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Where Are We?

Data Processing
Vs N
Pregel, GraphLab, PowerGraph Milib
GraphX, X-Streem, Chaos Tensorflow
MapReduce, Dryad Storm, SEEP, Naiad, Spark Streaming, Flink,
FlumeJava, Spark Millwheel, Google Dataflow

Data Storage

Dynamo, BigTable,
GFS, Flat FS Cassandra

Resource Management

Mesos, YARN
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Hive

» A system for managing and querying structured data built on top of MapReduce.

» Converts a query to a series of MapReduce phases.

» Initially developed by Facebook. n




Hive Data Model

» Re-used from RDBMS:

e Database: Set of Tables.

¢ Table: Set of Rows that have the same schema (same columns).
e Row: A single record; a set of columns.

e Column: provides value and type for a single value.

Table

J—Column

<—Row

~—

Database




Hive API (1/2)

» HiveQL: SQL-like query languages




Hive API (1/2)

» HiveQL: SQL-like query languages

» Data Definition Language (DDL) operations
e Create, Alter, Drop

-— DDL: creating a table with three columns
CREATE TABLE customer (id INT, name STRING, address STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ’\t’;




Hive API (2/2)

» Data Manipulation Language (DML) operations

 Load and Insert (overwrite)
e Does not support updating and deleting

-— DML: loading data from a flat file
LOAD DATA LOCAL INPATH ’data.txt’ OVERWRITE INTO TABLE customer;




Hive API (2/2)

» Data Manipulation Language (DML) operations

 Load and Insert (overwrite)
e Does not support updating and deleting

-— DML: loading data from a flat file
LOAD DATA LOCAL INPATH ’data.txt’ OVERWRITE INTO TABLE customer;

» Query operations
 Select, Filter, Join, Groupby

-= Query: joining two tables
SELECT * FROM customer c¢ JOIN order o ON (c.id = o.cus_id);




Executing SQL Questions

> Processes HiveQL statements and generates the execution plan through three-phase
processes.




Executing SQL Questions

> Processes HiveQL statements and generates the execution plan through three-phase
processes.

1. Query parsing: transforms a query string to a parse tree representation.




Executing SQL Questions

> Processes HiveQL statements and generates the execution plan through three-phase
processes.

1. Query parsing: transforms a query string to a parse tree representation.

2. Logical plan generation: converts the internal query representation to a logical plan,
and optimizes it.




Executing SQL Questions

> Processes HiveQL statements and generates the execution plan through three-phase
processes.

1. Query parsing: transforms a query string to a parse tree representation.

2. Logical plan generation: converts the internal query representation to a logical plan,
and optimizes it.

3. Physical plan generation: split the optimized logical plan into multiple map/reduce
tasks.




Hive Architecure

Command-line shell Thrift//DBC
Driver
Physical Plan
Query
Metastore SQL Parser Optimizer SerDes, UDFs
Execution
MapReduce

RDBMS (MySQL)

Hadoop Storage (HDFS, HBase)




» Manages the life cycle of a HiveQL statement during compilation, optimization and
execution.

Hive Architecure - Driver

| Command-line shell || Thrift/|DBC
Driver
Physical Plan
Query
Metastore SQL Parser Optimizer SerDes, UDFs
Execution
| MapReduce

RDBMS (MySQL) ||

Hadoop Storage (HDFS, HBase)




Hive Architecure - Compiler (Parser/Query Optimizer)

» Translates the HiveQL statement into a a logical plan and optimizes it.

| Command-line shell || Thrift/|DBC |
Driver
Physical Plan
Quen
Metastore SQL Parser Optimger SerDes, UDFs
Execution

| MapReduce ‘

‘ RDBMS (MySQL) ” Hadoop Storage (HDFS, HBase) |




Hive Architecure - Physical Plan

» Transforms the logical plan into a DAG of Map/Reduce jobs.

Command-line shell || Thrift/|DBC ‘
Driver
Physical Plan
Quer
Metastore SQL Parser OptimiZer SerDes, UDFs
Execution
| MapReduce ‘

RDBMS (MySQL) || Hadoop Storage (HDFS, HBase) |




Hive Architecure - Execution Engine

» The driver submits the individual mapreduce jobs from the DAG to the execution
engine in a topological order.

| Command-line shell || Thrift/|DBC |
Driver
Physical Plan
Query
Metastore SQL Parser Optimizer SerDes, UDFs
Execution
| MapReduce ‘

‘ RDBMS (MySQL) || Hadoop Storage (HDFS, HBase) |




Spark SQL




Command-line shell || Thrift/J]DBC ‘ Command-line shell |’ Thrift//DBC
Driver Driver
Physical Plan Physical Plan
Quer Quel
Metastore SQL Parser Optimi;er SerDes, UDFs Metastore SQL Parser Optimger SerDes, UDFs
Execution Execution
| MapReduce | Spark

RDBMS (MySQL) ||

Hadoop Storage (HDFS, HBase)

| RDBMS (MySQL) ||

Hadoop Storage (HDFS, HBase)




Shark and Hive In-Memory Store

» Caching Hive records as JVM objects is inefficient.
e 12 to 16 bytes of overhead per object in JVM implementation:

» Shark employs column-oriented storage using arrays of primitive objects.

1 John 4.1 3

2 mike | 3.5 john | mike | sally

3 sally 6.4 4.1 3.5 6.4

Row Storage Column Storage




Shark Limitations

» Limited integration with Spark programs.

» Hive optimizer not designed for Spark.




From Shark to Spark SQL

» Borrows from Shark

e Hive data loading
e In-memory column store

» Adds by Spark

e RDD-aware optimizer (catalyst optimizer)
¢ Adds schema to RDD (DataFrame)
* Rich language interfaces




Spark and Spark SQL

User Programs

JDBC Console (Java, Scala, Python)

v v v
Spark SQL DataFrame API ‘
‘ Catalyst Optimizer ‘
# b 4
Spark

| Resilient Distributed Datasets |




Structured Data vs. RDD (1/2)

> case class Account(name: String, balance: Double, risk: Boolean)

R




Structured Data vs. RDD (1/2)

> case class Account(name: String, balance: Double, risk: Boolean)

» RDD[Account]

R




Structured Data vs. RDD (1/2)

> case class Account(name: String, balance: Double, risk: Boolean)
» RDD[Account]

» RDDs don't know anything about the schema of the data it's dealing with.

R




Structured Data vs. RDD (2/2)

> case class Account(name: String, balance: Double, risk: Boolean)
» RDD[Account]

» A database/Hive sees it as a columns of named and typed values.

name balance: Double : Boolean

name balance: Double : Boolean

name balance: Double : Boolean

name balance: Double : Boolean




DataFrames and DataSets

» Spark has two notions of structured collections:

e DataFrames
e Datasets

» They are distributed table-like collections with well-defined rows and columns.




DataFrames and DataSets

>

Spark has two notions of structured collections:

e DataFrames
e Datasets

v

They are distributed table-like collections with well-defined rows and columns.

v

They represent immutable lazily evaluated plans.

v

When an action is performed on them, Spark performs the actual transformations
and return the result.




DataFrame



DataFrame

Consists of a series of rows and a number of columns.

v

v

Equivalent to a table in a relational database.

v

Spark + RDD: functional transformations on partitioned collections of objects.

v

SQL + DataFrame: declarative transformations on partitioned collections of tuples.

name: balance: Double : Boolean
name: balance: Double : Boolean

name: balance: Double : Boolean

name: balance: Double : Boolean




Schema

» Defines the column names and types of a DataFrame.

» Assume people. json file as an input:

{"name":"Michael", "age":15, "id":12}
{"name":"Andy", "age":30, "id":15}
{"name":"Justin", "age":19, "id":20}
{"name":"Andy", "age":12, "id":15}
{"name":"Jim", "age":19, "id":20}
{"name":"Andy", "age":12, "id":10}




Schema

» Defines the column names and types of a DataFrame.

> Assume people. json file as an input:

{"name":"Michael", "age":15, "id":12}
{"name":"Andy", "age":30, "id":15}
{"name":"Justin", "age":19, "id":20}
{"name":"Andy", "age":12, "id":15}
{"name":"Jim", "age":19, "id":20}
{"name":"Andy", "age":12, "id":10}

val people = spark.read.format("json").load("people.json")
people.schema

// returns:

StructType (StructField(age,LongType,true),
StructField(id,LongType,true),
StructField(name,StringType,true))




Column (1/2)

> They are like columns in a table.
> col returns a reference to a column.
> expr performs transformations on a column.

» columns returns all columns on a DataFrame

val people = spark.read.format("json").load("people.json")
col("age")

exp("age + 5 < 32")

people.columns
// returns: Array[String] = Array(age, id, name)




Column (2/2)

» Different ways to refer to a column.

val people = spark.read.format("json").load("people.json")
people.col("name")

col("name")

column("name")

’name

$"name"

expr ("name")




» A row is a record of data.

» They are of type Row.

» Rows do not have schemas.

import org.apache.spark.sql.Row

val myRow = Row("Seif", 65, 0)




Row

» A row is a record of data.

» They are of type Row.

» Rows do not have schemas.
e The order of values should be the same order as the schema of the DataFrame to
which they might be appended.

» To access data in rows, you need to specify the position that you would like.

import org.apache.spark.sql.Row

val myRow = Row("Seif", 65, 0)

myRow(0) // type Any

myRow (0) .asInstanceOf [String] // String
myRow.getString(0) // String
myRow.getInt(1) // Int




Creating a DataFrame

» Two ways to create a DataFrame:

1. From an RDD
2. From raw data sources




Creating a DataFrame - From an RDD

» The schema automatically inferred.




Creating a DataFrame - From an RDD

» The schema automatically inferred.

» You can use toDF to convert an RDD to DataFrame.

val tupleRDD = sc.parallelize(Array(("seif", 65, 0), ("amir", 40, 1))
val tupleDF = tupleRDD.toDF("name", "age", "id")




Creating a DataFrame - From an RDD

» The schema automatically inferred.

» You can use toDF to convert an RDD to DataFrame.

val tupleRDD = sc.parallelize(Array(("seif", 65, 0), ("amir", 40, 1))
val tupleDF = tupleRDD.toDF("name", "age", "id")

» If RDD contains case class instances, Spark infers the attributes from it.

case class Person(name: String, age: Int, id: Int)
val peopleRDD = sc.parallelize(Array(Person("seif", 65, 0), Person("amir", 40, 1)))
val peopleDF = peopleDF.toDF




Creating a DataFrame - From Data Source

» Data sources supported by Spark.

e CSV, JSON, Parquet, ORC, JDBC/ODBC connections, Plain-text files
e Cassandra, HBase, MongoDB, AWS Redshift, XML, etc.

val peopleJson = spark.read.format("json").load("people.json")

val peopleCsv = spark.read.format("csv")

.option("sep" ) " ; u)
.option("inferSchema", "true")
.option("header", "true")

.load("people.csv")




DataFrame Transformations (1/4)

» Add and remove rows or columns

v

Transform a row into a column (or vice versa)

v

Change the order of rows based on the values in columns

- Remove columns or rows

&

PR

Tronsform a row into a
column or a column into a row

|1

ssssss 0000

= Add rows or columns

-

—— Sort data by values in rows
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S

Y
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[M. Zaharia et al., Spark: The Definitive Guide, 0’Reilly Media, 2018]




DataFrame Transformations (2/4)

» select and selectExpr allow to do the DataFrame equivalent of SQL queries on
a table of data.

// select
people.select ("name", "age", "id").show(2)
people.select(col("name"), expr("age + 3")).show()




DataFrame Transformations (2/4)

» select and selectExpr allow to do the DataFrame equivalent of SQL queries on
a table of data.

// select
people.select ("name", "age", "id").show(2)
people.select(col("name"), expr("age + 3")).show()

// selectEzpr
people.selectExpr("*", "(age < 20) as teenager").show()
people.selectExpr("avg(age)", "count(distinct(name))", "sum(id)").show()




DataFrame Transformations (3/4)

» filter and where both filter rows.

» distinct can be used to extract unique rows.

people.filter(col("age") < 20).show()

people.where("age < 20").show()

people.select ("name") .distinct () .show()




DataFrame Transformations (4/4)

» withColumn adds a new column to a DataFrame.
» withColumnRenamed renames a column.

» drop removes a column.

// withColumn
people.withColumn("teenager", expr("age < 20")).show()

// withColumnRenamed
people.withColumnRenamed("name", "username").columns

// drop
people.drop("name") .columns




DataFrame Actions

Like RDDs, DataFrames also have their own set of actions.

collect: returns an array that contains all of rows in this DataFrame.
count: returns the number of rows in this DataFrame.

first and head: returns the first row of the DataFrame.

show: displays the top 20 rows of the DataFrame in a tabular form.

take: returns the first n rows of the DataFrame.




Aggregation



Aggregation

> In an aggregation you specify
e A key or grouping
e An aggregation function

» The given function must produce one result for each group.




Grouping Types

» Summarizing a complete DataFrame

> Group by

» Windowing




Grouping Types

» Summarizing a complete DataFrame

» Group by

» Windowing




Summarizing a Complete DataFrame Functions (1/2)

» count returns the total number of values.
» countDistinct returns the number of unique groups.

» first and last return the first and last value of a DataFrame.

val people = spark.read.format("json").load("people.json")
people.select (count("age")) .show()

people.select (countDistinct ("name")) .show()

people.select(first("name"), last("age")).show()




Summarizing a Complete DataFrame Functions (2/2)

» min and max extract the minimum and maximum values from a DataFrame.
» sum adds all the values in a column.

> avg calculates the average.

val people = spark.read.format("json").load("people.json")
people.select (min("name"), max("age"), max("id")).show()

people.select (sum("age")) .show ()

people.select (avg("age")) .show()




Grouping Types

» Summarizing a complete DataFrame

> Group by

» Windowing




Group By (1/3)

» Perform aggregations on groups in the data.

» Typically on categorical data.

» We do this grouping in two phases:

1. Specify the column(s) on which we would like to group.
2. Specify the aggregation(s).




Group By (2/3)

» Grouping with expressions

e Rather than passing that function as an expression into a select statement, we specify
it as within agg.

val people = spark.read.format("json").load("people.json")
e P J [PERILE e ]

people.groupBy ("name") .agg(count ("age") .alias("ageagg")) . show ()




Group By (3/3)

» Grouping with Maps
e Specify transformations as a series of Maps
e The key is the column, and the value is the aggregation function (as a string).

val people = spark.read.format("json").load("people.json")

people.groupBy("name") .agg("age" -> "count", "age" -> "avg", "id" -> "max").show()




Grouping Types

» Summarizing a complete DataFrame

» Group by

» Windowing




Windowing (1/2)

>

Computing some aggregation on a specific window of data.

v

The window determines which rows will be passed in to this function.

v

You define them by using a reference to the current data.

v

A group of rows is called a frame.
rows

Window
Frames

[M. Zaharia et al., Spark: The Definitive Guide, 0’Reilly Media, 2018]




Windowing (2/2)

» Unlike grouping, here each row can fall into one or more frames.

import org.apache.spark.sql.expressions.Window
import org.apache.spark.sql.functions.col

val people = spark.read.format("json").load("people.json")

val windowSpec = Window.rowsBetween(-1, 1)
val avgAge = avg(col("age")) .over (windowSpec)
people.select(col("name"), col("age"), avgAge.alias("avg_age")).show




Joins




» Joins are relational constructs you use to combine relations together.

» Different join types: inner join, outer join, left outer join, right outer join, left semi
join, left anti join, cross join

4

Employee ID | First Name | Department ID Department | Department
1 John 10 ID Name

2 Daniel 20 10 Sales

3 Anne 10 20 HR

4 George 20

5 Tim 10

First Name | Department
Name

John Sales

Daniel HR

Anne Sales

George HR

Tim Sales




Joins Example

val person = Seq((0, "Seif", 0), (1, "Amir", 1), (2, "Sarunas", 1))
.toDF("id", "name", "group_id")

val group = Seq((0, "SICS/KTH"), (1, "KTH"), (2, "SICS"))
.toDF("id", "department")




Joins Example - Inner

val joinExpression = person.col("group_id") === group.col("id")
var joinType = "inner"

person. join(group, joinExpression, joinType) .show()

| id|  name|group_id| id|department]|
Fom it m pomm oo e +
| ol Seifl 0| 0l SICS/KTHI
| 1l Amir| 1 1] KTH|
| 2|Sarunas]| 11 1] KTH|

+

ar ar




Joins Example - Outer

val joinExpression = person.col("group_id") === group.col("id")
var joinType = "outer"

person. join(group, joinExpression, joinType) .show()

s s 4 s " "
+ +

id|  namelgroup_id| idl|department |

ol Seif| 0l Ol SICS/KTHI

: : : ' '

|
| 1]  Amir| 1 1] KTH|
| 2|Sarunas| 1] 1] KTH|
|null| null | null| 2| SICS|
|

+




Joins Communication Strategies

» Two different communication ways during joins:

e Shuffle join: big table to big table
» Broadcast join: big table to small table




Shuffle Join

» Every node talks to every other node.

» They share data according to which node has a certain key or set of keys.

Execu’ror;

.
:" ,’an

)

-join...

Partition in Table | Poartition in Table 2
(laig table) (b’lﬂ table)

[M. Zaharia et al., Spark: The Definitive Guide, 0’Reilly Media, 2018]




Broadcast Join

» When the table is small enough to fit into the memory of a single worker node.

@ @

Executor

Executor
Driver Driver
DD ” @
e o
¢
Y . ¢
\ N Create T
e ! N Executor broadcast 1
1y DD variable
Partition in Table | Partition in Table 2
(small +able) (laia table)

[M. Zaharia et al., Spark: The Definitive Guide, 0’Reilly Media, 2018]
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» You can run SQL queries on views/tables via the method sql on the SparkSession
object.

spark.sql ("SELECT * from people_view").show()

| 15| 12|Michaell
| 30| 15|  Andyl
| 19] 20| Justin|
| 12| 15|  Andyl
| 19] 20| Jim|
| 12| 10|  Andyl

fom - +




Temporary View

» createOrReplaceTempView creates (or replaces) a lazily evaluated view.

» You can use it like a table in Spark SQL.

people.createOrReplaceTempView ("people_view")

val teenagersDF = spark.sql("SELECT name, age FROM people_view WHERE age BETWEEN 13 AND 19")




DataSet




Untyped APl with DataFrame

» DataFrames elements are Rows, which are generic untyped JVM objects.

> Scala compiler cannot type check Spark SQL schemas in DataFrames.




Untyped APl with DataFrame

» DataFrames elements are Rows, which are generic untyped JVM objects.

> Scala compiler cannot type check Spark SQL schemas in DataFrames.

» The following code compiles, but you get a runtime exception.
e id_num is not in the DataFrame columns [name, age, id]

// people columns: ("name", "age", "id")
val people = spark.read.format("json").load("people.json")

people.filter("id_num < 20") // runtime exception




Why DataSet?

» Assume the following example

case class Person(name: String, age: BigInt, id: BigInt)
val peopleRDD = sc.parallelize(Array(Person("seif", 65, 0), Person("amir", 40, 1)))
val peopleDF = peopleRDD.toDF




Why DataSet?

» Assume the following example
case class Person(name: String, age: BigInt, id: BigInt)

val peopleRDD = sc.parallelize(Array(Person("seif", 65, 0), Person("amir", 40, 1)))
val peopleDF = peopleRDD.toDF

» Now, let's use collect to bring back it to the master.

val collectedPeople = peopleDF.collect ()
// collectedPeople: Arrayl[org.apache.spark.sql.Row]




Why DataSet?

» Assume the following example
case class Person(name: String, age: BigInt, id: BigInt)
val peopleRDD = sc.parallelize(Array(Person("seif", 65, 0), Person("amir", 40, 1)))
val peopleDF = peopleRDD.toDF

» Now, let's use collect to bring back it to the master.

val collectedPeople = peopleDF.collect ()
// collectedPeople: Arrayl[org.apache.spark.sql.Row]

» What is in Row?




Why DataSet?

» To be able to work with the collected values, we should cast the Rows.

e How many columns?
e What types?

// Person(name: Sting, age: BigInt, td: BigInt)

val collectedList = collectedPeople.map {
row => (row(0).asInstanceOf [String], row(1l).asInstanceOf [Int], row(2).asInstanceOf [Int])

}




Why DataSet?

» To be able to work with the collected values, we should cast the Rows.

e How many columns?
e What types?

// Person(name: Sting, age: BigInt, td: BigInt)
val collectedList = collectedPeople.map {
row => (row(0).asInstanceOf [String], row(1l).asInstanceOf [Int], row(2).asInstanceOf [Int])

}

» But, what if we cast the types wrong?

» Wouldn't it be nice if we could have both Spark SQL optimizations and typesafety?




DataSet

» Datasets can be thought of as typed distributed collections of data.

» Dataset API unifies the DataFrame and RDD APIs.

» You can consider a DataFrame as an alias for Dataset [Row], where a Row is a
generic untyped JVM object.

type DataFrame = Dataset[Row]

Datasets

.*Spc'u%z

[http://why-not-learn-something.blogspot.com/2016/07/apache-spark-rdd-vs-dataframe-vs-dataset.html]




Structured APIs in Spark

Structured APIs In Spark

SQL DataFrames Datasets

A

Syntax , Compile Compile
Errors Runtime Time Time
Analysis Runtime Runtime Compile

Errors Time

[J.S. Damji et al., Learning Spark - Lightning-Fast Data Analytics]




Creating DataSets

» To convert a sequence or an RDD to a Dataset, we can use toDS().

» You can call as[SomeCaseClass] to convert the DataFrame to a Dataset.

case class Person(name: String, age: BigInt, id: BiglInt)
val personSeq = Seq(Person("Max", 33, 0), Person("Adam", 32, 1))




Creating DataSets

» To convert a sequence or an RDD to a Dataset, we can use toDS().

» You can call as[SomeCaseClass] to convert the DataFrame to a Dataset.

case class Person(name: String, age: BigInt, id: BiglInt)
val personSeq = Seq(Person("Max", 33, 0), Person("Adam", 32, 1))

val dsl = sc.parallelize(personSeq) .toDS




Creating DataSets

» To convert a sequence or an RDD to a Dataset, we can use toDS().

» You can call as[SomeCaseClass] to convert the DataFrame to a Dataset.

case class Person(name: String, age: BigInt, id: BiglInt)
val personSeq = Seq(Person("Max", 33, 0), Person("Adam", 32, 1))

val dsl = sc.parallelize(personSeq) .toDS

val ds2 = spark.read.format("json").load("people.json").as[Person]




DataSet Transformations

» Transformations on Datasets are the same as those that we had on DataFrames.

» Datasets allow us to specify more complex and strongly typed transformations.

case class Person(name: String, age: BigInt, id: BiglInt)
val people = spark.read.format("json").load("people.json").as[Person]

people.filter(x => x.age < 40).show()

people.map(x => (x.name, x.age + 5, x.id)).show()




Structured Data Execution



Structured Data Execution Steps

» 1. Write DataFrame/Dataset/SQL Code.
» 2. If valid code, Spark converts this to a logical plan.

» 3. Spark transforms this logical plan to a Physical Plan
e Checking for optimizations along the way.

» 4. Spark then executes this physical plan (RDD manipulations) on the cluster.

Physical Plan
sQL o
5
S
~
9
DataFromes 0o
o
==
el
B
Datasets 3

[M. Zaharia et al., Spark: The Definitive Guide, 0’Reilly Media, 2018]




Logical Planning (1/2)

» The logical plan represents a set of abstract transformations.

" Loagical
i ’ X
Unresolved naly=e Resolved Pl ma=aiicn Optimized
Code logical plan T ? logical plan logical plon
Ca’ralog

[MA Zaharia et al., Spark: The Definitive Guide, 0’Reilly Media, 2018]




Logical Planning (1/2)

» The logical plan represents a set of abstract transformations.

» This plan is unresolved.
e The code might be valid, the tables/columns that it refers to might not exist.

" Loagical
i ’ X
Unresolved naly=e Resolved Pl ma=aiicn Optimized
Code logical plan T ? logical plan logical plon
Ca’ralog

[MA Zaharia et al., Spark: The Definitive Guide, 0’Reilly Media, 2018]




Logical Planning (1/2)

» The logical plan represents a set of abstract transformations.

» This plan is unresolved.
e The code might be valid, the tables/columns that it refers to might not exist.

» Spark uses the catalog, a repository of all table and DataFrame information, to
resolve columns and tables in the analyzer.

" Loagical
i ’ X
Unresolved naly=e Resolved Pl ma=aiicn Optimized
Code logical plan T ? logical plan logical plon
Ca’ralog

[M. Zaharia et al., Spark: The Definitive Guide, 0’Reilly Media, 2018]




Logical Planning (2/2)

» The analyzer might reject the unresolved logical plan.

" Logical

nalysi i i

User Unresolved i Resolved OPJﬂmmJﬂon\ OP-Hmized

Code logical plan T ’ logical plan logical plan
Ca+aloa

[M. Zaharia et al., Spark: The Definitive Guide, 0’Reilly Media, 2018]




Logical Planning (2/2)

» The analyzer might reject the unresolved logical plan.

» If the analyzer can resolve it, the result is passed through the Catalyst optimizer.

» |t converts the user’s set of expressions into the most optimized version.

User

Code

Unresolved
Iogical Plan

[M. Zaharia et al.,

Analysis

Resolved

Logical

Op+im|za+ion\ op Himized

Ca+aloa

Spark:

T logical plan

Iogical Plan

The Definitive Guide, 0’Reilly Media, 2018]




Physical Planning

» The physical plan specifies how the logical plan will execute on the cluster.

» Physical planning results in a series of RDDs and transformations.

Physical Executed on
OP+imized Plans the cluster
logica! plan
\ Cost 'D
\ Model ”‘;——
est
/I> > Physical Plan

[M. Zaharia et al., Spark: The Definitive Guide, 0’Reilly Media, 2018]




Execution

» Upon selecting a physical plan, Spark runs all of this code over RDDs.

» Spark performs further optimizations at runtime.

» Finally the result is returned to the user.




Optimization



Optimization

» Spark SQL comes with two specialized backend components:

e Catalyst: a query optimizer
e Tungsten: off-heap serializer




Catalyst Optimizer



Catalyst Optimizer

» Catalyst is Spark SQL query optimizer.
» It compiles Spark SQL queries to RDDs and transformations.

» Optimization includes
» Reordering operations

* Reduce the amount of data we must read JOBC | | Console User Programs
. e (Java, Scala, Python)

* Pruning unneed partitioning

v v v

Spark SQL DataFrame API

| Catalyst Optimizer ‘
v
Spark

| Resilient Distributed Datasets




Catalyst Optimizer - Logical Optimization

» Applies standard rule-based optimizations to the logical plan.

val users = sqlContext.read.parquet("...")
val events = sqlContext.read.parquet("...")
val joined = events.join(users, ...)

val result = joined.select(...)

Physical Plan
with Predicate Pushdown
and Column Pruning

optimized
scan
(events)

Logical Plan Physical Plan

filter

oin

erents e

optimized
scan
(users)
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Tungsten



Tungsten

» Spark workloads are increasingly bottlenecked by CPU and memory use rather than
IO and network communication.

» Tungsten improves the memory and CPU efficiency of Spark backend execution and
push performance closer to the limits of modern hardware.

> It provides

e Column-based datastore
e Off-heap memory management
* Highly-specialized data encoders




Tungsten - Column-Based

» Most table operations are on specific columns/attributes of a dataset.
» To store data, group them by column, instead of row.

» Faster lookup of data associated with specific column/attribute.

1 John 4.1

mike | 3.5 john | mike | sally

3 sally 6.4 4.1 3.5 6.4

Row Storage Column Storage




Tungsten - Off-Heap

> Perform manual memory management instead of relying on Java objects.
» Eliminate garbage collection overheads.

» Use java.unsafe and off heap memory.

JVM Object ———————» MyClass(123, "data", "bricks")

Internal Representation —» ex0|123|32L|48L|4|"data" 6

"bricks"

[J.S. Damji et al., Learning Spark - Lightning-Fast Data Analytics]




Tungsten - Data Encoder

» Tungsten can take schema information and tightly pack serialized data into memory.
» More data can fit in memory.

» We have faster serialization and deserialization.

(123, "data”, "bricks")

| —
‘ Offset to
i | data

A 4 v

[ oxe [ 123 | 32 | 48 [ 4 [ 'data" [ 6 ['bricks"
Null Offset to Field
bitmap data lengths

[J.S. Damji et al., Learning Spark - Lightning-Fast Data Analytics]




Summary




Summary

RDD vs. DataFrame vs. DataSet

>

v

Logical and physical plans

v

Catalyst optmizer

v

Tungsten project




References

» M. Zaharia et al., “Spark: The Definitive Guide”, O'Reilly Media, 2018 - Chapters
4-11.

» M. Armbrust et al., “Spark SQL: Relational data processing in spark”, ACM SIG-
MOD, 2015.

Some slides were derived from Heather Miller’s slides:
http://heather.miller.am/teaching/cs4240/spring2018

v



Questions?



	

