iﬁéﬁm B éi}
"“%3;4’:‘.?“ ©

Structured Data Processing - Spark SQL

Amir H. Payberah
payberah@kth.se
2021-09-20

The Course Web Page

https://1id2221kth.github.io

https://tinyurl.com/f6x544h

https://id2221kth.github.io
https://tinyurl.com/f6x544h

Where Are We?

Data Processing
Vs N
Pregel, GraphLab, PowerGraph Milib
GraphX, X-Streem, Chaos Tensorflow
MapReduce, Dryad Storm, SEEP, Naiad, Spark Streaming, Flink,
FlumeJava, Spark Millwheel, Google Dataflow

Data Storage

Dynamo, BigTable,
GFS, Flat FS Cassandra

Resource Management

Mesos, YARN

Motivation

Structured Data Unskruceured Daka
EEEEEEN
EEEEEEN
EEEEEEN
EEEEEEN

Hive

» A system for managing and querying structured data built on top of MapReduce.

» Converts a query to a series of MapReduce phases.

» Initially developed by Facebook. n

Hive Data Model

» Re-used from RDBMS:

e Database: Set of Tables.

¢ Table: Set of Rows that have the same schema (same columns).
e Row: A single record; a set of columns.

e Column: provides value and type for a single value.

Table

J—Column

<—Row

~—

Database

Hive API (1/2)

» HiveQL: SQL-like query languages

Hive API (1/2)

» HiveQL: SQL-like query languages

» Data Definition Language (DDL) operations
e Create, Alter, Drop

-— DDL: creating a table with three columns
CREATE TABLE customer (id INT, name STRING, address STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ’\t’;

Hive API (2/2)

» Data Manipulation Language (DML) operations

 Load and Insert (overwrite)
e Does not support updating and deleting

-— DML: loading data from a flat file
LOAD DATA LOCAL INPATH ’data.txt’ OVERWRITE INTO TABLE customer;

Hive API (2/2)

» Data Manipulation Language (DML) operations

 Load and Insert (overwrite)
e Does not support updating and deleting

-— DML: loading data from a flat file
LOAD DATA LOCAL INPATH ’data.txt’ OVERWRITE INTO TABLE customer;

» Query operations
 Select, Filter, Join, Groupby

-= Query: joining two tables
SELECT * FROM customer c¢ JOIN order o ON (c.id = o.cus_id);

Executing SQL Questions

> Processes HiveQL statements and generates the execution plan through three-phase
processes.

Executing SQL Questions

> Processes HiveQL statements and generates the execution plan through three-phase
processes.

1. Query parsing: transforms a query string to a parse tree representation.

Executing SQL Questions

> Processes HiveQL statements and generates the execution plan through three-phase
processes.

1. Query parsing: transforms a query string to a parse tree representation.

2. Logical plan generation: converts the internal query representation to a logical plan,
and optimizes it.

Executing SQL Questions

> Processes HiveQL statements and generates the execution plan through three-phase
processes.

1. Query parsing: transforms a query string to a parse tree representation.

2. Logical plan generation: converts the internal query representation to a logical plan,
and optimizes it.

3. Physical plan generation: split the optimized logical plan into multiple map/reduce
tasks.

Hive Architecure

Command-line shell Thrift//DBC
Driver
Physical Plan
Query
Metastore SQL Parser Optimizer SerDes, UDFs
Execution
MapReduce

RDBMS (MySQL)

Hadoop Storage (HDFS, HBase)

» Manages the life cycle of a HiveQL statement during compilation, optimization and
execution.

Hive Architecure - Driver

| Command-line shell || Thrift/|DBC
Driver
Physical Plan
Query
Metastore SQL Parser Optimizer SerDes, UDFs
Execution
| MapReduce

RDBMS (MySQL) ||

Hadoop Storage (HDFS, HBase)

Hive Architecure - Compiler (Parser/Query Optimizer)

» Translates the HiveQL statement into a a logical plan and optimizes it.

| Command-line shell || Thrift/|DBC |
Driver
Physical Plan
Quen
Metastore SQL Parser Optimger SerDes, UDFs
Execution

| MapReduce ‘

‘ RDBMS (MySQL) ” Hadoop Storage (HDFS, HBase) |

Hive Architecure - Physical Plan

» Transforms the logical plan into a DAG of Map/Reduce jobs.

Command-line shell || Thrift/|DBC ‘
Driver
Physical Plan
Quer
Metastore SQL Parser OptimiZer SerDes, UDFs
Execution
| MapReduce ‘

RDBMS (MySQL) || Hadoop Storage (HDFS, HBase) |

Hive Architecure - Execution Engine

» The driver submits the individual mapreduce jobs from the DAG to the execution
engine in a topological order.

| Command-line shell || Thrift/|DBC |
Driver
Physical Plan
Query
Metastore SQL Parser Optimizer SerDes, UDFs
Execution
| MapReduce ‘

‘ RDBMS (MySQL) || Hadoop Storage (HDFS, HBase) |

Spark SQL

Command-line shell || Thrift/J]DBC ‘ Command-line shell |’ Thrift//DBC
Driver Driver
Physical Plan Physical Plan
Quer Quel
Metastore SQL Parser Optimi;er SerDes, UDFs Metastore SQL Parser Optimger SerDes, UDFs
Execution Execution
| MapReduce | Spark

RDBMS (MySQL) ||

Hadoop Storage (HDFS, HBase)

| RDBMS (MySQL) ||

Hadoop Storage (HDFS, HBase)

Shark and Hive In-Memory Store

» Caching Hive records as JVM objects is inefficient.
e 12 to 16 bytes of overhead per object in JVM implementation:

» Shark employs column-oriented storage using arrays of primitive objects.

1 John 4.1 3

2 mike | 3.5 john | mike | sally

3 sally 6.4 4.1 3.5 6.4

Row Storage Column Storage

Shark Limitations

» Limited integration with Spark programs.

» Hive optimizer not designed for Spark.

From Shark to Spark SQL

» Borrows from Shark

e Hive data loading
e In-memory column store

» Adds by Spark

e RDD-aware optimizer (catalyst optimizer)
¢ Adds schema to RDD (DataFrame)
* Rich language interfaces

Spark and Spark SQL

User Programs

JDBC Console (Java, Scala, Python)

v v v
Spark SQL DataFrame API ‘
‘ Catalyst Optimizer ‘
b 4
Spark

| Resilient Distributed Datasets |

Structured Data vs. RDD (1/2)

> case class Account(name: String, balance: Double, risk: Boolean)

R

Structured Data vs. RDD (1/2)

> case class Account(name: String, balance: Double, risk: Boolean)

» RDD[Account]

R

Structured Data vs. RDD (1/2)

> case class Account(name: String, balance: Double, risk: Boolean)
» RDD[Account]

» RDDs don't know anything about the schema of the data it's dealing with.

R

Structured Data vs. RDD (2/2)

> case class Account(name: String, balance: Double, risk: Boolean)
» RDD[Account]

» A database/Hive sees it as a columns of named and typed values.

name balance: Double : Boolean

name balance: Double : Boolean

name balance: Double : Boolean

name balance: Double : Boolean

DataFrames and DataSets

» Spark has two notions of structured collections:

e DataFrames
e Datasets

» They are distributed table-like collections with well-defined rows and columns.

DataFrames and DataSets

>

Spark has two notions of structured collections:

e DataFrames
e Datasets

v

They are distributed table-like collections with well-defined rows and columns.

v

They represent immutable lazily evaluated plans.

v

When an action is performed on them, Spark performs the actual transformations
and return the result.

DataFrame

DataFrame

Consists of a series of rows and a number of columns.

v

v

Equivalent to a table in a relational database.

v

Spark + RDD: functional transformations on partitioned collections of objects.

v

SQL + DataFrame: declarative transformations on partitioned collections of tuples.

name: balance: Double : Boolean
name: balance: Double : Boolean

name: balance: Double : Boolean

name: balance: Double : Boolean

Schema

» Defines the column names and types of a DataFrame.

» Assume people. json file as an input:

{"name":"Michael", "age":15, "id":12}
{"name":"Andy", "age":30, "id":15}
{"name":"Justin", "age":19, "id":20}
{"name":"Andy", "age":12, "id":15}
{"name":"Jim", "age":19, "id":20}
{"name":"Andy", "age":12, "id":10}

Schema

» Defines the column names and types of a DataFrame.

> Assume people. json file as an input:

{"name":"Michael", "age":15, "id":12}
{"name":"Andy", "age":30, "id":15}
{"name":"Justin", "age":19, "id":20}
{"name":"Andy", "age":12, "id":15}
{"name":"Jim", "age":19, "id":20}
{"name":"Andy", "age":12, "id":10}

val people = spark.read.format("json").load("people.json")
people.schema

// returns:

StructType (StructField(age,LongType,true),
StructField(id,LongType,true),
StructField(name,StringType,true))

Column (1/2)

> They are like columns in a table.
> col returns a reference to a column.
> expr performs transformations on a column.

» columns returns all columns on a DataFrame

val people = spark.read.format("json").load("people.json")
col("age")

exp("age + 5 < 32")

people.columns
// returns: Array[String] = Array(age, id, name)

Column (2/2)

» Different ways to refer to a column.

val people = spark.read.format("json").load("people.json")
people.col("name")

col("name")

column("name")

’name

$"name"

expr ("name")

» A row is a record of data.

» They are of type Row.

» Rows do not have schemas.

import org.apache.spark.sql.Row

val myRow = Row("Seif", 65, 0)

Row

» A row is a record of data.

» They are of type Row.

» Rows do not have schemas.
e The order of values should be the same order as the schema of the DataFrame to
which they might be appended.

» To access data in rows, you need to specify the position that you would like.

import org.apache.spark.sql.Row

val myRow = Row("Seif", 65, 0)

myRow(0) // type Any

myRow (0) .asInstanceOf [String] // String
myRow.getString(0) // String
myRow.getInt(1) // Int

Creating a DataFrame

» Two ways to create a DataFrame:

1. From an RDD
2. From raw data sources

Creating a DataFrame - From an RDD

» The schema automatically inferred.

Creating a DataFrame - From an RDD

» The schema automatically inferred.

» You can use toDF to convert an RDD to DataFrame.

val tupleRDD = sc.parallelize(Array(("seif", 65, 0), ("amir", 40, 1))
val tupleDF = tupleRDD.toDF("name", "age", "id")

Creating a DataFrame - From an RDD

» The schema automatically inferred.

» You can use toDF to convert an RDD to DataFrame.

val tupleRDD = sc.parallelize(Array(("seif", 65, 0), ("amir", 40, 1))
val tupleDF = tupleRDD.toDF("name", "age", "id")

» If RDD contains case class instances, Spark infers the attributes from it.

case class Person(name: String, age: Int, id: Int)
val peopleRDD = sc.parallelize(Array(Person("seif", 65, 0), Person("amir", 40, 1)))
val peopleDF = peopleDF.toDF

Creating a DataFrame - From Data Source

» Data sources supported by Spark.

e CSV, JSON, Parquet, ORC, JDBC/ODBC connections, Plain-text files
e Cassandra, HBase, MongoDB, AWS Redshift, XML, etc.

val peopleJson = spark.read.format("json").load("people.json")

val peopleCsv = spark.read.format("csv")

.option("sep") " ; u)
.option("inferSchema", "true")
.option("header", "true")

.load("people.csv")

DataFrame Transformations (1/4)

» Add and remove rows or columns

v

Transform a row into a column (or vice versa)

v

Change the order of rows based on the values in columns

- Remove columns or rows

&

PR

Tronsform a row into a
column or a column into a row

|1

ssssss 0000

= Add rows or columns

-

—— Sort data by values in rows

IS
S

Y

Vesssssssansnd

[M. Zaharia et al., Spark: The Definitive Guide, 0’Reilly Media, 2018]

DataFrame Transformations (2/4)

» select and selectExpr allow to do the DataFrame equivalent of SQL queries on
a table of data.

// select
people.select ("name", "age", "id").show(2)
people.select(col("name"), expr("age + 3")).show()

DataFrame Transformations (2/4)

» select and selectExpr allow to do the DataFrame equivalent of SQL queries on
a table of data.

// select
people.select ("name", "age", "id").show(2)
people.select(col("name"), expr("age + 3")).show()

// selectEzpr
people.selectExpr("*", "(age < 20) as teenager").show()
people.selectExpr("avg(age)", "count(distinct(name))", "sum(id)").show()

DataFrame Transformations (3/4)

» filter and where both filter rows.

» distinct can be used to extract unique rows.

people.filter(col("age") < 20).show()

people.where("age < 20").show()

people.select ("name") .distinct () .show()

DataFrame Transformations (4/4)

» withColumn adds a new column to a DataFrame.
» withColumnRenamed renames a column.

» drop removes a column.

// withColumn
people.withColumn("teenager", expr("age < 20")).show()

// withColumnRenamed
people.withColumnRenamed("name", "username").columns

// drop
people.drop("name") .columns

DataFrame Actions

Like RDDs, DataFrames also have their own set of actions.

collect: returns an array that contains all of rows in this DataFrame.
count: returns the number of rows in this DataFrame.

first and head: returns the first row of the DataFrame.

show: displays the top 20 rows of the DataFrame in a tabular form.

take: returns the first n rows of the DataFrame.

Aggregation

Aggregation

> In an aggregation you specify
e A key or grouping
e An aggregation function

» The given function must produce one result for each group.

Grouping Types

» Summarizing a complete DataFrame

> Group by

» Windowing

Grouping Types

» Summarizing a complete DataFrame

» Group by

» Windowing

Summarizing a Complete DataFrame Functions (1/2)

» count returns the total number of values.
» countDistinct returns the number of unique groups.

» first and last return the first and last value of a DataFrame.

val people = spark.read.format("json").load("people.json")
people.select (count("age")) .show()

people.select (countDistinct ("name")) .show()

people.select(first("name"), last("age")).show()

Summarizing a Complete DataFrame Functions (2/2)

» min and max extract the minimum and maximum values from a DataFrame.
» sum adds all the values in a column.

> avg calculates the average.

val people = spark.read.format("json").load("people.json")
people.select (min("name"), max("age"), max("id")).show()

people.select (sum("age")) .show ()

people.select (avg("age")) .show()

Grouping Types

» Summarizing a complete DataFrame

> Group by

» Windowing

Group By (1/3)

» Perform aggregations on groups in the data.

» Typically on categorical data.

» We do this grouping in two phases:

1. Specify the column(s) on which we would like to group.
2. Specify the aggregation(s).

Group By (2/3)

» Grouping with expressions

e Rather than passing that function as an expression into a select statement, we specify
it as within agg.

val people = spark.read.format("json").load("people.json")
e P J [PERILE e]

people.groupBy ("name") .agg(count ("age") .alias("ageagg")) . show ()

Group By (3/3)

» Grouping with Maps
e Specify transformations as a series of Maps
e The key is the column, and the value is the aggregation function (as a string).

val people = spark.read.format("json").load("people.json")

people.groupBy("name") .agg("age" -> "count", "age" -> "avg", "id" -> "max").show()

Grouping Types

» Summarizing a complete DataFrame

» Group by

» Windowing

Windowing (1/2)

>

Computing some aggregation on a specific window of data.

v

The window determines which rows will be passed in to this function.

v

You define them by using a reference to the current data.

v

A group of rows is called a frame.
rows

Window
Frames

[M. Zaharia et al., Spark: The Definitive Guide, 0’Reilly Media, 2018]

Windowing (2/2)

» Unlike grouping, here each row can fall into one or more frames.

import org.apache.spark.sql.expressions.Window
import org.apache.spark.sql.functions.col

val people = spark.read.format("json").load("people.json")

val windowSpec = Window.rowsBetween(-1, 1)
val avgAge = avg(col("age")) .over (windowSpec)
people.select(col("name"), col("age"), avgAge.alias("avg_age")).show

Joins

» Joins are relational constructs you use to combine relations together.

» Different join types: inner join, outer join, left outer join, right outer join, left semi
join, left anti join, cross join

4

Employee ID | First Name | Department ID Department | Department
1 John 10 ID Name

2 Daniel 20 10 Sales

3 Anne 10 20 HR

4 George 20

5 Tim 10

First Name | Department
Name

John Sales

Daniel HR

Anne Sales

George HR

Tim Sales

Joins Example

val person = Seq((0, "Seif", 0), (1, "Amir", 1), (2, "Sarunas", 1))
.toDF("id", "name", "group_id")

val group = Seq((0, "SICS/KTH"), (1, "KTH"), (2, "SICS"))
.toDF("id", "department")

Joins Example - Inner

val joinExpression = person.col("group_id") === group.col("id")
var joinType = "inner"

person. join(group, joinExpression, joinType) .show()

| id| name|group_id| id|department]|
Fom it m pomm oo e +
| ol Seifl 0| 0l SICS/KTHI
| 1l Amir| 1 1] KTH|
| 2|Sarunas]| 11 1] KTH|

+

ar ar

Joins Example - Outer

val joinExpression = person.col("group_id") === group.col("id")
var joinType = "outer"

person. join(group, joinExpression, joinType) .show()

s s 4 s " "
+ +

id| namelgroup_id| idl|department |

ol Seif| 0l Ol SICS/KTHI

: : : ' '

|
1] Amir	1 1] KTH			
2	Sarunas	1] 1] KTH		
null	null	null	2	SICS

+

Joins Communication Strategies

» Two different communication ways during joins:

e Shuffle join: big table to big table
» Broadcast join: big table to small table

Shuffle Join

» Every node talks to every other node.

» They share data according to which node has a certain key or set of keys.

Execu’ror;

.
:" ,’an

)

-join...

Partition in Table | Poartition in Table 2
(laig table) (b’lﬂ table)

[M. Zaharia et al., Spark: The Definitive Guide, 0’Reilly Media, 2018]

Broadcast Join

» When the table is small enough to fit into the memory of a single worker node.

@ @

Executor

Executor
Driver Driver
DD ” @
e o
¢
Y . ¢
\ N Create T
e ! N Executor broadcast 1
1y DD variable
Partition in Table | Partition in Table 2
(small +able) (laia table)

[M. Zaharia et al., Spark: The Definitive Guide, 0’Reilly Media, 2018]

L

» You can run SQL queries on views/tables via the method sql on the SparkSession
object.

spark.sql ("SELECT * from people_view").show()

| 15| 12|Michaell
| 30| 15| Andyl
| 19] 20| Justin|
| 12| 15| Andyl
| 19] 20| Jim|
| 12| 10| Andyl

fom - +

Temporary View

» createOrReplaceTempView creates (or replaces) a lazily evaluated view.

» You can use it like a table in Spark SQL.

people.createOrReplaceTempView ("people_view")

val teenagersDF = spark.sql("SELECT name, age FROM people_view WHERE age BETWEEN 13 AND 19")

DataSet

Untyped APl with DataFrame

» DataFrames elements are Rows, which are generic untyped JVM objects.

> Scala compiler cannot type check Spark SQL schemas in DataFrames.

Untyped APl with DataFrame

» DataFrames elements are Rows, which are generic untyped JVM objects.

> Scala compiler cannot type check Spark SQL schemas in DataFrames.

» The following code compiles, but you get a runtime exception.
e id_num is not in the DataFrame columns [name, age, id]

// people columns: ("name", "age", "id")
val people = spark.read.format("json").load("people.json")

people.filter("id_num < 20") // runtime exception

Why DataSet?

» Assume the following example

case class Person(name: String, age: BigInt, id: BigInt)
val peopleRDD = sc.parallelize(Array(Person("seif", 65, 0), Person("amir", 40, 1)))
val peopleDF = peopleRDD.toDF

Why DataSet?

» Assume the following example
case class Person(name: String, age: BigInt, id: BigInt)

val peopleRDD = sc.parallelize(Array(Person("seif", 65, 0), Person("amir", 40, 1)))
val peopleDF = peopleRDD.toDF

» Now, let's use collect to bring back it to the master.

val collectedPeople = peopleDF.collect ()
// collectedPeople: Arrayl[org.apache.spark.sql.Row]

Why DataSet?

» Assume the following example
case class Person(name: String, age: BigInt, id: BigInt)
val peopleRDD = sc.parallelize(Array(Person("seif", 65, 0), Person("amir", 40, 1)))
val peopleDF = peopleRDD.toDF

» Now, let's use collect to bring back it to the master.

val collectedPeople = peopleDF.collect ()
// collectedPeople: Arrayl[org.apache.spark.sql.Row]

» What is in Row?

Why DataSet?

» To be able to work with the collected values, we should cast the Rows.

e How many columns?
e What types?

// Person(name: Sting, age: BigInt, td: BigInt)

val collectedList = collectedPeople.map {
row => (row(0).asInstanceOf [String], row(1l).asInstanceOf [Int], row(2).asInstanceOf [Int])

}

Why DataSet?

» To be able to work with the collected values, we should cast the Rows.

e How many columns?
e What types?

// Person(name: Sting, age: BigInt, td: BigInt)
val collectedList = collectedPeople.map {
row => (row(0).asInstanceOf [String], row(1l).asInstanceOf [Int], row(2).asInstanceOf [Int])

}

» But, what if we cast the types wrong?

» Wouldn't it be nice if we could have both Spark SQL optimizations and typesafety?

DataSet

» Datasets can be thought of as typed distributed collections of data.

» Dataset API unifies the DataFrame and RDD APIs.

» You can consider a DataFrame as an alias for Dataset [Row], where a Row is a
generic untyped JVM object.

type DataFrame = Dataset[Row]

Datasets

.*Spc'u%z

[http://why-not-learn-something.blogspot.com/2016/07/apache-spark-rdd-vs-dataframe-vs-dataset.html]

Structured APIs in Spark

Structured APIs In Spark

SQL DataFrames Datasets

A

Syntax , Compile Compile
Errors Runtime Time Time
Analysis Runtime Runtime Compile

Errors Time

[J.S. Damji et al., Learning Spark - Lightning-Fast Data Analytics]

Creating DataSets

» To convert a sequence or an RDD to a Dataset, we can use toDS().

» You can call as[SomeCaseClass] to convert the DataFrame to a Dataset.

case class Person(name: String, age: BigInt, id: BiglInt)
val personSeq = Seq(Person("Max", 33, 0), Person("Adam", 32, 1))

Creating DataSets

» To convert a sequence or an RDD to a Dataset, we can use toDS().

» You can call as[SomeCaseClass] to convert the DataFrame to a Dataset.

case class Person(name: String, age: BigInt, id: BiglInt)
val personSeq = Seq(Person("Max", 33, 0), Person("Adam", 32, 1))

val dsl = sc.parallelize(personSeq) .toDS

Creating DataSets

» To convert a sequence or an RDD to a Dataset, we can use toDS().

» You can call as[SomeCaseClass] to convert the DataFrame to a Dataset.

case class Person(name: String, age: BigInt, id: BiglInt)
val personSeq = Seq(Person("Max", 33, 0), Person("Adam", 32, 1))

val dsl = sc.parallelize(personSeq) .toDS

val ds2 = spark.read.format("json").load("people.json").as[Person]

DataSet Transformations

» Transformations on Datasets are the same as those that we had on DataFrames.

» Datasets allow us to specify more complex and strongly typed transformations.

case class Person(name: String, age: BigInt, id: BiglInt)
val people = spark.read.format("json").load("people.json").as[Person]

people.filter(x => x.age < 40).show()

people.map(x => (x.name, x.age + 5, x.id)).show()

Structured Data Execution

Structured Data Execution Steps

» 1. Write DataFrame/Dataset/SQL Code.
» 2. If valid code, Spark converts this to a logical plan.

» 3. Spark transforms this logical plan to a Physical Plan
e Checking for optimizations along the way.

» 4. Spark then executes this physical plan (RDD manipulations) on the cluster.

Physical Plan
sQL o
5
S
~
9
DataFromes 0o
o
==
el
B
Datasets 3

[M. Zaharia et al., Spark: The Definitive Guide, 0’Reilly Media, 2018]

Logical Planning (1/2)

» The logical plan represents a set of abstract transformations.

" Loagical
i ’ X
Unresolved naly=e Resolved Pl ma=aiicn Optimized
Code logical plan T ? logical plan logical plon
Ca’ralog

[MA Zaharia et al., Spark: The Definitive Guide, 0’Reilly Media, 2018]

Logical Planning (1/2)

» The logical plan represents a set of abstract transformations.

» This plan is unresolved.
e The code might be valid, the tables/columns that it refers to might not exist.

" Loagical
i ’ X
Unresolved naly=e Resolved Pl ma=aiicn Optimized
Code logical plan T ? logical plan logical plon
Ca’ralog

[MA Zaharia et al., Spark: The Definitive Guide, 0’Reilly Media, 2018]

Logical Planning (1/2)

» The logical plan represents a set of abstract transformations.

» This plan is unresolved.
e The code might be valid, the tables/columns that it refers to might not exist.

» Spark uses the catalog, a repository of all table and DataFrame information, to
resolve columns and tables in the analyzer.

" Loagical
i ’ X
Unresolved naly=e Resolved Pl ma=aiicn Optimized
Code logical plan T ? logical plan logical plon
Ca’ralog

[M. Zaharia et al., Spark: The Definitive Guide, 0’Reilly Media, 2018]

Logical Planning (2/2)

» The analyzer might reject the unresolved logical plan.

" Logical

nalysi i i

User Unresolved i Resolved OPJﬂmmJﬂon\ OP-Hmized

Code logical plan T ’ logical plan logical plan
Ca+aloa

[M. Zaharia et al., Spark: The Definitive Guide, 0’Reilly Media, 2018]

Logical Planning (2/2)

» The analyzer might reject the unresolved logical plan.

» If the analyzer can resolve it, the result is passed through the Catalyst optimizer.

» |t converts the user’s set of expressions into the most optimized version.

User

Code

Unresolved
Iogical Plan

[M. Zaharia et al.,

Analysis

Resolved

Logical

Op+im|za+ion\ op Himized

Ca+aloa

Spark:

T logical plan

Iogical Plan

The Definitive Guide, 0’Reilly Media, 2018]

Physical Planning

» The physical plan specifies how the logical plan will execute on the cluster.

» Physical planning results in a series of RDDs and transformations.

Physical Executed on
OP+imized Plans the cluster
logica! plan
\ Cost 'D
\ Model ”‘;——
est
/I> > Physical Plan

[M. Zaharia et al., Spark: The Definitive Guide, 0’Reilly Media, 2018]

Execution

» Upon selecting a physical plan, Spark runs all of this code over RDDs.

» Spark performs further optimizations at runtime.

» Finally the result is returned to the user.

Optimization

Optimization

» Spark SQL comes with two specialized backend components:

e Catalyst: a query optimizer
e Tungsten: off-heap serializer

Catalyst Optimizer

Catalyst Optimizer

» Catalyst is Spark SQL query optimizer.
» It compiles Spark SQL queries to RDDs and transformations.

» Optimization includes
» Reordering operations

* Reduce the amount of data we must read JOBC | | Console User Programs
. e (Java, Scala, Python)

* Pruning unneed partitioning

v v v

Spark SQL DataFrame API

| Catalyst Optimizer ‘
v
Spark

| Resilient Distributed Datasets

Catalyst Optimizer - Logical Optimization

» Applies standard rule-based optimizations to the logical plan.

val users = sqlContext.read.parquet("...")
val events = sqlContext.read.parquet("...")
val joined = events.join(users, ...)

val result = joined.select(...)

Physical Plan
with Predicate Pushdown
and Column Pruning

optimized
scan
(events)

Logical Plan Physical Plan

filter

oin

erents e

optimized
scan
(users)

N

Tungsten

Tungsten

» Spark workloads are increasingly bottlenecked by CPU and memory use rather than
IO and network communication.

» Tungsten improves the memory and CPU efficiency of Spark backend execution and
push performance closer to the limits of modern hardware.

> It provides

e Column-based datastore
e Off-heap memory management
* Highly-specialized data encoders

Tungsten - Column-Based

» Most table operations are on specific columns/attributes of a dataset.
» To store data, group them by column, instead of row.

» Faster lookup of data associated with specific column/attribute.

1 John 4.1

mike | 3.5 john | mike | sally

3 sally 6.4 4.1 3.5 6.4

Row Storage Column Storage

Tungsten - Off-Heap

> Perform manual memory management instead of relying on Java objects.
» Eliminate garbage collection overheads.

» Use java.unsafe and off heap memory.

JVM Object ———————» MyClass(123, "data", "bricks")

Internal Representation —» ex0|123|32L|48L|4|"data" 6

"bricks"

[J.S. Damji et al., Learning Spark - Lightning-Fast Data Analytics]

Tungsten - Data Encoder

» Tungsten can take schema information and tightly pack serialized data into memory.
» More data can fit in memory.

» We have faster serialization and deserialization.

(123, "data”, "bricks")

| —
‘ Offset to
i | data

A 4 v

[oxe [123 | 32 | 48 [4 ['data" [6 ['bricks"
Null Offset to Field
bitmap data lengths

[J.S. Damji et al., Learning Spark - Lightning-Fast Data Analytics]

Summary

Summary

RDD vs. DataFrame vs. DataSet

>

v

Logical and physical plans

v

Catalyst optmizer

v

Tungsten project

References

» M. Zaharia et al., “Spark: The Definitive Guide”, O'Reilly Media, 2018 - Chapters
4-11.

» M. Armbrust et al., “Spark SQL: Relational data processing in spark”, ACM SIG-
MOD, 2015.

Some slides were derived from Heather Miller’s slides:
http://heather.miller.am/teaching/cs4240/spring2018

v

Questions?

	

