Streaming Data orm, SEEP, Naiad, Spark Streaming, Flink, Miilwheel, Google Dataflow					
Data Storage					
QL Databases no, BigTable, assandra	Distributed Messaging Systems Kafka				
Resource Management					
Mesos, YARN					
	Streamin orm, SEEP, Naiad, Millwheel, Go ata Storage QL Databases no, BigTable, assandra rce Management esos, YARN				

- D. Sikeridis et al., A Comparative Taxonomy and Survey of Public Cloud Infrastructure Vendors, arXiv preprint arXiv:1710.01476, 2017.
- ► A. Fox et al., Above the clouds: A berkeley view of cloud computing, UCB/EECS 28.13 (2009): 2009.
- ▶ P. Mell et al., The NIST definition of cloud computing, 2011.

Questions?