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File System
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What is a File System?
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What is a File System?

I Controls how data is stored in and retrieved from storage device.
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Distributed File Systems

I When data outgrows the storage capacity of a single machine: partition it across a
number of separate machines.

I Distributed file systems: manage the storage across a network of machines.
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Google File System (GFS)
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Motivation and Assumptions

I Huge files (multi-GB)

I Most files are modified by appending to the end
• Random writes (and overwrites) are practically non-existent

I Optimise for streaming access

I Node failures happen frequently
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Optimised for Streaming

I Write once, read many.

9 / 78



Files and Chunks

I Files are split into chunks.

I Chunk: single unit of storage.
• Immutable and globally unique chunk handle
• Transparent to user
• Each chunk is stored as a plain Linux file
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GFS Architecture

I Main components:
• GFS master
• GFS chunkserver
• GFS client
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Big Picture - Storing and Retrieving Files (1/4)
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Big Picture - Storing and Retrieving Files (2/4)
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Big Picture - Storing and Retrieving Files (3/4)
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Big Picture - Storing and Retrieving Files (4/4)
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System Architecture Details
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GFS Architecture
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GFS Master

I Responsible for all system-wide activities

I Maintains all file system metadata
• Namespaces, ACLs, mappings from files to chunks, and current locations of chunks

• All kept in memory, namespaces and file-to-chunk mappings are also stored
persistently in operation log

I Periodically communicates with each chunkserver
• Determines chunk locations
• Assesses state of the overall system
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GFS Chunkserver

I Manages chunks

I Tells master what chunks it has

I Stores chunks as files

I Maintains data consistency of chunks
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GFS Client

I Issues control requests to master server.

I Issues data requests directly to chunkservers.

I Caches metadata.

I Does not cache data.

20 / 78



Data Flow and Control Flow

I Data flow is decoupled from control flow

I Clients interact with the master for metadata operations (control flow)

I Clients interact directly with chunkservers for all files operations (data flow)
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Why Large Chunks?

22 / 78



Why Large Chunks?

I 64MB or 128MB (much larger than most file systems)

I Advantages

• Reduces the size of the metadata stored in master
• Reduces clients’ need to interact with master

I Disadvantages

• Wasted space due to internal fragmentation
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System Interactions
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The System Interface

I Not POSIX-compliant, but supports typical file system operations
• create, delete, open, close, read, and write

I snapshot: creates a copy of a file or a directory tree at low cost

I append: allow multiple clients to append data to the same file concurrently
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Read Operation (1/2)

I 1. Application originates the read request.

I 2. GFS client translates request and sends it to the master.

I 3. The master responds with chunk handle and replica locations.
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Read Operation (2/2)

I 4. The client picks a location and sends the request.

I 5. The chunkserver sends requested data to the client.

I 6. The client forwards the data to the application.
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Update Order (1/2)

I Update (mutation): an operation that changes the content or metadata of a chunk.

I For consistency, updates to each chunk must be ordered in the same way at the
different chunk replicas.

I Consistency means that replicas will end up with the same version of the data and
not diverge.
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Update Order (2/2)

I For this reason, for each chunk, one replica is designated as the primary.

I The other replicas are designated as secondaries.

I Primary defines the update order.

I All secondaries follow this order.
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Primary Leases (1/2)

I For correctness there needs to be one single primary for each chunk.

I At any time, at most one server is primary for each chunk.

I Master selects a chunkserver and grants it lease for a chunk.
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Primary Leases (2/2)

I The chunkserver holds the lease for a period T after it gets it, and behaves as primary
during this period.

I If master does not hear from primary chunkserver for a period, it gives the lease to
someone else.
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Write Operation (1/3)

I 1. Application originates the request.

I 2. The GFS client translates request and sends it to the master.

I 3. The master responds with chunk handle and replica locations.
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Write Operation (2/3)

I 4. The client pushes write data to all locations. Data is stored in chunkserver’s
internal buffers.
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Write Operation (3/3)

I 5. The client sends write command to the primary.

I 6. The primary determines serial order for data instances in its buffer and writes the
instances in that order to the chunk.

I 7. The primary sends the serial order to the secondaries and tells them to perform
the write.
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Write Consistency

I Primary enforces one update order across all replicas for concurrent writes.

I It also waits until a write finishes at the other replicas before it replies.

I Therefore:
• We will have identical replicas.
• But, file region may end up containing mingled fragments from different clients: e.g.,

writes to different chunks may be ordered differently by their different primary
chunkservers

• Thus, writes are consistent but undefined state in GFS.
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Append Operation (1/2)

I 1. Application originates record append request.

I 2. The client translates request and sends it to the master.

I 3. The master responds with chunk handle and replica locations.

I 4. The client pushes write data to all locations.
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Append Operation (2/2)

I 5. The primary checks if record fits in specified chunk.

I 6. If record does not fit, then the primary:
• Pads the chunk,
• Tells secondaries to do the same,
• And informs the client.
• The client then retries the append with the next chunk.

I 7. If record fits, then the primary:
• Appends the record,
• Tells secondaries to do the same,
• Receives responses from secondaries,
• And sends final response to the client
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Delete Operation

I Metadata operation.

I Renames file to special name.

I After certain time, deletes the actual chunks.

I Supports undelete for limited time.

I Actual lazy garbage collection.
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The Master Operations
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A Single Master

I The master has a global knowledge of the whole system

I It simplifies the design

I The master is (hopefully) never the bottleneck
• Clients never read and write file data through the master
• Client only requests from master which chunkservers to talk to
• Further reads of the same chunk do not involve the master
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The Master Operations

I Namespace management and locking

I Replica placement

I Creating, re-replicating and re-balancing replicas

I Garbage collection

I Stale replica detection
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Namespace Management and Locking (1/2)

I Represents its namespace as a lookup table mapping pathnames to metadata.

I Each master operation acquires a set of locks before it runs.

I Read lock on internal nodes, and read/write lock on the leaf.

I Example: creating multiple files (f1 and f2) in the same directory (/home/user/).
• Each operation acquires a read lock on the directory name /home/user/
• Each operation acquires a write lock on the file name f1 and f2
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Namespace Management and Locking (2/2)

I Read lock on directory (e.g., /home/user/) prevents its deletion, renaming or snap-
shot

I Allows concurrent mutations in the same directory
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Replica Placement

I Maximize data reliability, availability and bandwidth utilization.

I Replicas spread across machines and racks, for example:
• 1st replica on the local rack.
• 2nd replica on the local rack but different machine.
• 3rd replica on a different rack.

I The master determines replica placement.
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Creation, Re-replication and Re-balancing

I Creation
• Place new replicas on chunkservers with below-average disk usage.
• Limit number of recent creations on each chunkserver.

I Re-replication
• When number of available replicas falls below a user-specified goal.

I Rebalancing
• Periodically, for better disk utilization and load balancing.
• Distribution of replicas is analyzed.
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Garbage Collection

I File deletion logged by master.

I File renamed to a hidden name with deletion timestamp.

I Master regularly removes hidden files older than 3 days (configurable).

I Until then, hidden files can be read and undeleted.

I When a hidden file is removed, its in-memory metadata is erased.
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Stale Replica Detection

I Chunk replicas may become stale: if a chunkserver fails and misses mutations to the
chunk while it is down.

I Need to distinguish between up-to-date and stale replicas.

I Chunk version number:
• Increased when master grants new lease on the chunk.
• Not increased if replica is unavailable.

I Stale replicas deleted by master in regular garbage collection.
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Fault Tolerance
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Fault Tolerance for Chunks

I Chunks replication (re-replication and re-balancing)

I Data integrity
• Checksum for each chunk divided into 64KB blocks.
• Checksum is checked every time an application reads the data.
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Fault Tolerance for Chunkserver

I All chunks are versioned.

I Version number updated when a new lease is granted.

I Chunks with old versions are not served and are deleted.
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Fault Tolerance for Master

I Master state replicated for reliability on multiple machines.

I When master fails:
• It can restart almost instantly.
• A new master process is started elsewhere.

I Shadow (not mirror) master provides only read-only access to file system when pri-
mary master is down.
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GFS and HDFS
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GFS vs. HDFS

GFS HDFS

Master Namenode

Chunkserver DataNode

Operation Log Journal, Edit Log

Chunk Block

Random file writes possible Only append is possible

Multiple write/reader model Single write/multiple reader model

Default chunk size: 64MB Default chunk size: 128MB
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HDFS Example (1/2)

# Create a new directory /kth on HDFS

hdfs dfs -mkdir /kth

# Create a file, call it big, on your local filesystem and

# upload it to HDFS under /kth

hdfs dfs -put big /kth

# View the content of /kth directory

hdfs dfs -ls /kth

# Determine the size of big on HDFS

hdfs dfs -du -h /kth/big

# Print the first 5 lines to screen from big on HDFS

hdfs dfs -cat /kth/big | head -n 5
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HDFS Example (2/2)

# Copy big to /big_hdfscopy on HDFS

hdfs dfs -cp /kth/big /kth/big_hdfscopy

# Copy big back to local filesystem and name it big_localcopy

hdfs dfs -get /kth/big big_localcopy

# Check the entire HDFS filesystem for problems

hdfs fsck /

# Delete big from HDFS

hdfs dfs -rm /kth/big

# Delete /kth directory from HDFS

hdfs dfs -rm -r /kth
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Flat Datacenter Storage (FDS)
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Motivation and Assumptions (1/5)

I Why move computation close to data?
• Because remote access is slow due to oversubscription.

57 / 78



Motivation and Assumptions (2/5)

I Locality adds complexity.

I Need to be aware of where the data is.
• Non-trivial scheduling algorithm.
• Moving computations around is not easy.
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Motivation and Assumptions (3/5)

I Datacenter networks are getting faster.

I Consequences
• Support full bisection bandwidth: no local vs. remote disk distinction.
• Simpler work schedulers and programming models.
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Motivation and Assumptions (4/5)

I File systems like GFS manage metadata centrally.

I On every read or write, clients contact the master to get information
about the location of blocks in the system.

• Good visibility and control.
• Bottleneck: use large block size
• This makes it harder to do fine-grained load balancing like our ideal

little-data computer does.
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Motivation and Assumptions (5/5)

I Let’s make a digital socialism

I Flat Datacenter Storage

61 / 78



Blobs and Tracts

I Data is stored in logical blobs.
• Byte sequences with 128-bit Global Unique Identifiers (GUID).

I Blobs are divided into constant sized units called tracts.
• Tracts are sized, so random and sequential accesses have same throughput.

I Both tracts and blobs are mutable.
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FDS API

I Reads and writes are atomic.

I Reads and writes not guaranteed to appear in the order they are issued.

I API is non-blocking.
• Helps the performance: many requests can be issued in parallel, and FDS can pipeline

disk reads with network transfers.
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FDS Architecture
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Tractserver

I Every disk is managed by a process called a tractserver.

I Tractservers accept commands from the network, e.g., ReadTract and WriteTract.

I They do not use file systems.
• They lay out tracts directly to disk by using the raw disk interface.
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Metadata Server

I Metadata server coordinates the cluster.

I It collects a list of active tractservers and distribute it to clients.

I This list is called the tract locator table (TLT).

I Clients can retrieve the TLT from the metadata server once, then never contact the
metadata server again.
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Track Locator Table (1/2)

I TLT contains the address of the tractserver(s) responsible for tracts.

I Clients use the blob’s GUID (g) and the tract number (i) to select an entry in the
TLT: tract locator

TractLocator = (Hash(g) + i) mod TLT Length
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Track Locator Table (2/2)

I The only time the TLT changes is when a disk fails or is added.

I Reads and writes do not change the TLT.

I In a system with more than one replica, reads go to one replica at random, and writes
go to all of them.
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Per-Blob Metadata

I Per-blob metadata: blob’s length and permission bits.

I Stored in tract -1 of each blob.

I The tractserver is responsible for the blob metadata tract.

I Newly created blobs have a length of zero, and applications must extend a blob
before writing. The extend operation is atomic.
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Fault Tolerance
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Replication

I Replicate data to improve durability and availability.

I When a disk fails, redundant copies of the lost data are used to restore the data to
full replication.

I Writes a tract: the client sends the write to every tractserver it contains.
• Applications are notified that their writes have completed only after the client library

receives write ack from all replicas.

I Reads a tract: the client selects a single tractserver at random.
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Failure Recovery (1/2)

I Step 1: Tractservers send heartbeat messages to the metadata server. When the
metadata server detects a tractserver timeout, it declares the tractserver dead.

I Step 2: invalidates the current TLT by incrementing the version number of each row
in which the failed tractserver appears.

I Step 3: picks random tractservers to fill in the empty spaces in the TLT where the
dead tractserver appeared.
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Failure Recovery (2/2)

I Step 4: sends updated TLT assignments to every server affected by the changes.

I Step 5: waits for each tractserver to ack the new TLT assignments, and then begins
to give out the new TLT to clients when queried for it.
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Summary
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Summary

I Google File System (GFS)

I Files and chunks

I GFS architecture: master, chunk servers, client

I GFS interactions: read and update (write and update record)

I Master operations: metadata management, replica placement and garbage collection
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Summary

I Flat Datacenter Storage (FDS)

I Blobs and tracts

I FDS architecture: Metadata server, tractservers, TLT

I FDS interactions: using GUID and track number

I Replication and failure recovery
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Questions?
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