
Introduction to Data Stream Processing

Amir H. Payberah
payberah@kth.se

2020-09-16

The Course Web Page

https://id2221kth.github.io

https://tinyurl.com/y4qph82u

1 / 80

https://id2221kth.github.io
https://tinyurl.com/y4qph82u

Where Are We?

2 / 80

Stream Processing (1/4)

I Stream processing is the act of continuously incorporating new data to compute a
result.

3 / 80

Stream Processing (2/4)

I The input data is unbounded.
• A series of events, no predetermined beginning or end.

• E.g., credit card transactions, clicks on a website, or sensor readings from IoT devices.

4 / 80

Stream Processing (2/4)

I The input data is unbounded.
• A series of events, no predetermined beginning or end.
• E.g., credit card transactions, clicks on a website, or sensor readings from IoT devices.

4 / 80

Stream Processing (3/4)

I User applications can then compute various queries over this stream of events.

• E.g., tracking a running count of each type of event, or aggregating them into hourly
windows.

5 / 80

Stream Processing (3/4)

I User applications can then compute various queries over this stream of events.
• E.g., tracking a running count of each type of event, or aggregating them into hourly

windows.

5 / 80

Stream Processing (4/4)

I Database Management Systems (DBMS): data-at-rest analytics
• Store and index data before processing it.
• Process data only when explicitly asked by the users.

I Stream Processing Systems (SPS): data-in-motion analytics
• Processing information as it flows, without storing them persistently.

6 / 80

Stream Processing (4/4)

I Database Management Systems (DBMS): data-at-rest analytics
• Store and index data before processing it.
• Process data only when explicitly asked by the users.

I Stream Processing Systems (SPS): data-in-motion analytics
• Processing information as it flows, without storing them persistently.

6 / 80

Stream Processing Systems Stack

7 / 80

Data Stream Storage

8 / 80

The Problem

I We need disseminate streams of events from various producers to various consumers.

9 / 80

Example

I Suppose you have a website, and every time someone loads a page, you send a viewed
page event to consumers.

I The consumers may do any of the following:
• Store the message in HDFS for future analysis
• Count page views and update a dashboard
• Trigger an alert if a page view fails
• Send an email notification to another user

10 / 80

Example

I Suppose you have a website, and every time someone loads a page, you send a viewed
page event to consumers.

I The consumers may do any of the following:
• Store the message in HDFS for future analysis
• Count page views and update a dashboard
• Trigger an alert if a page view fails
• Send an email notification to another user

10 / 80

Possible Solution?

I Messaging systems

11 / 80

What is Messaging System?

I Messaging system is an approach to notify consumers about new events.

I Messaging systems
• Direct messaging
• Message brokers

12 / 80

What is Messaging System?

I Messaging system is an approach to notify consumers about new events.

I Messaging systems
• Direct messaging
• Message brokers

12 / 80

Direct Messaging (1/2)

I Necessary in latency critical applications (e.g., remote surgery).

I A producer sends a message containing the event, which is pushed to consumers.

I Both consumers and producers have to be online at the same time.

13 / 80

Direct Messaging (1/2)

I Necessary in latency critical applications (e.g., remote surgery).

I A producer sends a message containing the event, which is pushed to consumers.

I Both consumers and producers have to be online at the same time.

13 / 80

Direct Messaging (2/2)

I What happens if a consumer crashes or temporarily goes offline? (not durable)

I What happens if producers send messages faster than the consumers can process?

• Dropping messages
• Backpressure

I We need message brokers that can log events to process at a later time.

14 / 80

Direct Messaging (2/2)

I What happens if a consumer crashes or temporarily goes offline? (not durable)

I What happens if producers send messages faster than the consumers can process?

• Dropping messages
• Backpressure

I We need message brokers that can log events to process at a later time.

14 / 80

Direct Messaging (2/2)

I What happens if a consumer crashes or temporarily goes offline? (not durable)

I What happens if producers send messages faster than the consumers can process?
• Dropping messages
• Backpressure

I We need message brokers that can log events to process at a later time.

14 / 80

Direct Messaging (2/2)

I What happens if a consumer crashes or temporarily goes offline? (not durable)

I What happens if producers send messages faster than the consumers can process?
• Dropping messages
• Backpressure

I We need message brokers that can log events to process at a later time.

14 / 80

Message Broker

[https://bluesyemre.com/2018/10/16/thousands-of-scientists-publish-a-paper-every-five-days]

15 / 80

Message Broker

I A message broker decouples the producer-consumer interaction.

I It runs as a server, with producers and consumers connecting to it as clients.

I Producers write messages to the broker, and consumers receive them by reading them
from the broker.

I Consumers are generally asynchronous.

16 / 80

Message Broker

I A message broker decouples the producer-consumer interaction.

I It runs as a server, with producers and consumers connecting to it as clients.

I Producers write messages to the broker, and consumers receive them by reading them
from the broker.

I Consumers are generally asynchronous.

16 / 80

Message Broker

I A message broker decouples the producer-consumer interaction.

I It runs as a server, with producers and consumers connecting to it as clients.

I Producers write messages to the broker, and consumers receive them by reading them
from the broker.

I Consumers are generally asynchronous.

16 / 80

Message Broker (2/2)

I When multiple consumers read messages in the same topic.

I Load balancing: each message is delivered to one of the consumers.

I Fan-out: each message is delivered to all of the consumers.

17 / 80

Message Broker (2/2)

I When multiple consumers read messages in the same topic.

I Load balancing: each message is delivered to one of the consumers.

I Fan-out: each message is delivered to all of the consumers.

17 / 80

Message Broker (2/2)

I When multiple consumers read messages in the same topic.

I Load balancing: each message is delivered to one of the consumers.

I Fan-out: each message is delivered to all of the consumers.

17 / 80

Partitioned Logs (1/2)

I In typical message brokers, once a message is consumed, it is deleted.

I Log-based message brokers durably store all events in a sequential log.

I A log is an append-only sequence of records on disk.

I A producer sends a message by appending it to the end of the log.

I A consumer receives messages by reading the log sequentially.

18 / 80

Partitioned Logs (1/2)

I In typical message brokers, once a message is consumed, it is deleted.

I Log-based message brokers durably store all events in a sequential log.

I A log is an append-only sequence of records on disk.

I A producer sends a message by appending it to the end of the log.

I A consumer receives messages by reading the log sequentially.

18 / 80

Partitioned Logs (1/2)

I In typical message brokers, once a message is consumed, it is deleted.

I Log-based message brokers durably store all events in a sequential log.

I A log is an append-only sequence of records on disk.

I A producer sends a message by appending it to the end of the log.

I A consumer receives messages by reading the log sequentially.

18 / 80

Partitioned Logs (1/2)

I In typical message brokers, once a message is consumed, it is deleted.

I Log-based message brokers durably store all events in a sequential log.

I A log is an append-only sequence of records on disk.

I A producer sends a message by appending it to the end of the log.

I A consumer receives messages by reading the log sequentially.

18 / 80

Partitioned Logs (2/2)

I To scale up the system, logs can be partitioned hosted on different machines.

I Each partition can be read and written independently of others.

I A topic is a group of partitions that all carry messages of the same type.

I Within each partition, the broker assigns a monotonically increasing sequence number
(offset) to every message

I No ordering guarantee across partitions.

19 / 80

Partitioned Logs (2/2)

I To scale up the system, logs can be partitioned hosted on different machines.

I Each partition can be read and written independently of others.

I A topic is a group of partitions that all carry messages of the same type.

I Within each partition, the broker assigns a monotonically increasing sequence number
(offset) to every message

I No ordering guarantee across partitions.

19 / 80

Partitioned Logs (2/2)

I To scale up the system, logs can be partitioned hosted on different machines.

I Each partition can be read and written independently of others.

I A topic is a group of partitions that all carry messages of the same type.

I Within each partition, the broker assigns a monotonically increasing sequence number
(offset) to every message

I No ordering guarantee across partitions.

19 / 80

Partitioned Logs (2/2)

I To scale up the system, logs can be partitioned hosted on different machines.

I Each partition can be read and written independently of others.

I A topic is a group of partitions that all carry messages of the same type.

I Within each partition, the broker assigns a monotonically increasing sequence number
(offset) to every message

I No ordering guarantee across partitions.

19 / 80

Partitioned Logs (2/2)

I To scale up the system, logs can be partitioned hosted on different machines.

I Each partition can be read and written independently of others.

I A topic is a group of partitions that all carry messages of the same type.

I Within each partition, the broker assigns a monotonically increasing sequence number
(offset) to every message

I No ordering guarantee across partitions.

19 / 80

Kafka - A Log-Based Message Broker

20 / 80

Kafka (1/5)

I Kafka is a distributed, topic oriented, partitioned, replicated commit log service.

21 / 80

Kafka (2/5)

I Kafka is a distributed, topic oriented, partitioned, replicated commit log service.

22 / 80

Kafka (3/5)

I Kafka is a distributed, topic oriented, partitioned, replicated commit log service.

23 / 80

Kafka (4/5)

I Kafka is a distributed, topic oriented, partitioned, replicated commit log service.

24 / 80

Kafka (5/5)

I Kafka is a distributed, topic oriented, partitioned, replicated commit log service.

25 / 80

Logs, Topics and Partition (1/5)

I Kafka is about logs.

I Topics are queues: a stream of messages of a particular type

26 / 80

Logs, Topics and Partition (2/5)

I Each message is assigned a sequential id called an offset.

27 / 80

Logs, Topics and Partition (3/5)

I Topics are logical collections of partitions (the physical files).
• Ordered
• Append only
• Immutable

28 / 80

Logs, Topics and Partition (4/5)

I Ordering is only guaranteed within a partition for a topic.

I Messages sent by a producer to a particular topic partition will be appended in the
order they are sent.

I A consumer instance sees messages in the order they are stored in the log.

29 / 80

Logs, Topics and Partition (5/5)

I Partitions of a topic are replicated: fault-tolerance

I A broker contains some of the partitions for a topic.

I One broker is the leader of a partition: all writes and reads must go to the leader.

30 / 80

Kafka Architecture

31 / 80

Coordination

I Kafka uses Zookeeper for the following tasks:

I Detecting the addition and the removal of brokers and consumers.

I Keeping track of the consumed offset of each partition.

32 / 80

Coordination

I Kafka uses Zookeeper for the following tasks:

I Detecting the addition and the removal of brokers and consumers.

I Keeping track of the consumed offset of each partition.

32 / 80

State in Kafka

I Brokers are sateless: no metadata for consumers-producers in brokers.

I Consumers are responsible for keeping track of offsets.

I Messages in queues expire based on pre-configured time periods (e.g., once a day).

33 / 80

State in Kafka

I Brokers are sateless: no metadata for consumers-producers in brokers.

I Consumers are responsible for keeping track of offsets.

I Messages in queues expire based on pre-configured time periods (e.g., once a day).

33 / 80

State in Kafka

I Brokers are sateless: no metadata for consumers-producers in brokers.

I Consumers are responsible for keeping track of offsets.

I Messages in queues expire based on pre-configured time periods (e.g., once a day).

33 / 80

Delivery Guarantees

I Kafka guarantees that messages from a single partition are delivered to a consumer
in order.

I There is no guarantee on the ordering of messages coming from different partitions.

I Kafka only guarantees at-least-once delivery.

34 / 80

Delivery Guarantees

I Kafka guarantees that messages from a single partition are delivered to a consumer
in order.

I There is no guarantee on the ordering of messages coming from different partitions.

I Kafka only guarantees at-least-once delivery.

34 / 80

Delivery Guarantees

I Kafka guarantees that messages from a single partition are delivered to a consumer
in order.

I There is no guarantee on the ordering of messages coming from different partitions.

I Kafka only guarantees at-least-once delivery.

34 / 80

Start and Work With Kafka

Start the ZooKeeper

zookeeper-server-start.sh config/zookeeper.properties

Start the Kafka server

kafka-server-start.sh config/server.properties

Create a topic, called "avg"

kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1

--topic avg

Produce messages and send them to the topic "avg"

kafka-console-producer.sh --broker-list localhost:9092 --topic avg

Consume the messages sent to the topic "avg"

kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic avg --from-beginning

35 / 80

Start and Work With Kafka

Start the ZooKeeper

zookeeper-server-start.sh config/zookeeper.properties

Start the Kafka server

kafka-server-start.sh config/server.properties

Create a topic, called "avg"

kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1

--topic avg

Produce messages and send them to the topic "avg"

kafka-console-producer.sh --broker-list localhost:9092 --topic avg

Consume the messages sent to the topic "avg"

kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic avg --from-beginning

35 / 80

Start and Work With Kafka

Start the ZooKeeper

zookeeper-server-start.sh config/zookeeper.properties

Start the Kafka server

kafka-server-start.sh config/server.properties

Create a topic, called "avg"

kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1

--topic avg

Produce messages and send them to the topic "avg"

kafka-console-producer.sh --broker-list localhost:9092 --topic avg

Consume the messages sent to the topic "avg"

kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic avg --from-beginning

35 / 80

Start and Work With Kafka

Start the ZooKeeper

zookeeper-server-start.sh config/zookeeper.properties

Start the Kafka server

kafka-server-start.sh config/server.properties

Create a topic, called "avg"

kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1

--topic avg

Produce messages and send them to the topic "avg"

kafka-console-producer.sh --broker-list localhost:9092 --topic avg

Consume the messages sent to the topic "avg"

kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic avg --from-beginning

35 / 80

Start and Work With Kafka

Start the ZooKeeper

zookeeper-server-start.sh config/zookeeper.properties

Start the Kafka server

kafka-server-start.sh config/server.properties

Create a topic, called "avg"

kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1

--topic avg

Produce messages and send them to the topic "avg"

kafka-console-producer.sh --broker-list localhost:9092 --topic avg

Consume the messages sent to the topic "avg"

kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic avg --from-beginning

35 / 80

Data Stream Processing

36 / 80

Streaming Data

I Data stream is unbound data, which is broken into a sequence of individual tuples.

I A data tuple is the atomic data item in a data stream.

I Can be structured, semi-structured, and unstructured.

37 / 80

Streaming Data Processing Design Points

I Continuous vs. micro-batch processing

I Record-at-a-Time vs. declarative APIs

I Event time vs. processing time

I Windowing

38 / 80

Streaming Data Processing Design Points

I Continuous vs. micro-batch processing

I Record-at-a-Time vs. declarative APIs

I Event time vs. processing time

I Windowing

39 / 80

Streaming Data Processing Patterns

I Micro-batch systems
• Batch engines
• Slicing up the unbounded data into a sets of bounded data, then process each batch.

I Continuous processing-based systems
• Each node in the system continually listens to messages from other nodes and outputs

new updates to its child nodes.

40 / 80

Streaming Data Processing Patterns

I Micro-batch systems
• Batch engines
• Slicing up the unbounded data into a sets of bounded data, then process each batch.

I Continuous processing-based systems
• Each node in the system continually listens to messages from other nodes and outputs

new updates to its child nodes.

40 / 80

Streaming Data Processing Design Points

I Continuous vs. micro-batch processing

I Record-at-a-Time vs. declarative APIs

I Event time vs. processing time

I Windowing

41 / 80

Record-at-a-Time vs. Declarative APIs

I Record-at-a-Time API (e.g., Storm)
• Low-level API
• Passes each event to the application and let it react.
• Useful when applications need full control over the processing of data.
• Complicated factors, such as maintaining state, are governed by the application.

I Declarative API (e.g., Spark streaming, Flink, Google Dataflow)
• Aapplications specify what to compute not how to compute it in response to each new

event.

42 / 80

Record-at-a-Time vs. Declarative APIs

I Record-at-a-Time API (e.g., Storm)
• Low-level API
• Passes each event to the application and let it react.
• Useful when applications need full control over the processing of data.
• Complicated factors, such as maintaining state, are governed by the application.

I Declarative API (e.g., Spark streaming, Flink, Google Dataflow)
• Aapplications specify what to compute not how to compute it in response to each new

event.

42 / 80

Streaming Data Processing Design Points

I Continuous vs. micro-batch processing

I Record-at-a-Time vs. declarative APIs

I Event time vs. processing time

I Windowing

43 / 80

Event Time vs. Processing Time (1/2)

I Event time: the time at which events actually occurred.
• Timestamps inserted into each record at the source.

I Prcosseing time: the time when the record is received at the streaming application.

44 / 80

Event Time vs. Processing Time (2/2)

I Ideally, event time and processing time should be equal.

I Skew between event time and processing time.

[https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101]

45 / 80

Streaming Data Processing Design Points

I Continuous vs. micro-batch processing

I Record-at-a-Time vs. declarative APIs

I Event time vs. processing time

I Windowing

46 / 80

Windowing (1/2)

I Window: a buffer associated with an input port to retain previously received tuples.

I Four different windowing management policies.

• Count-based policy: the maximum number of tuples a window buffer can hold
• Delta-based policy: a delta threshold in a tuple attribute
• Punctuation-based policy: a punctuation is received
• Time-based policy: based on processing or event time period

47 / 80

Windowing (1/2)

I Window: a buffer associated with an input port to retain previously received tuples.

I Four different windowing management policies.
• Count-based policy: the maximum number of tuples a window buffer can hold

• Delta-based policy: a delta threshold in a tuple attribute
• Punctuation-based policy: a punctuation is received
• Time-based policy: based on processing or event time period

47 / 80

Windowing (1/2)

I Window: a buffer associated with an input port to retain previously received tuples.

I Four different windowing management policies.
• Count-based policy: the maximum number of tuples a window buffer can hold
• Delta-based policy: a delta threshold in a tuple attribute

• Punctuation-based policy: a punctuation is received
• Time-based policy: based on processing or event time period

47 / 80

Windowing (1/2)

I Window: a buffer associated with an input port to retain previously received tuples.

I Four different windowing management policies.
• Count-based policy: the maximum number of tuples a window buffer can hold
• Delta-based policy: a delta threshold in a tuple attribute
• Punctuation-based policy: a punctuation is received

• Time-based policy: based on processing or event time period

47 / 80

Windowing (1/2)

I Window: a buffer associated with an input port to retain previously received tuples.

I Four different windowing management policies.
• Count-based policy: the maximum number of tuples a window buffer can hold
• Delta-based policy: a delta threshold in a tuple attribute
• Punctuation-based policy: a punctuation is received
• Time-based policy: based on processing or event time period

47 / 80

Windowing (2/2)

I Two types of windows: tumbling and sliding

I Tumbling window: supports batch operations.
• When the buffer fills up, all the tuples are evicted.

I Sliding window: supports incremental operations.
• When the buffer fills up, older tuples are evicted.

48 / 80

Windowing (2/2)

I Two types of windows: tumbling and sliding

I Tumbling window: supports batch operations.
• When the buffer fills up, all the tuples are evicted.

I Sliding window: supports incremental operations.
• When the buffer fills up, older tuples are evicted.

48 / 80

Windowing (2/2)

I Two types of windows: tumbling and sliding

I Tumbling window: supports batch operations.
• When the buffer fills up, all the tuples are evicted.

I Sliding window: supports incremental operations.
• When the buffer fills up, older tuples are evicted.

48 / 80

Windowing by Processing Time

I The system buffers up incoming data into windows until some amount of processing
time has passed.

I E.g., five-minute fixed windows

[https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101]

49 / 80

Windowing by Event Time

I Reflect the times at which events actually happened.

I Handling out-of-order evnets.

[https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101]

50 / 80

Windowing by Event Time - Watermark (1/2)

I Watermarking helps a stream processing system to deal with lateness.

I Watermarks flow as part of the data stream and carry a timestamp t.

I A watermark is a threshold to specify how long the system waits for late events.

I Streaming systems uses watermarks to measure progress in event time.

51 / 80

Windowing by Event Time - Watermark (1/2)

I Watermarking helps a stream processing system to deal with lateness.

I Watermarks flow as part of the data stream and carry a timestamp t.

I A watermark is a threshold to specify how long the system waits for late events.

I Streaming systems uses watermarks to measure progress in event time.

51 / 80

Windowing by Event Time - Watermark (1/2)

I Watermarking helps a stream processing system to deal with lateness.

I Watermarks flow as part of the data stream and carry a timestamp t.

I A watermark is a threshold to specify how long the system waits for late events.

I Streaming systems uses watermarks to measure progress in event time.

51 / 80

Windowing by Event Time - Watermark (1/2)

I Watermarking helps a stream processing system to deal with lateness.

I Watermarks flow as part of the data stream and carry a timestamp t.

I A watermark is a threshold to specify how long the system waits for late events.

I Streaming systems uses watermarks to measure progress in event time.

51 / 80

Windowing by Event Time - Watermark (2/2)

I A W(t) declares that event time has reached time t in that stream
• There should be no more elements from the stream with a timestamp t′ ≤ t.

I It is possible that certain elements will violate the watermark condition.
• After the W(t) has occurred, more elements with timestamp t′ ≤ t will occur.

I If an arriving event lies within the watermark, it gets used to update a query.

I Streaming programs may explicitly expect some late elements.

52 / 80

Windowing by Event Time - Watermark (2/2)

I A W(t) declares that event time has reached time t in that stream
• There should be no more elements from the stream with a timestamp t′ ≤ t.

I It is possible that certain elements will violate the watermark condition.
• After the W(t) has occurred, more elements with timestamp t′ ≤ t will occur.

I If an arriving event lies within the watermark, it gets used to update a query.

I Streaming programs may explicitly expect some late elements.

52 / 80

Windowing by Event Time - Watermark (2/2)

I A W(t) declares that event time has reached time t in that stream
• There should be no more elements from the stream with a timestamp t′ ≤ t.

I It is possible that certain elements will violate the watermark condition.
• After the W(t) has occurred, more elements with timestamp t′ ≤ t will occur.

I If an arriving event lies within the watermark, it gets used to update a query.

I Streaming programs may explicitly expect some late elements.

52 / 80

Windowing by Event Time - Watermark (2/2)

I A W(t) declares that event time has reached time t in that stream
• There should be no more elements from the stream with a timestamp t′ ≤ t.

I It is possible that certain elements will violate the watermark condition.
• After the W(t) has occurred, more elements with timestamp t′ ≤ t will occur.

I If an arriving event lies within the watermark, it gets used to update a query.

I Streaming programs may explicitly expect some late elements.

52 / 80

Streaming Data Processing Model

53 / 80

Streaming Data Processing

I The tuples are processed by the application’s operators or processing element (PE).

I A PE is the basic functional unit in an application.
• A PE processes input tuples, applies a function, and outputs tuples.
• A set of PEs and stream connections, organized into a data flow graph.

54 / 80

PEs States (1/3)

I A PE can either maintain internal state across tuples while processing them, or
process tuples independently of each other.

I Stateful vs. stateless tasks

55 / 80

PEs States (2/3)

I Stateless tasks: do not maintain state and process each tuple independently of prior
history, or even from the order of arrival of tuples.

I Easily parallelized.

I No synchronization.

I Restart upon failures without the need of any recovery procedure.

56 / 80

PEs States (2/3)

I Stateless tasks: do not maintain state and process each tuple independently of prior
history, or even from the order of arrival of tuples.

I Easily parallelized.

I No synchronization.

I Restart upon failures without the need of any recovery procedure.

56 / 80

PEs States (3/3)

I Stateful tasks: involves maintaining information across different tuples to detect
complex patterns.

I A PE is usually a synopsis of the tuples received so far.

I A subset of recent tuples kept in a window buffer.

57 / 80

PEs States (3/3)

I Stateful tasks: involves maintaining information across different tuples to detect
complex patterns.

I A PE is usually a synopsis of the tuples received so far.

I A subset of recent tuples kept in a window buffer.

57 / 80

Runtime Systems

58 / 80

Job and Job Management

I At runtime, an application is represented by one or more jobs.

I Jobs are deployed as a collection of PEs.

I Job management component must identify and track individual PEs, the jobs they
belong to, and associate them with the user that instantiated them.

59 / 80

Logical Plan vs. Physical Plan (1/3)

I Logical plan: a data flow graph, where the vertices correspond to PEs, and the edges
to stream connections.

I Physical plan: a data flow graph, where the vertices correspond to OS processes, and
the edges to transport connections.

60 / 80

Logical Plan vs. Physical Plan (2/3)

Logical plan

Different physical plans

61 / 80

Logical Plan vs. Physical Plan (3/3)

I How to map a network of PEs onto the physical network of nodes?

• Parallelization

• Fault tolerance

• Optimization

62 / 80

Parallelization

63 / 80

Parallelization

I How to scale with increasing the number queries and the rate of incoming events?

I Three forms of parallelisms.
• Pipelined parallelism
• Task parallelism
• Data parallelism

64 / 80

Pipelined Parallelism

I Sequential stages of a computation execute concurrently for different data items.

65 / 80

Task Parallelism

I Independent processing stages of a larger computation are executed concurrently on
the same or distinct data items.

66 / 80

Data Parallelism (1/2)

I The same computation takes place concurrently on different data items.

67 / 80

Data Parallelism (2/2)

I How to allocate data items to each computation instance?

68 / 80

Fault Tolerance

69 / 80

Fault Tolerance

I The recovery methods of streaming frameworks must take:

• Correctness, e.g., data loss and duplicates

• Performance, e.g., low latency

70 / 80

Delivery Guarantees

I At-least-once: might appear many times

I Exactly-once: is consumed just once

71 / 80

Recovery Methods

I Active backup

I Passive backup

I Upstream backup

72 / 80

Recovery Methods - Active Backup

I Each processing node has an associated backup node.

I Both primary and backup nodes are given the same input.

I If the primary fails, the backup takes over by sending the logged tuples to all down-
stream neighbors and then continuing its processing.

73 / 80

Recovery Methods - Active Backup

I Each processing node has an associated backup node.

I Both primary and backup nodes are given the same input.

I If the primary fails, the backup takes over by sending the logged tuples to all down-
stream neighbors and then continuing its processing.

73 / 80

Recovery Methods - Passive Backup

I Periodically check-points processing state to a shared storage.

I The backup node takes over from the latest checkpoint when the primary fails.

74 / 80

Recovery Methods - Upstream Backup

I Upstream nodes store the tuples until the downstream nodes acknowledge them.

I If a node fails, an empty node rebuilds the latest state of the failed primary from the
logs kept at the upstream server.

I There is no backup node in this model.

75 / 80

Recovery Methods - Upstream Backup

I Upstream nodes store the tuples until the downstream nodes acknowledge them.

I If a node fails, an empty node rebuilds the latest state of the failed primary from the
logs kept at the upstream server.

I There is no backup node in this model.

75 / 80

Recovery Methods - Upstream Backup

I Upstream nodes store the tuples until the downstream nodes acknowledge them.

I If a node fails, an empty node rebuilds the latest state of the failed primary from the
logs kept at the upstream server.

I There is no backup node in this model.

75 / 80

Summary

76 / 80

Summary

I Messaging system and partitioned logs

I Decoupling producers and consumers

I Kafka: distributed, topic oriented, partitioned, replicated log service

I Logs, topcs, partition

I Kafka architecture: producer, consumer, broker, coordinator

77 / 80

Summary

I SPS vs. DBMS

I Data stream, unbounded data, tuples

I Event-time vs. processing time

I Micro-batch vs. continues processing (windowing)

I PEs and dataflow

I Stateless vs. Stateful PEs

I SPS runtime: parallelization, fault-tolerance

78 / 80

References

I J. Kreps et al., “Kafka: A distributed messaging system for log processing”, NetDB
2011

I M. Zaharia et al., “Spark: The Definitive Guide”, O’Reilly Media, 2018 - Chapter 20

I M. Fragkoulis et al., “A Survey on the Evolution of Stream Processing Systems”,
2020

I J. Hwang et al., “High-availability algorithms for distributed stream processing”,
ICDE 2005

I T. Akidau, “The world beyond batch: Streaming 101”,
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101

79 / 80

Questions?

80 / 80

	

