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Where Are We?
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Database and Database Management System

I Database: an organized collection of data.

I Database Management System (DBMS): a software to capture and analyze data.
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Three Database Revolutions

[Guy Harrison, Next Generation Databases: NoSQLand Big Data, 2015]
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Early Database Systems

I There were databases but no Database Management Systems (DBMS).

[Guy Harrison, Next Generation Databases: NoSQLand Big Data, 2015]
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The First Database Revolution

I Navigational data model: hierarchical model (IMS) and network model (CODASYL).

I Disk-aware

[Guy Harrison, Next Generation Databases: NoSQLand Big Data, 2015]
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The Second Database Revolution

I Relational data model: Edgar F. Codd paper
• Logical data is disconnected from physical information storage

I ACID transactions
• Atomic, Consistent, Isolated, Durable

I SQL language

I Object databases
• Information is represented in the form of objects
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ACID Properties

I Atomicity
• All included statements in a transaction are either executed or the whole transaction is

aborted without affecting the database.

I Consistency
• A database is in a consistent state before and after a transaction.

I Isolation
• Transactions can not see uncommitted changes in the database.

I Durability
• Changes are written to a disk before a database commits a transaction so that committed

data cannot be lost through a power failure.
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The Third Database Revolution

I NoSQL databases: BASE instead of ACID.

I NewSQL databases: scalable performance of NoSQL + ACID.

[http://ithare.com/nosql-vs-sql-for-mogs]
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Three Waves of Database Technology

[Guy Harrison, Next Generation Databases: NoSQLand Big Data, 2015]
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SQL vs. NoSQL Databases
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Relational SQL Databases

I The dominant technology for storing structured data in web and business applications.

I SQL is good
• Rich language and toolset
• Easy to use and integrate
• Many vendors

I They promise: ACID

12 / 88



SQL Databases Challenges

I Web-based applications caused spikes.
• Internet-scale data size
• High read-write rates
• Frequent schema changes

I RDBMS were not designed to be distributed.
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Scaling SQL Databases is Expensive and Inefficient

[http://www.couchbase.com/sites/default/files/uploads/all/whitepapers/NoSQLWhitepaper.pdf]
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NoSQL

I Avoids:
• Overhead of ACID properties
• Complexity of SQL query

I Provides:
• Scalablity
• Easy and frequent changes to DB
• Large data volumes
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NoSQL Cost and Performance

[http://www.couchbase.com/sites/default/files/uploads/all/whitepapers/NoSQLWhitepaper.pdf]
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SQL vs. NoSQL

[http://www.couchbase.com/sites/default/files/uploads/all/whitepapers/NoSQLWhitepaper.pdf]
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ACID vs. BASE
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Availability

I Replicating data to improve the availability of data.

I Data replication
• Storing data in more than one site or node
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Consistency

I Strong consistency
• After an update completes, any subsequent access will return the updated value.

I Eventual consistency
• Does not guarantee that subsequent accesses will return the updated value.
• Inconsistency window.
• If no new updates are made to the object, eventually all accesses will return the last

updated value.
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CAP Theorem

I Consistency
• Consistent state of data after the execution of an operation.

I Availability
• Clients can always read and write data.

I Partition Tolerance
• Continue the operation in the presence of network partitions.

I You can choose only two!
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Consistency vs. Availability

I The large-scale applications have to be reliable: availability, consistency, partition
tolerance

I Not possible to achieve with ACID properties.

I The BASE approach forfeits the ACID properties of consistency and isolation in favor
of availability and performance.
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BASE Properties

I Basic Availability
• Possibilities of faults but not a fault of the whole system.

I Soft-state
• Copies of a data item may be inconsistent

I Eventually consistent
• Copies becomes consistent at some later time if there are no more updates to that data

item
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ACID vs. BASE

[https://www.guru99.com/sql-vs-nosql.html]
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NoSQL Data Models
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NoSQL Data Models

[http://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques]
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Key-Value Data Model

I Collection of key/value pairs.

I Ordered Key-Value: processing over key ranges.

I Dynamo, Scalaris, Voldemort, Riak, ...
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Column-Oriented Data Model

I Similar to a key/value store, but the value can have multiple attributes (Columns).

I Column: a set of data values of a particular type.

I Store and process data by column instead of row.

I BigTable, Hbase, Cassandra, ...
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Document Data Model

I Similar to a column-oriented store, but values can have complex documents.

I Flexible schema (XML, YAML, JSON, and BSON).

I CouchDB, MongoDB, ...

{

FirstName: "Bob",

Address: "5 Oak St.",

Hobby: "sailing"

}

{

FirstName: "Jonathan",

Address: "15 Wanamassa Point Road",

Children: [

{Name: "Michael", Age: 10},

{Name: "Jennifer", Age: 8},

]

}
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Graph Data Model

I Uses graph structures with nodes, edges, and properties to represent and store data.

I Neo4J, InfoGrid, ...

[http://en.wikipedia.org/wiki/Graph database]
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BigTable
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BigTable

I Lots of (semi-)structured data at Google.
• URLs, per-user data, geographical locations, ...

I Distributed multi-level map

I CAP: strong consistency and partition tolerance
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Data Model
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Data Model (1/6)

I Column-Oriented data model

I Similar to a key/value store, but the value can have multiple attributes (Columns).

I Column: a set of data values of a particular type.

I Store and process data by column instead of row.
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Data Model (2/6)

I Table

I Distributed multi-dimensional sparse map
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Data Model (3/6)

I Rows

I Every read or write in a row is atomic.

I Rows sorted in lexicographical order.
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Data Model (4/6)

I Column

I The basic unit of data access.

I Column families: group of (the same type) column keys.

I Column key naming: family:qualifier

37 / 88



Data Model (5/6)

I Timestamp

I Each column value may contain multiple versions.
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Data Model (6/6)

I Tablet: contiguous ranges of rows stored together.

I Tablets are split by the system when they become too large.

I Each tablet is served by exactly one tablet server.
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System Architecture
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BigTable System Structure

[https://www.slideshare.net/GrishaWeintraub/cap-28353551]
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Main Components

I Master

I Tablet server

I Client library
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Master

I Assigns tablets to tablet server.

I Balances tablet server load.

I Garbage collection of unneeded files in GFS.

I Handles schema changes, e.g., table and column family creations
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Tablet Server

I Can be added or removed dynamically.

I Each manages a set of tablets (typically 10-1000 tablets/server).

I Handles read/write requests to tablets.

I Splits tablets when too large.
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Client Library

I Library that is linked into every client.

I Client data does not move though the master.

I Clients communicate directly with tablet servers for reads/writes.
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Building Blocks

I The building blocks for the BigTable are:
• Google File System (GFS)
• Chubby
• SSTable
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Google File System (GFS)

I Large-scale distributed file system.

I Store log and data files.
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Chubby Lock Service

I Ensure there is only one active master.

I Store bootstrap location of BigTable data.

I Discover tablet servers.

I Store BigTable schema information and access control lists.
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SSTable

I SSTable file format used internally to store BigTable data.

I Chunks of data plus a block index.

I Immutable, sorted file of key-value pairs.

I Each SSTable is stored in a GFS file.
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Tablet Serving
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Master Startup

I The master executes the following steps at startup:

• Grabs a unique master lock in Chubby, which prevents concurrent master instantiations.

• Scans the servers directory in Chubby to find the live servers.

• Communicates with every live tablet server to discover what tablets are already assigned
to each server.

• Scans the METADATA table to learn the set of tablets.
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Tablet Assignment

I 1 tablet → 1 tablet server.

I Master uses Chubby to keep tracks of live tablet serves and unassigned tablets.
• When a tablet server starts, it creates and acquires an exclusive lock in Chubby.

I Master detects the status of the lock of each tablet server by checking periodically.

I Master is responsible for finding when tablet server is no longer serving its tablets
and reassigning those tablets as soon as possible.
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Finding a Tablet

I Three-level hierarchy.

I The first level is a file stored in Chubby that contains the location of the root tablet.

I Root tablet contains location of all tablets in a special METADATA table.

I METADATA table contains location of each tablet under a row.

I The client library caches tablet locations.
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Loading Tablets

I To load a tablet, a tablet server does the following:

I Finds locaton of tablet through its METADATA.
• Metadata for a tablet includes list of SSTables and set of redo points.

I Read SSTables index blocks into memory.

I Read the commit log since the redo point and reconstructs the memtable.
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Tablet Serving (1/2)

I Updates committed to a commit log.

I Recently committed updates are stored in memory - memtable

I Older updates are stored in a sequence of SSTables.
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Tablet Serving (2/2)

I Strong consistency
• Only one tablet server is responsible for a given piece of data.
• Replication is handled on the GFS layer.

I Trade-off with availability
• If a tablet server fails, its portion of data is temporarily unavailable until a new server

is assigned.
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BigTable vs. HBase

�BigTable HBase

GFS HDFS

Tablet Server Region Server

SSTable StoreFile

Memtable MemStore

Chubby ZooKeeper
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HBase Example

# Create the table "test", with the column family "cf"

create ’test’, ’cf’

# Use describe to get the description of the "test" table

describe ’test’

# Put data in the "test" table

put ’test’, ’row1’, ’cf:a’, ’value1’

put ’test’, ’row2’, ’cf:b’, ’value2’

put ’test’, ’row3’, ’cf:c’, ’value3’

# Scan the table for all data at once

scan ’test’

# To get a single row of data at a time, use the get command

get ’test’, ’row1’
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Cassandra
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Cassandra

I A column-oriented database

I It was created for Facebook and was later open sourced

I CAP: availability and partition tolerance
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Borrowed From BigTable

I Data model: column oriented
• Keyspaces (similar to the schema in a relational database), tables, and columns.

I SSTable disk storage
• Append-only commit log
• Memtable (buffering and sorting)
• Immutable sstable files
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Data Partitioning (1/2)

I Key/value, where values are stored as objects.

I If size of data exceeds the capacity of a single machine: partitioning

I Consistent hashing for partitioning.
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Data Partitioning (2/2)

I Consistent hashing.

I Hash both data and node ids using the same hash function in a same id space.

I partition = hash(d) mod n, d: data, n: the size of the id space

id space = [0, 15], n = 16

hash("Fatemeh") = 12

hash("Ahmad") = 2

hash("Seif") = 9

hash("Jim") = 14

hash("Sverker") = 4
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Replication

I To achieve high availability and durability, data should be replicated on multiple
nodes.
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Adding and Removing Nodes

I Gossip-based mechanism: periodically, each node contacts another randomly selected
node.
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Cassandra Example

# Create a keyspace called "test"

create keyspace test

with replication = {’class’: ’SimpleStrategy’, ’replication_factor’: 1};

# Print the list of keyspaces

describe keyspaces;

# Navigate to the "test" keyspace

use test

# Create the "words" table in the "test" keyspace

create table words (word text, count int, primary key (word));

# Insert a row

insert into words(word, count) values(’hello’, 5);

# Look at the table

select * from words;
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Neo4j
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Neo4j

I A graph database

I The relationships between data is equally important as the data itself

I Cypher: a declarative query language similar to SQL, but optimized for graphs

I CAP: strong consistency and availability
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Data Model (1/4)

I Node (Vertex)
• The main data element from which graphs are constructed.
• A waypoint along a traversal route
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Data Model (2/4)

I Relationship (Edge)

I May contain
• Direction
• Metadata, e.g., weight or relationship type
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Data Model (3/4)

I Label
• Define node category (optional)
• Can have more than one
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Data Model (4/4)

I Properties
• Enrich a node or relationship
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Example

[Ian Robinson et al., Graph Databases, 2015]
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How a Graph is Stored in Neo4j? (1/2)

[Ian Robinson et al., Graph Databases, 2015]

74 / 88



How a Graph is Stored in Neo4j? (2/2)

I Neo4j stores graph data in a number of different store files.

I Each store file contains the data for a specific part of the graph.
• Separate stores for nodes, relationships, labels, and properties.

I The division of storage responsibilities facilitates performant graph traversals.

[Ian Robinson et al., Graph Databases, 2015]
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What is Cypher?

I Declarative query language

I (): Nodes

I []: Relationships

I {}: Properties
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Cypher Example (1/4)

// Match all nodes

MATCH (n)

RETURN n;

// Match all nodes with a Person label

MATCH (n:Person)

RETURN n;

// Match all nodes with a Person label and property name is ’Tom Hanks’

MATCH (n:Person {name: ’Tom Hanks’})

RETURN n;
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Cypher Example (2/4)

// Return nodes with label Person and name property equals ’Tom Hanks’

MATCH (p:Person)

WHERE p.name = ’Tom Hanks’

RETURN p;

// Return nodes with label Movie, released property is between 1991 and 1999

MATCH (m:Movie)

WHERE m.released > 1990 AND m.released < 2000

RETURN m;

// Find all the movies Tom Hanks acted in

MATCH (:Person {name:’Tom Hanks’})-[:ACTED_IN]->(m:Movie)

RETURN m.title;
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Cypher Example (3/4)

// Find all the movies Tom Hanks directed and order by latest movie

MATCH (:Person {name:’Tom Hanks’})-[:DIRECTED]->(m:Movie)

RETURN m.title, m.release ORDER BY m.release DESC;

// Find all of the co-actors Tom Hanks has ever worked with

MATCH (:Person {name:’Tom Hanks’})-->(:Movie)<-[:ACTED_IN]-(coActor:Person)

RETURN coActor.name;
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Cypher Example (4/4)

// Find nodes with an ACTED_IN relationship

MATCH (p)-[:ACTED_IN]->()

RETURN p

// Find Person nodes with an ACTED_IN or DIRECTED_IN relationship

MATCH (p:Person)-[:ACTED_IN|DIRECTED]->()

RETURN p

// Find Person nodes who do not have an ACTED_IN relationship

MATCH (p:Person)

WHERE NOT (p)-[:ACTED_IN]->()

RETURN p
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Summary
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Summary

I NoSQL data models: key-value, column-oriented, document-oriented, graph-based

I Sharding and consistent hashing

I ACID vs. BASE

I CAP (Consistency vs. Availability)
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Summary

I BigTable

I Column-oriented

I Main components: master, tablet server, client library

I Basic components: GFS, SSTable, Chubby

I CP
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Summary

I Cassandra

I Column-oriented (similar to BigTable)

I Consistency hashing

I Gossip-based membership

I AP
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Summary

I Neo4j

I Graph-based

I Cypher

I CA
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