
Scalable Stream Processing - Spark Streaming and Beam

Amir H. Payberah
payberah@kth.se

2020-09-22



The Course Web Page

https://id2221kth.github.io

https://tinyurl.com/y4qph82u

1 / 65

https://id2221kth.github.io
https://tinyurl.com/y4qph82u


Where Are We?

2 / 65



Stream Processing Systems Design Issues

I Continuous vs. micro-batch processing

I Record-at-a-Time vs. declarative APIs

3 / 65



Spark Streaming

4 / 65



Contribution

I Design issues
• Continuous vs. micro-batch processing
• Record-at-a-Time vs. declarative APIs

5 / 65



Spark Streaming

I Run a streaming computation as a series of very small, deterministic batch jobs.

• Chops up the live stream into batches of X seconds.

• Treats each batch as RDDs and processes them using RDD operations.

• Discretized Stream Processing (DStream)

6 / 65



DStream (1/2)

I DStream: sequence of RDDs representing a stream of data.

7 / 65



DStream (2/2)

I Any operation applied on a DStream translates to operations on the underlying RDDs.

8 / 65



StreamingContext

I StreamingContext is the main entry point of all Spark Streaming functionality.

val conf = new SparkConf().setAppName(appName).setMaster(master)

val ssc = new StreamingContext(conf, Seconds(1))

I The second parameter, Seconds(1), represents the time interval at which streaming
data will be divided into batches.

9 / 65



Input Operations

I Every input DStream is associated with a Receiver object.
• It receives the data from a source and stores it in Spark’s memory for processing.

I Basic sources directly available in the StreamingContext API, e.g., file systems,
socket connections.

I Advanced sources, e.g., Kafka, Flume, Kinesis, Twitter.

10 / 65



Input Operations - Basic Sources

I Socket connection
• Creates a DStream from text data received over a TCP socket connection.

ssc.socketTextStream("localhost", 9999)

I File stream
• Reads data from files.

streamingContext.fileStream[KeyClass, ValueClass, InputFormatClass](dataDirectory)

streamingContext.textFileStream(dataDirectory)

11 / 65



Input Operations - Advanced Sources

I Connectors with external sources

I Twitter, Kafka, Flume, Kinesis, ...

TwitterUtils.createStream(ssc, None)

KafkaUtils.createStream(ssc, [ZK quorum], [consumer group id], [number of partitions])

12 / 65



Transformations (1/2)

I Transformations on DStreams are still lazy!

I DStreams support many of the transformations available on normal Spark RDDs.

I Computation is kicked off explicitly by a call to the start() method.

13 / 65



Transformations (2/2)

I map: a new DStream by passing each element of the source DStream through a given
function.

I reduce: a new DStream of single-element RDDs by aggregating the elements in
each RDD using a given function.

I reduceByKey: a new DStream of (K, V) pairs where the values for each key are
aggregated using the given reduce function.

14 / 65



Example - Word Count (1/6)

I First we create a StreamingContex

import org.apache.spark._

import org.apache.spark.streaming._

// Create a local StreamingContext with two working threads and batch interval of 1 second.

val conf = new SparkConf().setMaster("local[2]").setAppName("NetworkWordCount")

val ssc = new StreamingContext(conf, Seconds(1))

15 / 65



Example - Word Count (2/6)

I Create a DStream that represents streaming data from a TCP source.

I Specified as hostname (e.g., localhost) and port (e.g., 9999).

val lines = ssc.socketTextStream("localhost", 9999)

16 / 65



Example - Word Count (3/6)

I Use flatMap on the stream to split the records text to words.

I It creates a new DStream.

val words = lines.flatMap(_.split(" "))

17 / 65



Example - Word Count (4/6)

I Map the words DStream to a DStream of (word, 1).

I Get the frequency of words in each batch of data.

I Finally, print the result.

val pairs = words.map(word => (word, 1))

val wordCounts = pairs.reduceByKey(_ + _)

wordCounts.print()

18 / 65



Example - Word Count (5/6)

I Start the computation and wait for it to terminate.

// Start the computation

ssc.start()

// Wait for the computation to terminate

ssc.awaitTermination()

19 / 65



Example - Word Count (6/6)

val conf = new SparkConf().setMaster("local[2]").setAppName("NetworkWordCount")

val ssc = new StreamingContext(conf, Seconds(1))

val lines = ssc.socketTextStream("localhost", 9999)

val words = lines.flatMap(_.split(" "))

val pairs = words.map(word => (word, 1))

val wordCounts = pairs.reduceByKey(_ + _)

wordCounts.print()

ssc.start()

ssc.awaitTermination()

20 / 65



Window Operations (1/2)

I Spark provides a set of transformations that apply to a over a sliding window of data.

I A window is defined by two parameters: window length and slide interval.

I A tumbling window effect can be achieved by making slide interval = window length

21 / 65



Window Operations (2/2)

I window(windowLength, slideInterval)
• Returns a new DStream which is computed based on windowed batches.

I reduceByWindow(func, windowLength, slideInterval)
• Returns a new single-element DStream, created by aggregating elements in the stream

over a sliding interval using func.

I reduceByKeyAndWindow(func, windowLength, slideInterval)
• Called on a DStream of (K, V) pairs.
• Returns a new DStream of (K, V) pairs where the values for each key are aggregated

using function func over batches in a sliding window.

22 / 65



Example - Word Count with Window

val conf = new SparkConf().setMaster("local[2]").setAppName("NetworkWordCount")

val ssc = new StreamingContext(conf, Seconds(1))

val lines = ssc.socketTextStream("localhost", 9999)

val words = lines.flatMap(_.split(" "))

val pairs = words.map(word => (word, 1))

val windowedWordCounts = pairs.reduceByKeyAndWindow(_ + _, Seconds(30), Seconds(10))

windowedWordCounts.print()

ssc.start()

ssc.awaitTermination()

23 / 65



What about States?

I Accumulate and aggregate the results from the start of the streaming job.

I Need to check the previous state of the RDD in order to do something with the
current RDD.

I Spark supports stateful streams.

24 / 65



Checkpointing

I It is mandatory that you provide a checkpointing directory for stateful streams.

val ssc = new StreamingContext(conf, Seconds(1))

ssc.checkpoint("path/to/persistent/storage")

25 / 65



Stateful Stream Operations

I mapWithState
• It is executed only on set of keys that are available in the last micro batch.

def mapWithState[StateType, MappedType](spec: StateSpec[K, V, StateType, MappedType]):

DStream[MappedType]

StateSpec.function(updateFunc)

val updateFunc = (batch: Time, key: String, value: Option[Int], state: State[Int])

I Define the update function (partial updates) in StateSpec.

26 / 65



Example - Stateful Word Count (1/4)

val ssc = new StreamingContext(conf, Seconds(1))

ssc.checkpoint(".")

val lines = ssc.socketTextStream(IP, Port)

val words = lines.flatMap(_.split(" "))

val pairs = words.map(word => (word, 1))

val stateWordCount = pairs.mapWithState(StateSpec.function(updateFunc))

val updateFunc = (key: String, value: Option[Int], state: State[Int]) => {

val newCount = value.getOrElse(0)

val oldCount = state.getOption.getOrElse(0)

val sum = newCount + oldCount

state.update(sum)

(key, sum)

}

27 / 65



Example - Stateful Word Count (2/4)

I The first micro batch contains a message a.

I updateFunc = (key: String, value: Option[Int], state: State[Int]) => (key, sum)

I Input: key = a, value = Some(1), state = 0

I Output: key = a, sum = 1

28 / 65



Example - Stateful Word Count (3/4)

I The second micro batch contains messages a and b.

I updateFunc = (key: String, value: Option[Int], state: State[Int]) => (key, sum)

I Input: key = a, value = Some(1), state = 1

I Input: key = b, value = Some(1), state = 0

I Output: key = a, sum = 2

I Output: key = b, sum = 1

29 / 65



Example - Stateful Word Count (4/4)

I The third micro batch contains a message b.

I updateFunc = (key: String, value: Option[Int], state: State[Int]) => (key, sum)

I Input: key = b, value = Some(1), state = 1

I Output: key = b, sum = 2

30 / 65



Google Dataflow and Beam

31 / 65



History

I Google’s Zeitgeist: tracking trends in web queries.

I Builds a historical model of each query.

I Google discontinued Zeitgeist, but most of its features can be found in Google Trends.

32 / 65



MillWheel Dataflow

I MillWheel is a framework for building low-latency data-processing applications.

I A dataflow graph of transformations (computations).

I Stream: unbounded data of (key, value, timestamp) records.
• Timestamp: event-time

33 / 65



Key Extraction Function and Computations

I Stream of (key, value, timestamp) records.

I Key extraction function: specified by the stream consumer to assign keys to records.

I Computation can only access state for the specific key.

I Multiple computations can extract different keys from the same stream.

34 / 65



Persistent State

I Keep the states of the computations

I Managed on per-key basis

I Stored in Bigtable or Spanner

I Common use: aggregation, joins, ...

35 / 65



Delivery Guarantees

I Emitted records are checkpointed before delivery.
• The checkpoints allow fault-tolerance.

I When a delivery is ACKed the checkpoints can be garbage collected.

I If an ACK is not received, the record can be re-sent.

I Exactly-one delivery: duplicates are discarded by MillWheel at the recipient.

36 / 65



What is Google Cloud Dataflow?

37 / 65



Google Cloud Dataflow (1/2)

I Google managed service for unified batch and stream data processing.

38 / 65



Google Cloud Dataflow (2/2)

I Open source Cloud Dataflow SDK

I Express your data processing pipeline using FlumeJava.

I If you run it in batch mode, it executed on the MapReduce framework.

I If you run it in streaming mode, it is executed on the MillWheel framework.

39 / 65



Programming Model

I Pipeline, a directed graph of data processing transformations

I Optimized and executed as a unit

I May include multiple inputs and multiple outputs

I May encompass many logical MapReduce or Millwheel
operations

40 / 65



Windowing and Triggering

I Windowing determines where in event time data are grouped together for processing.
• Fixed time windows (tumbling windows)
• Sliding time windows
• Session windows

I Triggering determines when in processing time the results of groupings are emitted
as panes.

• Time-based triggers
• Data-driven triggers
• Composit triggers

41 / 65



Example (1/3)

I Batch processing

42 / 65



Example (2/3)

I Trigger at period (time-based triggers)

I Trigger at count (data-driven triggers)

43 / 65



Example (3/3)

I Fixed window, trigger at period (micro-batch)

I Fixed window, trigger at watermark (streaming)

44 / 65



Where is Apache Beam?

45 / 65



From Google Cloud Dataflow to Apache Beam

I In 2016, Google Cloud Dataflow team announced its intention to donate the pro-
gramming model and SDKs to the Apache Software Foundation.

I That resulted in the incubating project Apache Beam.

46 / 65



Programming Components

I Pipelines

I PCollections

I Transforms

I I/O sources and sinks

47 / 65



Pipelines (1/2)

I A pipeline represents a data processing job.

I Directed graph of operating on data.

I A pipeline consists of two parts:
• Data (PCollection)
• Transforms applied to that data

48 / 65



Pipelines (2/2)

public static void main(String[] args) {

// Create a pipeline

PipelineOptions options = PipelineOptionsFactory.create();

Pipeline p = Pipeline.create(options);

p.apply(TextIO.Read.from("gs://...")) // Read input.

.apply(new CountWords()) // Do some processing.

.apply(TextIO.Write.to("gs://...")); // Write output.

// Run the pipeline.

p.run();

}

49 / 65



PCollections (1/2)

I A parallel collection of records

I Immutable

I Must specify bounded or unbounded

50 / 65



PCollections (2/2)

// Create a Java Collection, in this case a List of Strings.

static final List<String> LINES = Arrays.asList("line 1", "line 2", "line 3");

PipelineOptions options = PipelineOptionsFactory.create();

Pipeline p = Pipeline.create(options);

// Create the PCollection

p.apply(Create.of(LINES)).setCoder(StringUtf8Coder.of())

51 / 65



Transformations

I A processing operation that transforms data

I Each transform accepts one (or multiple) PCollections as input, performs an op-
eration, and produces one (or multiple) new PCollections as output.

I Core transforms: ParDo, GroupByKey, Combine, Flatten

52 / 65



Transformations - ParDo

I Processes each element of a PCollection independently using a user-provided DoFn.

// The input PCollection of Strings.

PCollection<String> words = ...;

// The DoFn to perform on each element in the input PCollection.

static class ComputeWordLengthFn extends DoFn<String, Integer> { ... }

// Apply a ParDo to the PCollection "words" to compute lengths for each word.

PCollection<Integer> wordLengths = words.apply(ParDo.of(new ComputeWordLengthFn()));

53 / 65



Transformations - GroupByKey

I Takes a PCollection of key-value pairs and gathers up all values with the same key.

// A PCollection of key/value pairs: words and line numbers.

PCollection<KV<String, Integer>> wordsAndLines = ...;

// Apply a GroupByKey transform to the PCollection "wordsAndLines".

PCollection<KV<String, Iterable<Integer>>> groupedWords = wordsAndLines.apply(

GroupByKey.<String, Integer>create());

54 / 65



Transformations - Join and CoGroubByKey

I Groups together the values from multiple PCollections of key-value pairs.

// Each data set is represented by key-value pairs in separate PCollections.

// Both data sets share a common key type ("K").

PCollection<KV<K, V1>> pc1 = ...;

PCollection<KV<K, V2>> pc2 = ...;

// Create tuple tags for the value types in each collection.

final TupleTag<V1> tag1 = new TupleTag<V1>();

final TupleTag<V2> tag2 = new TupleTag<V2>();

// Merge collection values into a CoGbkResult collection.

PCollection<KV<K, CoGbkResult>> coGbkResultCollection =

KeyedPCollectionTuple.of(tag1, pc1)

.and(tag2, pc2)

.apply(CoGroupByKey.<K>create());

55 / 65



Example: HashTag Autocompletion (1/3)

56 / 65



Example: HashTag Autocompletion (2/3)

57 / 65



Example: HashTag Autocompletion (3/3)

58 / 65



Windowing (1/2)

I Fixed time windows

PCollection<String> items = ...;

PCollection<String> fixedWindowedItems = items.apply(

Window.<String>into(FixedWindows.of(Duration.standardSeconds(30))));

59 / 65



Windowing (2/2)

I Sliding time windows

PCollection<String> items = ...;

PCollection<String> slidingWindowedItems = items.apply(

Window.<String>into(SlidingWindows.of(Duration.standardSeconds(60))

.every(Duration.standardSeconds(30))));

60 / 65



Triggering

I E.g., emits results one minute after the first element in that window has been pro-
cessed.

PCollection<String> items = ...;

items.apply(

Window.<String>into(FixedWindows

.of(1, TimeUnit.MINUTES))

.triggering(AfterProcessingTime.pastFirstElementInPane()

.plusDelayOf(Duration.standardMinutes(1)));

61 / 65



Summary

62 / 65



Summary

I Spark
• Mini-batch processing
• DStream: sequence of RDDs
• RDD and window operations
• Structured streaming

I Google cloud dataflow
• Pipeline
• PCollection: windows and triggers
• Transforms

63 / 65



References

I M. Zaharia et al., “Spark: The Definitive Guide”, O’Reilly Media, 2018 - Chapters
20-23.

I M. Zaharia et al., “Discretized Streams: An Efficient and Fault-Tolerant Model for
Stream Processing on Large Clusters”, HotCloud’12.

I T. Akidau et al., “MillWheel: fault-tolerant stream processing at internet scale”,
VLDB 2013.

I T. Akidau et al., “The dataflow model: a practical approach to balancing correctness,
latency, and cost in massive-scale, unbounded, out-of-order data processing”, VLDB
2015.

I The world beyond batch: Streaming 102
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-102

64 / 65



Questions?

65 / 65


	

