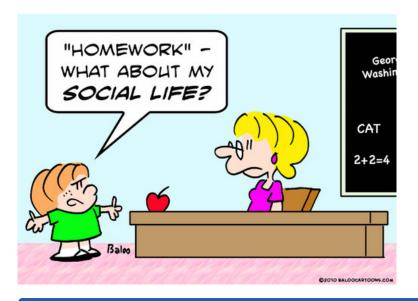


An Introduction to Data Intensive Computing

Amir H. Payberah payberah@kth.se 2021-08-31

Course Information


- ▶ Provide students with a solid foundation for understanding large scale distributed systems used for storing and processing massive data.
- ► Cover a wide variety of advanced topics in data intensive computing platforms, i.e., the frameworks to store and process big data.

Intended Learning Outcomes (ILOs)

- ▶ ILO1: explaining fundamental concepts of data-intensive computing platforms, and also explain how such platforms work.
- ▶ ILO2: storing and retrieving data in distributed stores, e.g., distributed file systems or NoSQL databases.
- ▶ ILO3: processing different types of data, e.g., structured, streaming and graph, using data-intensive computing platforms, such as Spark.
- ▶ ILO4: building advanced applications using data-intensive platforms, and make scalable applications on a cluster of computers.

The Course Assessment

- ► Task1: the review questions.
- ► Task2: the lab assignments.
- ► Task3: the final project.

How Each ILO is Assessed?

	Task1	Task2	Task3
ILO1	X	X	X
ILO2		X	X
ILO3		X	X
ILO4		X	X

Task1: The Review Questions (A-F)

- ▶ One review question per week.
- ▶ Questions about the lectures.
- ► The review questions are graded (A-F).

Task2: The Lab Assignments (A-F)

- ► Two lab assignments: source code and oral presentation.
- ► E: source code
- ▶ D: source code + half questions (basic)
- ► C: source code + all questions (basic)
- ▶ B: source code + half questions (basic and advanced)
- ► A: source code + all questions (basic and advanced)

Task3: The Final Project (A-F)

- ▶ One final project: source code and oral presentation.
- ▶ Proposed by students and confirmed by the teacher: A-level or C-level proposals.
- ► E: C-level source code
- ▶ D: C-level source code + half questions (basic and advanced)
- ► C: C-level source code + all questions (basic and advanced) or A-level source code + all questions (basic)
- B: A-level source code + half questions (basic and advanced)
- ► A: A-level source code + all questions (basic and advanced)

The Final Grade

- ► The final grade is the weighted average of the review questions (0.2), two labs (0.25 each), and the final project (0.3).
- ► To compute it, map A-E to 5-1, and take the average.
- ► The floating values are rounded up, if they are more than half, otherwise they are rounded down.
 - E.g., 3.6 will be rounded to 4, and 4.5 will be rounded to 4.
- ► A late submission will reduce you grade level by one. That is, A will become B, B will become C, and so on.
- ▶ To pass the course, you need to take at least E in all the assignments.

How to Submit the Assignments?

- ► Through the Canvas site.
- ▶ Students will work in groups of two on all the Tasks.

The Course Material

- ► Mainly based on research papers.
- ▶ We also cover the following books.

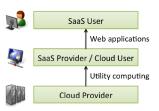
https://id2221kth.github.io

https://tinyurl.com/f6x544h

The Course Overview

Cloud Computing and Big Data

- ► The main trends:
 - Computers not getting any faster
 - Internet connections getting faster
 - More people connected to the Internet
- ► Conclusion: move the computation and storage of big data to the cloud!

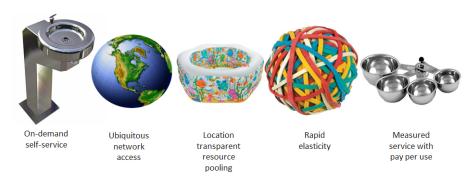


Cloud Computing

Cloud Computing Definition

- Cloud Computing refers to both:
 - 1. The applications delivered as services over the Internet
 - 2. The hardware and systems software in the datacenters that provide those services
- ► The services: called Software as a Service (SaaS)
- ► The datacenter hardware and software is called cloud

- ► The NIST definition:
 - Five characteristics
 - · Three service models
 - Four deployment models


National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

Cloud Characteristics

Cloud Characteristics

[http://aka.ms/532]

Cloud Characteristics - On-demand Self-Service

▶ A consumer can independently provision computing capabilities without human interaction with the service provider.

self-service

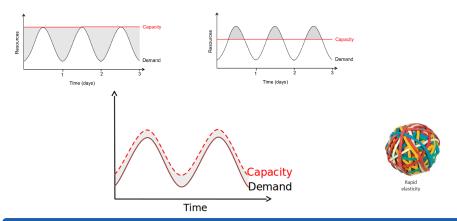
Cloud Characteristics - Ubiquitous Network Access

- ► Available over the network
- ► Accessed through mobile phones, laptops, ...

Ubiquitous network access

Cloud Characteristics - Resource Pooling

- ▶ Provider's computing resources are pooled to serve consumers
- ► Location transparent



Location transparent resource pooling

Cloud Characteristics - Rapid Elasticity

► Capabilities can be rapidly and elastically provisioned, in some cases automatically.

Cloud Characteristics - Measured Service

▶ Resource usage can be monitored, controlled, and reported providing transparency for both the provider and consumer.

Measured service with pay per use

Cloud Service Models

[http://aka.ms/532]

► Assume, you just moved to a city and you are looking for a place to live.

- ► What is your choice?
 - Build a new house?
 - Buy an empty house?
 - Live in a hotel?

- ► Let's build a new house!
- ➤ You can fully control everything you like your new house to have.
- ▶ But that is a hard work.

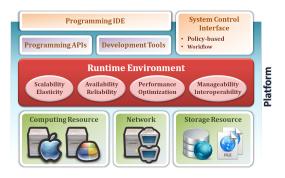
- ► What if you buy an empty house?
- ▶ You can customize some part of your house.
- ▶ But never change the original architecture.

- ► How about living in a hotel?
- ► Living in a hotel will be a good idea if the only thing you care is about enjoying your life.
- ► There is nothing you can do with the house except living in it.

Let's translate it to Cloud Computing

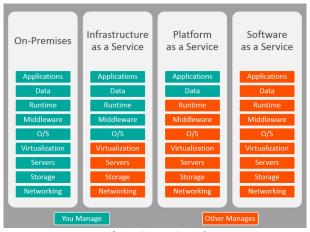
Service Models

- ► Infrastructure as a Service (laaS): similar to building a new house.
- ▶ Platform as a Service (PaaS): similar to buying an empty house.
- ► Software as a Service (SaaS): similar to living in a hotel.



- ▶ Vendor provides resources, e.g., processing, storage, network, ...
- ► Consumer is provided customized virtual machines.
- ► Example: Amazon Web Services (EC2 instances and S3 storage)

- ► Vendor provides hardware and development environment.
- ► Example: Google app engine



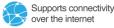
- ▶ Vendor provides applications accessed over the network.
- ► Example: Gmail, Github

laaS - PaaS - SaaS

[https://goo.gl/xMko1z]

Deployment Models

Deployment Models



Publically Shared Virtualised Resources

Supports multiple customers

Privately Shared Virtualised Resources

Cluster of dedicated customers

Connectivity over internet, fibre and private network

Suited for secured confidential information & core systems

[https://goo.gl/fWmcGK]

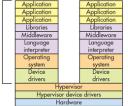
Public Cloud Infrastructure Vendors

- ► Amazon Web Services (AWS)
- ► Microsoft Azure
- ► Google Cloud Platform
- ► IBM Bluemix
- **...**

- ► Computing
- ► Storage
- Database
- ► Big data analytics
- · ...

Computing Services

- Virtual machines
- Container services
- Serverless compute



Container

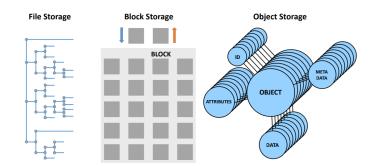
Serverless

VIRTUAL MACHINE

VIRTUAL MACHINES

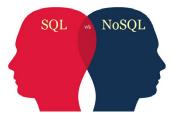
CONTAINER

Application		Application		
Libraries		Libraries		
Middleware		Middleware		
Language		Language		
interpreter		interpreter		
Container manager				
Operating system				
Device drivers				
Hardware				


Application Application
Application manager
Libraries
Middleware
Language interpreter
Operating system
Device drivers
Hardware

CONTAINERS

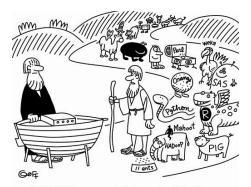
SERVERLESS


- ► File storage
- ► Block storage
- ► Object storage

Database Services

- ► Relational Database Management Services (RDBMS)
- ► NoSQL databases
- ► In-Memory data services

Big Data Analytics


- ► Big Data Managed Cluster-as-a-Service
- ► Data warehouse
- ► Data streaming
- Data queuing

Big Data

"THAT'S your Ark for the Big Data flood? Noah, you will need a lot more storage space!"

[https://www.kdnuggets.com/2012/12/cartoon-preparing-for-big-data-flood.html]

What is Big Data?

[https://www.sue-anderson.com.au/index.php/2017/08/18/cursing-curious-work]

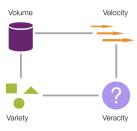
Big data is the data characterized to key attributes: volume, variety, velocity and value.

Big Data in Simple Words

DevOps Borat@DEVOPS_BORAT

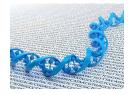
Small Data is when is fit in RAM. Big Data is when is crash because is not fit in RAM.

2/6/13, 8:22 AM



The Four Dimensions of Big Data

- ► Volume: data size
- ► Velocity: data generation rate
- ► Variety: data heterogeneity
- ► This 4th V is for Vacillation: Veracity/Variability/Value



How To Store and Process Big Data?

- ► Traditional platforms fail to show the expected performance.
- ▶ Need new systems to store and process large-scale data

Scale Up vs. Scale Out (1/2)

- ► Scale up or scale vertically: adding resources to a single node in a system.
- ► Scale out or scale horizontally: adding more nodes to a system.

Scale Up vs. Scale Out (2/2)

- ► Scale up: more expensive than scaling out.
- ► Scale out: more challenging for fault tolerance and software development.

Big Data Stack

Data Processing					
Graph Data Pregel, GraphLab, PowerGraph GraphX, X-Streem, Chaos		Structured Data Spark SQL	Machine Learning Mllib Tensorflow		
Batch Data MapReduce, Dryad FlumeJava, Spark	ī	Streaming Data prm, SEEP, Naiad, Spark Streaming, Flink, Millwheel, Google Dataflow			
Data Storage					
Distributed File Systems GFS, Flat FS	NoSQL Databases Dynamo, BigTable, Cassandra		Distributed Messaging Systems Kafka		
Resource Management					
Mesos, YARN					

Resource Management

- ► Manage resources of a cluster
- ► Share them among the platforms
- ► Mesos, YARN, Borg, ...

Data Storage - Distributed File Systems

- ► Store and retrieve files on/from distributed disks
- ► GFS, HDFS, FlatFS, ...

Data Storage - NoSQL Databases

- ► BASE instead of ACID
- ▶ BigTable, Dynamo, Cassandra, ...

Data Storage - Messaging Systems

- ► Store streaming data
- ► Kafka, Flume, ActiveMQ, ...

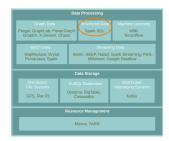
Data Processing - Batch Data

- ► Process data-at-rest
- ► Data-parallel processing model
- ► MapReduce, FlumeJava, Spark, ...

Data Processing - Streaming Data

- ► Process data-in-motion
- ► Storm, Flink, Spark Streaming, ...

Data Processing - Linked Data (Graph)


- ► Graph-parallel processing model
- Vertex-centric and Edge-centric programming model
- ► Pregel, GraphLab, GraphX, ...

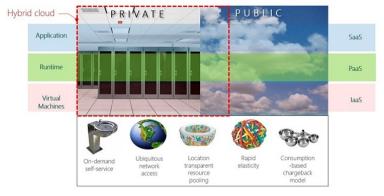
Data Processing - Structured Data

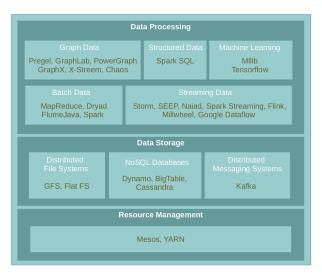
- ► Take advantage of schemas in data to process
- ► Hive, Spark SQL, ...

Data Processing - Machine Learning

- ▶ Data analysis, e.g., supervised and unsupervised learning
- ► Mahout, TensorFlow, MLlib, ...

Spark Processing Engine




Summary

[http://aka.ms/532]

- ▶ D. Sikeridis et al., A Comparative Taxonomy and Survey of Public Cloud Infrastructure Vendors, arXiv preprint arXiv:1710.01476, 2017.
- ▶ A. Fox et al., Above the clouds: A berkeley view of cloud computing, UCB/EECS 28.13 (2009): 2009.
- ▶ P. Mell et al., The NIST definition of cloud computing, 2011.

Questions?