iﬁéﬁm B éi}
"“%3;4’:‘.?“ ©

Parallel Processing - Spark

Amir H. Payberah
payberah@kth.se
2021-09-14

The Course Web Page

https://1id2221kth.github.io

https://tinyurl.com/f6x544h

https://id2221kth.github.io
https://tinyurl.com/f6x544h

Where Are We?

Data Processing

Pregel, GraphLab, PowerGraph Spark SQL Milib
GraphX, X-Streem, Chaos Tensorflow

MapReduce, Dryad Storm, SEEP, Naiad, Spark Streaming, Flink,
FlumeJava, Spark Millwheel, Google Dataflow

Data Storage

Dynamo, BigTable,
GFS, Flat FS Cassandra

Resource Management

Mesos, YARN

MapReduce Reminder

Map Shuffle Reduce
A

A A
N\~ N\ Y

I |r~O<ﬂ
m—O<;,
mn—O<g

Motivation (1/2)

» Acyclic data flow from stable storage to stable storage.

(w)
=
(w)

W

Motivation (1/2)

» Acyclic data flow from stable storage to stable storage.

D= e,

Motivation (2/2)

» MapReduce is expensive (slow), i.e., always goes to disk and HDFS.

HDFS HDFS HDFS HDFS HDFS

Read Write Read Write Read
=

Input

So, Let's Use Spark

hadtap

AT Spaik’
(D—®)

@ O—®

| Hadoop | | Spark |

Spark vs. MapReduce (1/2)

HDFS HDFS HDFS HDFS HDFS

Read Write Read Write Read
=

Input

Spark vs. MapReduce (1/2)

HDFS HDFS HDFS HDFS HDFS

Read Write Read Write Read
=

Input

Input

Spark vs. MapReduce (2/2)

Results1

T

Results1

|

Input

Results1

\

Spark vs. MapReduce (2/2)

Results1

T

Results1

Input

|

Results1

\

Resultsl

T

Resultsl

|

Input Resultsl

\

Spark Application

Spark Applications Architecture

» Spark applications consist of

e A driver process
e A set of executor processes

Driver Process Executors
Spark l I
Session I '
User code j(‘
[Cluster Manager

[M. Zaharia et al., Spark: The Definitive Guide, 0’Reilly Media, 2018]

Driver Process

> The heart of a Spark application

» Sits on a node in the cluster

» Runs the main() function

Driver Process Executors

Spark
Session

I User code '

L

Cluster Manaaer‘

Driver Process

» The heart of a Spark application Drver frocess ExecRiors
Spark
» Sits on a node in the cluster s,e%m
» Runs the main() function
_ _ [Cluster Manager |
» Responsible for three things:

e Maintaining information about the Spark application
e Responding to a user's program or input
e Analyzing, distributing, and scheduling work across the executors

Executors

» Responsible for two things:

e Executing code assigned to it by the driver
» Reporting the state of the computation on that executor back to the driver

Driver Process Executors
Spark. l
Session '
User code JJ

[Cluster Manager'

SparkSession

>

A driver process that controls a Spark application.

v

Main entry point to Spark functionality.

» A one-to-one correspondence between a SparkSession and a Spark application.
>

SparkSession.builder.master (master) .appName (appName) . getOrCreate ()

Available in console shell as spark.

>

v

v

val
new

SparkContext

The entry point for low-level APl functionality.
You access it through the SparkSession.
You can access a SparkContext via spark.sparkContext.

Available in console shell as sc.

conf = new SparkConf () .setMaster (master) .setAppName (appName)
SparkContext (conf)

SparkSession vs. SparkContext

» Prior to Spark 2.0.0, a the spark driver program uses SparkContext to connect to
the cluster.

> In order to use APIs of SQL, Hive and streaming, separate SparkContexts should
to be created.

SparkSession vs. SparkContext

Prior to Spark 2.0.0, a the spark driver program uses SparkContext to connect to
the cluster.

In order to use APIs of SQL, Hive and streaming, separate SparkContexts should
to be created.

SparkSession provides access to all the spark functionalities that SparkContext
does, e.g., SQL, Hive and streaming.

SparkSession internally has a SparkContext for actual computation.

Programming Model

Spark Programming Model

» Job is described based on directed acyclic graphs (DAG) data flow.

Spark Programming Model

» Job is described based on directed acyclic graphs (DAG) data flow.

> A data flow is composed of any number of data sources, operators, and data sinks
by connecting their inputs and outputs.

Spark Programming Model

» Job is described based on directed acyclic graphs (DAG) data flow.

> A data flow is composed of any number of data sources, operators, and data sinks
by connecting their inputs and outputs.

» Parallelizable operators

Resilient Distributed Datasets (RDD) (1/3)

» A distributed memory abstraction.

» Immutable collections of objects spread across a cluster.
e Like a LinkedList <MyObjects>

Resilient Distributed Datasets (RDD) (2/3)

» An RDD is divided into a number of partitions, which are atomic pieces of information.

» Partitions of an RDD can be stored on different nodes of a cluster.

Resilient Distributed Datasets (RDD) (3/3)

>

RDDs were the primary APl in the Spark 1.x series.

v

They are not commonly used in the Spark 2.x series.

v

Virtually all Spark code you run, compiles down to an RDD.

Types of RDDs

» Two types of RDDs:

e Generic RDD
* Key-value RDD

» Both represent a collection of objects.

» Key-value RDDs have special operations, such as aggregation, and a concept of
custom partitioning by key.

When To Use RDDs?

» Short answer: you should not manually create RDDs unless you have a very specific
reason.

When To Use RDDs?

» Short answer: you should not manually create RDDs unless you have a very specific
reason.

» They are a much lower-level API that provides a lot of power.

» But, lack of the optimizations that are available in the Structured APlIs.

When To Use RDDs?

>

Short answer: you should not manually create RDDs unless you have a very specific
reason.

v

They are a much lower-level API that provides a lot of power.

v

But, lack of the optimizations that are available in the Structured APIs.

v

The most likely reason to use RDDs: custom partitioning of data.

e Fine-grained control over the physical distribution of data.

Creating RDDs

Creating RDDs - Parallelized Collections

>

Use the parallelize method on a SparkContext.

v

This turns a single node collection into a parallel collection.

v

You can also explicitly state the number of partitions.

v

In the console shell, you can either use sc or spark.sparkContext

Creating RDDs - Parallelized Collections

>

Use the parallelize method on a SparkContext.

This turns a single node collection into a parallel collection.

v

You can also explicitly state the number of partitions.

v

In the console shell, you can either use sc or spark.sparkContext

>

val numsCollection = Array(1, 2, 3)
val nums = sc.parallelize(numsCollection)

val
val

val
val

Creating RDDs - Parallelized Collections

Use the parallelize method on a SparkContext.
This turns a single node collection into a parallel collection.
You can also explicitly state the number of partitions.

In the console shell, you can either use sc or spark.sparkContext

numsCollection = Array(1l, 2, 3)
nums = sc.parallelize(numsCollection)

wordsCollection = "take it easy, this is a test".split(" ")
words = spark.sparkContext.parallelize(wordsCollection, 2)

Creating RDDs - External Datasets

» Create RDD from an external storage.
e E.g., local file system, HDFS, Cassandra, HBase, Amazon S3, etc.

» Text file RDDs can be created using textFile method.

val myFilel = sc.textFile("file.txt")
val myFile2 =

sc.textFile("hdfs://namenode:9000/path/file")

RDD Operations

RDD Operations

» RDDs support two types of operations:

e Transformations: allow us to build the logical plan

e Actions: allow us to trigger the computation

Transformations

Transformations

» Create a new RDD from an existing one.

» All transformations are lazy.

* Not compute their results right away.

e Remember the transformations applied to the base dataset.

e They are only computed when an action requires a result to be returned to the driver
program.

val
val
val
val
val

Lineage

» Lineage: transformations used to build an
RDD.

» RDDs are stored as a chain of objects cap-
turing the lineage of each RDD.

file = sc.textFile("hdfs://...")

sics = file.filter(_.contains("SICS"))
cachedSics = sics.cache()

ones = cachedSics.map(_ => 1)

count = ones.reduce(_+_)

file:

sics:

cachedSics:

ones:

HDFS Text File
path = hdfs://...

Filtered Dataset
func = _.contains(...)

Cached Dataset

Mapped Dataset
func=_=>1

Generic RDD Transformations (1/3)

» distinct removes duplicates from the RDD.

» filter returns the RDD records that match some predicate function.

val nums
val even

// 2

sc.parallelize(Array(1, 2, 3))
nums.filter(x => x % 2 == 0)

Generic RDD Transformations (1/3)

» distinct removes duplicates from the RDD.
» filter returns the RDD records that match some predicate function.
val nums = sc.parallelize(Array(1l, 2, 3))

val even = nums.filter(x => x % 2 == 0)

// 2

val words = sc.parallelize("this it easy, this is a test".split(" "))
val distinctWords = words.distinct ()
// a, this, is, easy,, test, it

Generic RDD Transformations (1/3)

» distinct removes duplicates from the RDD.

» filter returns the RDD records that match some predicate function.

val nums = sc.parallelize(Array(1l, 2, 3))
val even = nums.filter(x => x %, 2 == 0)

// 2

val words = sc.parallelize("this it easy, this is a test".split(" "))
val distinctWords = words.distinct()
// a, this, is, easy,, test, it

def startsWithT(individual:String) = { individual.startsWith("t") }
val tWordList = words.filter(word => startsWithT(word))
// this, test

Generic RDD Transformations (2/3)

» map and flatMap apply a given function on
each RDD record independently.

val nums = sc.parallelize(Array(1, 2, 3))
val squares = nums.map(x => x * x)

/1, 4,9

Generic RDD Transformations (2/3)

» map and flatMap apply a given function on
each RDD record independently.

val nums = sc.parallelize(Array(1, 2, 3))
val squares = nums.map(x => x * x)

/1, 4,9

val words = sc.parallelize("take it easy, this is a test".split(" "))
val tWords = words.map(word => (word, word.startsWith("t")))
// (take,true), (it,false), (easy,,false), (this,true), (is,false), (a,false), (test,true)

Generic RDD Transformations (3/3)

» sortBy sorts an RDD records.

val words = sc.parallelize("take it easy, this is a test".split(" "))

val sortedWords = words.sortBy(word => word.length())
// a, it, is, take, this, test, easy,

Key-Value RDD Transformations - Basics (1/2)

» In a (k, v) pairs, k is is the key, and v is the value.

» To make a key-value RDD:

Key-Value RDD Transformations - Basics (1/2)

» In a (k, v) pairs, k is is the key, and v is the value.

» To make a key-value RDD:
* map over your current RDD to a basic key-value structure.

val words = sc.parallelize("take it easy, this is a test".split(" "))
val keywordl = words.map(word => (word, 1))
// (take,1), (it,1), (easy,,1), (this,1), (is,1), (a,1), (test,1)

Key-Value RDD Transformations - Basics (1/2)

» In a (k, v) pairs, k is is the key, and v is the value.

» To make a key-value RDD:

* map over your current RDD to a basic key-value structure.
e Use the keyBy to create a key from the current value.

val words = sc.parallelize("take it easy, this is a test".split(" "))
val keywordl = words.map(word => (word, 1))
// (take,1), (it,1), (easy,,1), (this,1), (is,1), (a,1), (test,1)

val keyword2 = words.keyBy(word => word.toSeq(0).toString)
// (t,take), (i,it), (e,easy,), (t,this), (i,is), (a,a), (t,test)

Key-Value RDD Transformations - Basics (1/2)

» In a (k, v) pairs, k is is the key, and v is the value.

» To make a key-value RDD:

* map over your current RDD to a basic key-value structure.
e Use the keyBy to create a key from the current value.
e Use the zip to zip together two RDD.

val words = sc.parallelize("take it easy, this is a test".split(" "))
val keywordl = words.map(word => (word, 1))
// (take,1), (it,1), C(easy,,1), (this,1), (is,1), (a,1), (test,1)

val keyword2 = words.keyBy(word => word.toSeq(0).toString)
// (t,take), (i,it), (e,easy,), (t,this), (i,is), (a,a), (t,test)

val numRange = sc.parallelize(0 to 6)
val keyword3 = words.zip(numRange)
// (take,0), (it,1), (easy,,2), (this,3), (is,4), (a,5), (test,6)

Key-Value RDD Transformations - Basics (2/2)

> keys and values extract keys and values, respectively.

val words = sc.parallelize("take it easy, this is a test".split(" "))
val keyword = words.keyBy(word => word.toLowerCase.toSeq(0) .toString)
// (t,take), (i,it), (e,easy,), (t,this), (i,is), (a,a), (t,test)

val k = keyword.keys
val v = keyword.values

b,
b241 Key-Value RDD Transformations - Basics (2/2)

% och koNsT
LY

> keys and values extract keys and values, respectively.

> lookup looks up the values for a particular key with an RDD.

val words = sc.parallelize("take it easy, this is a test".split(" "))
val keyword = words.keyBy(word => word.toLowerCase.toSeq(0) .toString)
// (t,take), (i,it), (e,easy,), (t,this), (i,is), (a,a), (t,test)

val k = keyword.keys
val v = keyword.values

val tValues = keyword.lookup("t")
// take, this, test

Bl Key-Value RDD Transformations - Basics (2/2)

% och koNsT
LY

> keys and values extract keys and values, respectively.
> lookup looks up the values for a particular key with an RDD.

» mapValues maps over values.

val words = sc.parallelize("take it easy, this is a test".split(" "))
val keyword = words.keyBy(word => word.toLowerCase.toSeq(0) .toString)
// (t,take), (i,it), (e,easy,), (t,this), (i,is), (a,a), (t,test)

val k = keyword.keys
val v = keyword.values

val tValues = keyword.lookup("t")
// take, this, test

val mapV = keyword.mapValues(word => word.toUpperCase)
// (t,TAKE), (%i,IT), (e,EASY,), (t,THIS), (%,IS), (a,4), (t,TEST)

> Aggregate the values associated with each key.

LR

val kvChars = ...

/7,1, (a,1), (k,1), (e 1), (3,1), (t,1), (e,1), (a,1), (s,1), (y,1), (,,1), ...

val grpChar = kvChars.groupByKey() .map(row => (row._1, row._2.reduce(addFunc)))
/7,8, (h1), (,1), (e,3), (a,3), (4,3), (y,1), (s,4), (k,1))

> Aggregate the values associated with each key.

LR

val kvChars = ...

/7,1, (a,1), (k,1), (e 1), (3,1), (t,1), (e,1), (a,1), (s,1), (y,1), (,,1), ...

val grpChar = kvChars.groupByKey() .map(row => (row._1, row._2.reduce(addFunc)))
/7,8, (h1), (,1), (e,3), (a,3), (4,3), (y,1), (s,4), (k,1))

def addFunc(left:Int, right:Int) = left + right
val redChar = kvChars.reduceByKey(addFunc)
/7 (4,5), (h,1), (,,1), (e,3), (a,3), (2,3), (y,1), (s,4), (k,1))

Key-Value RDD Transformations - Aggregation (2/2)

» groupByKey or reduceByKey?

Key-Value RDD Transformations - Aggregation (2/2)

» groupByKey or reduceByKey?

» In groupByKey, each executor must hold all values for a given key in memory before
applying the function to them.

e This is problematic in massive skewed key.

» In reduceByKey, the reduce happens within each partition, and does not need to
put everything in memory.

Key-Value RDD Transformations - Join

> join performs an inner-join on the key.

» fullOtherJoin, leftOuterJoin, rightOuterJoin,
and cartesian.

val keyedChars = ...
/7 (40, (h6), (,,9), (e,8), (a,3), (4,5), (y,2), (5,7, (k,0)

val kvChars = ...

/7 (4,1, (a,1), (k,1), (e,1), (i,1), (t,1), (e,1), (a,1), (s,1), (y,1), (,,1), ...

val joinedChars = kvChars.join(keyedChars)
/7, (1,4)), (t,(1,4)), (t,(1,4)), (t,(1,4)), (t,(1,4)), (h,(1,6)), (,,(1,9)), (e, (1,8)), ...

Actions

Actions

» Transformations allow us to build up our logical transformation plan.

» We run an action to trigger the computation.
e Instructs Spark to compute a result from a series of transformations.

Actions

» Transformations allow us to build up our logical transformation plan.

» We run an action to trigger the computation.
e Instructs Spark to compute a result from a series of transformations.

» There are three kinds of actions:

e Actions to view data in the console
» Actions to collect data to native objects in the respective language
e Actions to write to output data sources

RDD Actions (1/6)

» collect returns all the elements of the RDD as an array at the driver.

» first returns the first value in the RDD.

val nums = sc.parallelize(Array(1, 2, 3))

nums.collect ()
// Array(1, 2, 3)

nums.first ()

// 1

RDD Actions (2/6)

» take returns an array with the first n elements of the RDD.

val words = sc.parallelize("take it easy, this is a test".split(" "))

words . take (5)
// Array(take, it, easy,, this, %s)

RDD Actions (2/6)

» take returns an array with the first n elements of the RDD.

» Variations on this function: takeOrdered and takeSample.

val words = sc.parallelize("take it easy, this is a test".split(" "))

words . take (5)
// Array(take, it, easy,, this, %s)

words . takeOrdered (5)
// Array(a, easy,, s, it, take)

val withReplacement = true

val numberToTake = 6

val randomSeed = 100L

words.takeSample (withReplacement, numberToTake, randomSeed)
// Array(take, it, test, this, test, take)

D,
] RDD Actions (3/6)

% och koNsT
LY

» count returns the number of elements in the dataset.

» countByValue counts the number of values in a given RDD.

» countByKey returns a hashmap of (K, Int) pairs with the count of each key.
¢ Only available on key-valye RDDs, i.e., (X, V)

val words = sc.parallelize("take it easy, this is a test, take it easy".split(" "))

words . count ()

// 10

words . countByValue ()
// Map(this -> 1, 4s -> 1, 4t -> 2, a -> 1, easy, —-> 1, test, -> 1, take -> 2, easy -> 1)

RDD Actions (4/6)

» max and min return the maximum and minimum values, respectively.

val nums = sc.parallelize(1l to 20)

val maxValue = nums.max()

// 20

val minValue = nums.min()

// 1

RDD Actions (5/6)

» reduce aggregates the elements of the dataset using a given function.

» The given function should be commutative and associative so that it can be computed
correctly in parallel.

sc.parallelize(1 to 20).reduce(_ + _)
// 210

def wordLengthReducer(leftWord:String, rightWord:String): String = {
if (leftWord.length > rightWord.length)
return leftWord
else
return rightWord

}

words .reduce (wordLengthReducer)

// easy,

RDD Actions (6/6)

» saveAsTextFile writes the elements of an RDD as a text file.
 Local filesystem, HDFS or any other Hadoop-supported file system.

> savelAsObjectFile explicitly writes key-value pairs.

val words = sc.parallelize("take it easy, this is a test".split(" "))

words.saveAsTextFile("file:/tmp/words")

Example

val textFile = sc.textFile("hdfs://...")
val words = textFile.flatMap(line => line.split(" "))
val ones = words.map(word => (word, 1))

val counts = ones.reduceByKey(_ + _)

counts.saveAsTextFile("hdfs://...")

textFile (RDD words (RDD) ones (RDD)
HDFS Hello (Hello, 1) counts (RDD) .
o By 1) (Hello, 2)
ot LS (World, 2)
- - World (World, 1) (Bye 1)
Hello (Hello, 1) Hadoon 2
Hadoop (Hadoop, 1) (oot

Goodbye (Goodbye, 1)

Hello World Bye World Hadoop (Hadoop, 1)

Hello Hadoop Goodbye Hadoop

Cache and Checkpoints

Caching

» When you cache an RDD, each node stores any partitions of it that it computes in
memory.

» An RDD that is not cached is re-evaluated each time an action is invoked on that
RDD.

» A node reuses the cached RDD in other actions on that dataset.

Caching

» When you cache an RDD, each node stores any partitions of it that it computes in
memory.

» An RDD that is not cached is re-evaluated each time an action is invoked on that
RDD.

» A node reuses the cached RDD in other actions on that dataset.

» There are two functions for caching an RDD:

e cache caches the RDD into memory
e persist(level) can cache in memory, on disk, or off-heap memory

val words = sc.parallelize("take it easy, this is a test".split(" "))

words . cache ()

Checkpointing

» checkpoint saves an RDD to disk.
» Checkpointed data is not removed after SparkContext is destroyed.

» When we reference a checkpointed RDD, it will derive from the checkpoint instead
of the source data.

val words = sc.parallelize("take it easy, this is a test".split(" "))

sc.setCheckpointDir ("/path/checkpointing")
words . checkpoint ()

Execution Engine

More About Lineage

» A DAG representing the computations done on the RDD is called lineage graph.

val rdd = sc.textFile(...)

val filtered = rdd.map(...).filter(...).persist()
val count = filtered.count()

val reduced = filtered.reduce()

map, filter

count reduce

[count

—

==

[https://github.com/rohgar/scala-spark-4/wiki/Wide-vs-Narrow-Dependencies]

. . r ‘ map 7.1
|- . .

“ROD_ — N
(Parent) (FBalr)elr?t) (5.?58)
Dependency Dependencies

[https://github.com/rohgar/scala-spark-4/wiki/Wide-vs-Narrow-Dependencies]

Two Types of Dependencies (1/2)

» Narrow transformations (dependencies)

e Each input partition will contribute to only one output partition.
e With narrow transformations, Spark can perform a pipelining

Narrow dependencies:

Each partition of the parent RDD is used
by at most one partition of the child RDD.

map, filter

join with union
co-partitioned inputs

[https://github.com/rohgar/scala-spark-4/wiki/Wide-vs-Narrow-Dependencies]

Two Types of Dependencies (2/2)

» Wide transformations (dependencies)

e Each input partition will contribute to many output partition.
e Usually referred to as a shuffle

Wide dependencies:

Each partition of the parent RDD may be
depended on by multiple child partitions.

groupByKey

join
with inputs not
co-partitioned

[https://github.com/rohgar/scala-spark-4/wiki/Wide-vs-Narrow-Dependencies)]

£l Example

S0 vowsr
E| g E|
A B

map

join

union

Example

E| g E|
A B

map

why is this
side of the
join narrow!?

join

union

E

[https://github.com/rohgar/scala-spark-4/wiki/Wide-vs-Narrow-Dependencies]

Lineages and Fault Tolerance (1/2)

» No replication.

» Lineages are the key to fault tolerance in Spark.

» Recompute only the lost partitions of an RDD.

—
9\l
/
(Q\l
S~—
(]
O
c
a
| -
K]
o
T
+
=
(4]
L
O
c
T
0
()
o0
T
(O]
=
—

» Assume one of the partitions fails.

» Assume one of the partitions fails.

» We only have to recompute the data shown below to get back on track.

[https://github.com/rohgar/scala-spark-4/wiki/Wide-vs-Narrow-Dependencies]

The Anatomy of a Spark Job

Spark Context / Spark Spark
Session Object Application

Actions (e.g., collect, Job
saveAsTextFile)

Wide transformations

(sort, groupByKey) Stage Stage

Computation to evaluate one
partition (combine narrow transforms)

[H. Karau et al., High Performance Spark, 0’Reilly Media, 2017]

» A Spark job is the highest element of Spark’s execution hierarchy.

e Each Spark job corresponds to one action.
e Each action is called by the driver program of a Spark application.

Spark Context / Spark Spark
Session Object Application

Actions (e.g., collect, Job
saveAsTextFile)

Wide transformations
(sort, groupByKey)
Computation to evaluate one
partition (combine narrow transforms)

[H. Karau et al., High Performance Spark, 0’Reilly Media, 2017]

Stages

» Each job breaks down into a series of stages.

e Stages in Spark represent groups of tasks that can be executed together.
* Wide transformations define the breakdown of jobs into stages.

Spark Context / Spark Spark
Session Object Application

Actions (e.g., collect, Job
saveAsTextFile)

Wide transformations
(sort, groupByKey)
Computation to evaluate one
partition (combine narrow transforms)

[H. Karau et al., High Performance Spark, 0’Reilly Media, 2017]

Tasks

» A stage consists of tasks, which are the smallest execution unit.

e Each task represents one local computation.
o All of the tasks in one stage execute the same code on a different piece of the data.

Spark Context / Spark Spark
Session Object Application

Actions (e.g., collect, Job
saveAsTextFile)

Wide transformations
(sort, groupByKey)
Computation to evaluate one
partition (combine narrow transforms)

[H. Karau et al., High Performance Spark, 0’Reilly Media, 2017]

Partitioning and Shuffle Operations

Shuffle Operations

» The shuffle is Spark’s mechanism for re-distributing data so that it's grouped differ-
ently across partitions.

» This typically involves copying data across executors and machines, making the shuffle
a complex and costly operation.

Spark Built-in Partitioners

» Hash partitioner

» Range partitioner

Hash Partitioning (1/2)

» Hash partitioning attempts to spread data evenly across partitions based on the key.

» E.g., groupByKey

e First computes the partition p of each tuple (k,v):
p = k.hashCode() % numPartitions
e Then, all tuples in the same partition p are sent to the machine hosting p.

Hash Partitioning (2/2)

» Assume a key-value RDD, with keys k = [8, 96, 240, 400, 401, 800], and a
desired number of partitions of p = 4.

» Assume, that hashCode () is the identity, i.e., n.hashCode() = n.

Hash Partitioning (2/2)

» Assume a key-value RDD, with keys k = [8, 96, 240, 400, 401, 800], and a
desired number of partitions of p = 4.

» Assume, that hashCode () is the identity, i.e., n.hashCode() = n.

» The hash partitioning distributes the keys as follows among the partitions
(p =k 7% 4)
e partition [8, 96, 240, 400, 800]

e partition [401]

0

1
e partition 2: []
° partition 3

(]

Hash Partitioning (2/2)

>

Assume a key-value RDD, with keys k¥ = [8, 96, 240, 400, 401, 800], and a
desired number of partitions of p = 4.

v

Assume, that hashCode () is the identity, i.e., n.hashCode() = n.

v

The hash partitioning distributes the keys as follows among the partitions
(p =k % 4):
e partition O [8, 96, 240, 400, 800]
e partition 1 [401]
e partition 2: []
e partition 3 []

v

The result is a very unbalanced distribution which hurts performance.

Range Partitioning (1/2)

| 2

Key-value RDDs may contain keys that have an ordering defined, e.g., Int, Char,
String, ...

v

For such RDDs, range partitioning may be more efficient.

v

Using a range partitioner, keys are partitioned according to:

e An ordering for keys
e A set of sorted ranges of keys

v

Tuples with keys in the same range appear on the same machine.

Range Partitioning (2/2)

» Using range partitioning the distribution can be improved significantly:

¢ Assumptions: (a) keys non-negative, and (b) 800 is biggest key in the RDD
e Set of ranges: [1, 200], [201, 400], [401, 600], [601, 800]

Range Partitioning (2/2)

» Using range partitioning the distribution can be improved significantly:

¢ Assumptions: (a) keys non-negative, and (b) 800 is biggest key in the RDD
e Set of ranges: [1, 200], [201, 400], [401, 600], [601, 800]

» The range partitioning distributes the keys as follows among the partitions:

e partition 0: [8, 96]

e partition [240, 400]

1
e partition 2: [401]
° partition 3

[800]

Range Partitioning (2/2)

» Using range partitioning the distribution can be improved significantly:
¢ Assumptions: (a) keys non-negative, and (b) 800 is biggest key in the RDD
e Set of ranges: [1, 200], [201, 400], [401, 600], [601, 800]

» The range partitioning distributes the keys as follows among the partitions:
e partition 0: [8, 96]
e partition 1 [240, 400]
e partition 2: [401]
e partition 3 [800]

» The resulting partitioning is much more balanced.

Partition Operations (1/2)

» mapPartitions is similar to map, but runs separately on each partition of the RDD.

val words = sc.parallelize("take it easy, this is a test".split(" "), 2)

def func(partIndex:Int, withinPartIter: Iterator[String]) = {
withinPartIter.tolList.map(value => s"Partition: $partIndex => $value").iterator

}

words .mapPartitionsWithIndex (func).collect()
// Array(Partition: 0 => take, Partition: 0 => 4t, Partition: 0 => easy,,
// Partition: => this, Partition: => 45, Partition: => a, Partition: => test)

Partition Operations (1/2)

» mapPartitions is similar to map, but runs separately on each partition of the RDD.

» mapPartitionsWithIndex applies the function on specific partitions.

val words = sc.parallelize("take it easy, this is a test".split(" "), 2)

def func(partIndex:Int, withinPartIter: Iterator[String]) = {
withinPartIter.tolList.map(value => s"Partition: $partIndex => $value").iterator

}

words .mapPartitionsWithIndex (func).collect()
// Array(Partition: 0 => take, Partition: 0 => 4t, Partition: 0 => easy,,
// Partition: 1 => this, Partition: 1 => 4s, Partition: 1 => a, Partition: 1 => test)

Partition Operations (1/2)

» mapPartitions is similar to map, but runs separately on each partition of the RDD.
» mapPartitionsWithIndex applies the function on specific partitions.

» The given functions must be of type Iterator<T> => Iterator<U> when running
on an RDD of type T.

val words = sc.parallelize("take it easy, this is a test".split(" "), 2)

def func(partIndex:Int, withinPartIter: Iterator[String]) = {
withinPartIter.tolList.map(value => s"Partition: $partIndex => $value").iterator

}

words .mapPartitionsWithIndex (func).collect()
// Array(Partition: 0 => take, Partition: 0 => 4t, Partition: 0 => easy,,
// Partition: 1 => this, Partition: 1 => 4s, Partition: 1 => a, Partition: 1 => test)

Partition Operations (2/2)

> foreachPartitions is similar to mapPartition, but does not return a return a

value.
val words = sc.parallelize("take it easy, this is a test".split(" "), 2)

words.foreachPartition { iter =>
import java.io._
import scala.util.Random
val rndName = new Random() .nextInt ()
val pw = new PrintWriter(new File(s"/tmp/file-${rndName}.txt"))
while (iter.hasNext) {
pw.write(iter.next())
}

pw.close()

Partitioning Data

» How do we set a partitioning for our data?

» There are two ways to create RDDs with specific partitionings:

1. Call partitionBy on an RDD, providing an explicit partitioner.
2. Using transformations that return RDDs with specific partitioners.

pY] Partitioning Data Using partitionBy

% och koNsT
LY

> Invoking partitionBy creates an RDD with a specified partitioner.

val keyword = ...

/7 (4,1, (a,1), (k,1), (e, 1), (i,1), (t,1), (e,1), (a,1), (s,1), (y,1), (,,1),
val tunedPartitioner = new RangePartitioner(3, keyword)

val partitioned = keyword.partitionBy(tunedPartitioner) .persist()

partitioned.getNumPartitions

Partitioning Data Using partitionBy

> Invoking partitionBy creates an RDD with a specified partitioner.

val keyword = ...

/7,1, (a,1), (k,1), (e, 1), (3,1), (t,1), (e,1), (a,1), (s,1), (y,1), (,,1), ...
val tunedPartitioner = new RangePartitioner(3, keyword)
val partitioned = keyword.partitionBy(tunedPartitioner) .persist()

partitioned.getNumPartitions

» The result of partitionBy should be persisted, otherwise the partitioning is re-
peatedly applied each time the partitioned RDD is used.

Partitioning Data Using Transformations

» Some operations on RDDs automatically result in an RDD with a known partitioner
- for when it makes sense.

» For example

e When using sortByKey, a RangePartitioner is used.
* When using groupByKey, a HashPartitioner is used.

Controlling Partitions (1/2)

» The challenge is that not all values for a single key necessarily reside on the same

partition, or even the same worker, but they must be co-located to compute the
result.

> For example, the reduceByKey generates a tuple of a key and the result of executing
a reduce function against all values associated with that key.

Controlling Partitions (2/2)

» With RDDs, you have control over how data is exactly physically distributed across
the cluster.

» coalesce effectively collapses partitions on the same worker in order to avoid a
shuffle.

» repartition operation allows you to repartition your data up or down.

val words = sc.parallelize("take it easy, this is a test".split(" "), 2)

words.coalesce(1) .getNumPartitions

words.repartition(10)

Summary

Summary

>

RDD: a distributed memory abstraction

v

Two types of operations: transformations and actions

v

Lineage graph

v

Caching

v

Wide vs. narrow dependencies

v

Paritioning and shuffle

References

» M. Zaharia et al., “Spark: The Definitive Guide”, O'Reilly Media, 2018 - Chapters
2,12, 13, and 14

» M. Zaharia et al., “Resilient distributed datasets: A fault-tolerant abstraction for
in-memory cluster computing”, USENIX NSDI, 2012.

» Some slides were derived from Heather Miller's slides:
http://heather.miller.am/teaching/cs4240/spring2018

Questions?

	

