b

k.
EFXTHE

NSKAP
3% OCH KONST 3%

S

Introduction to Data Stream Processing

Amir H. Payberah
payberah@kth.se
2021-09-21

The Course Web Page

https://1id2221kth.github.io

https://tinyurl.com/f6x544h

https://id2221kth.github.io
https://tinyurl.com/f6x544h

Where Are We?

Data Processing

Pregel, GraphLab, PowerGraph Spark SQL Milib
GraphX, X-Streem, Chaos Tensorflow

MapReduce, Dryad Storm, SEEP, Naiad, Spark Streaming, Flink,
FlumeJava, Spark h Millwheel, Google Dataflow ‘

Data Storage

Dynamo, BigTable,
GFS, Flat FS Cassandra

Resource Management

Mesos, YARN

Stream Processing (1/4)

» Stream processing is the act of continuously incorporating new data to compute a
result.

Stream Processing (2/4)

» The input data is unbounded.
e A series of events, no predetermined beginning or end.

Stream Processing (2/4)

» The input data is unbounded.

e A series of events, no predetermined beginning or end.
e E.g., credit card transactions, clicks on a website, or sensor readings from loT devices.

\

TR Teowsactions

@ ¥=

C\ He@«’am

Stream Processing (3/4)

» User applications can then compute various queries over this stream of events.

Stream Processing (3/4)

» User applications can then compute various queries over this stream of events.

e E.g., tracking a running count of each type of event, or aggregating them into hourly
windows.

Stream Processing (4/4)

» Database Management Systems (DBMS): data-at-rest analytics

e Store and index data before processing it.
e Process data only when explicitly asked by the users.

Dews srs

Data

Y
-M

Stream Processing (4/4)

» Database Management Systems (DBMS): data-at-rest analytics

e Store and index data before processing it.
e Process data only when explicitly asked by the users.

» Stream Processing Systems (SPS): data-in-motion analytics
e Processing information as it flows, without storing them persistently.

Dews srs

-
- Data @

Stream Processing Systems Stack

Processing

Spark Streaming, Fl Storm, Google Dataflow

Storage

Partitioned Logs Messaging Systems

Apache Kafka, Amazon Kinesis Google Cloud Pub/Sub, RabbitMQ
Twitter Distributed Log ActiveMQ, Azure Service Bus

Data Stream Storage

The Problem

» We need disseminate streams of events from various producers to various consumers.

Data Producers Data Consumers

D == Q="
even

\$ G processing

User Transactions

Example

» Suppose you have a website, and every time someone loads a page, you send a viewed
page event to consumers.

Example

» Suppose you have a website, and every time someone loads a page, you send a viewed
page event to consumers.

» The consumers may do any of the following:
¢ Store the message in HDFS for future analysis
e Count page views and update a dashboard
e Trigger an alert if a page view fails
e Send an email notification to another user

Possible Solution?

» Messaging systems

www.defit.org

What is Messaging System?

» Messaging system is an approach to notify consumers about new events.

What is Messaging System?

» Messaging system is an approach to notify consumers about new events.

> Messaging systems

e Direct messaging
e Message brokers

Direct Messaging (1/2)

» Necessary in latency critical applications (e.g., remote surgery).

» A producer sends a message containing the event, which is pushed to consumers.

g
i \

=)

/\

[] Bl

ATIIIIIR

Direct Messaging (1/2)

» Necessary in latency critical applications (e.g., remote surgery).
» A producer sends a message containing the event, which is pushed to consumers.

» Both consumers and producers have to be online at the same time.

/\

[] Ele

ATIIIIIR

Direct Messaging (2/2)

» What happens if a consumer crashes or temporarily goes offline? (not durable)

Direct Messaging (2/2)

» What happens if a consumer crashes or temporarily goes offline? (not durable)

» What happens if producers send messages faster than the consumers can process?

Direct Messaging (2/2)

» What happens if a consumer crashes or temporarily goes offline? (not durable)

» What happens if producers send messages faster than the consumers can process?
e Dropping messages
e Backpressure

Direct Messaging (2/2)

» What happens if a consumer crashes or temporarily goes offline? (not durable)

» What happens if producers send messages faster than the consumers can process?
e Dropping messages
e Backpressure

» We need message brokers that can log events to process at a later time.

&
0

AIIIIIIIER

Message Broker

[https://bluesyemre.com/2018/10/16/thousands-of-scientists-publish-a-paper-every-five-days]

Message Broker

> A message broker decouples the producer-consumer interaction.

» It runs as a server, with producers and consumers connecting to it as clients.

&
J

Message Broker

> A message broker decouples the producer-consumer interaction.
» It runs as a server, with producers and consumers connecting to it as clients.

» Producers write messages to the broker, and consumers receive them by reading them
from the broker.

&
J

Message Broker

>

A message broker decouples the producer-consumer interaction.

v

It runs as a server, with producers and consumers connecting to it as clients.

v

Producers write messages to the broker, and consumers receive them by reading them
from the broker.

v

Consumers are generally asynchronous.

D

Message Broker (2/2)

» When multiple consumers read messages in the same topic.

Message Broker (2/2)

» When multiple consumers read messages in the same topic.

» Load balancing: each message is delivered to one of the consumers.

d B/’\%

E};

Message Broker (2/2)

» When multiple consumers read messages in the same topic.

» Load balancing: each message is delivered to one of the consumers.

d B/’\%

E};

» Fan-out: each message is delivered to all of the consumers.

&

@
B &

Partitioned Logs (1/2)

> In typical message brokers, once a message is consumed, it is deleted.

Partitioned Logs (1/2)

> In typical message brokers, once a message is consumed, it is deleted.

> Log-based message brokers durably store all events in a sequential log.

Partitioned Logs (1/2)

> In typical message brokers, once a message is consumed, it is deleted.

> Log-based message brokers durably store all events in a sequential log.

» A log is an append-only sequence of records on disk.

Partitioned Logs (1/2)

>

In typical message brokers, once a message is consumed, it is deleted.

v

Log-based message brokers durably store all events in a sequential log.

v

A log is an append-only sequence of records on disk.

>

» A consumer receives messages by reading the log sequentially.

A producer sends a message by appending it to the end of the log.

Partitioned Logs (2/2)

» To scale up the system, logs can be partitioned hosted on different machines.

Partition 0 ‘ 1 ‘ 2 ‘ 3 | 4 ‘ 5 | 6 ‘ 7 ‘ 8 ‘ 9 ‘10‘ i zpoend Producer client

<
o
g .
i) Producer client
osenr (2[5 T3S] 2
Partition 0 n Consumergroup
— . !
w i 2| Consumer client | :
i Partition 1 nn offset forB.O=4 :
i) R offset forB.1=5

Partition 2 ‘ 1 ‘ 2 ‘ 3 | 4 ‘ 5 | 6 ‘ 7 ‘ 8 ‘ 9 [10/1112 +»| Consumer client |

offset forB2=9

read sequentially

Partitioned Logs (2/2)

» To scale up the system, logs can be partitioned hosted on different machines.

» Each partition can be read and written independently of others.

Partition 0 ‘ 1 ‘ 2 ‘ 3 | 4 ‘ 5 | 6 ‘ 7 ‘ 8 ‘ 9 ‘10‘ i zpoend Producer client

<
o
g .
i) Producer client
osenr (2[5 T3S] 2
Partition 0 n Consumergroup
— . !
w i 2| Consumer client | :
i Partition 1 nn offset forB.O=4 :
i) R offset forB.1=5

Partition 2 ‘ 1 ‘ 2 ‘ 3 | 4 ‘ 5 | 6 ‘ 7 ‘ 8 ‘ 9 [10/1112 +»| Consumer client |

offset forB2=9

read sequentially

Partitioned Logs (2/2)

» To scale up the system, logs can be partitioned hosted on different machines.
» Each partition can be read and written independently of others.

» A topic is a group of partitions that all carry messages of the same type.

Partition 0 ‘ 1 ‘ 2 ‘ 3 | 4 ‘ 5 | 6 ‘ 7 ‘ 8 ‘ 9 ‘10‘ i zpoend Producer client

<
o
g .
i) Producer client
osenr (2[5 T3S] 2
Partition 0 n Consumergroup
— . !
w i 2| Consumer client | :
i Partition 1 nn offset forB.O=4 :
i) R offset forB.1=5

Partition 2 ‘ 1 ‘ 2 ‘ 3 | 4 ‘ 5 | 6 ‘ 7 ‘ 8 ‘ 9 [10/1112 +»| Consumer client |

offset forB2=9

read sequentially

Partitioned Logs (2/2)

>

To scale up the system, logs can be partitioned hosted on different machines.

v

Each partition can be read and written independently of others.

v

A topic is a group of partitions that all carry messages of the same type.

v

Within each partition, the broker assigns a monotonically increasing sequence number
(offset) to every message

Partition 0 ‘ 1 ‘ 2 ‘ 3 | 4 ‘ 5 | 6 ‘ 7 ‘ 8 ‘ 9 ‘10‘ Producer client
<
o
a :
i) Producer client
oasenr [Tz 3T+ s]2
Partition 0 n Consumergroup
— !
w i 2| Consumer client | -
‘2 { Partition 1 nn offsetforB0=4 | |
i) R offset forB.1=5

Partition 2 ‘ 1 ‘ 2 ‘ 3 | 4 ‘ 5 | 6 ‘ 7 ‘ 8 ‘ 9 ‘10‘11|12‘ _—»| Consumer client | '
—1 B offsetforB2=9 N

read sequentially

Partitioned Logs (2/2)

>

To scale up the system, logs can be partitioned hosted on different machines.

v

Each partition can be read and written independently of others.

v

A topic is a group of partitions that all carry messages of the same type.

v

Within each partition, the broker assigns a monotonically increasing sequence number
(offset) to every message

Producer client
pwsens [12 5+ s e[]3

PartitionO‘]‘2‘3|4‘5|6‘7‘8‘9‘10‘

v

No ordering guarantee across partitions.

Topic A

Partition 0 n Consumer group
— :
® R i 2| Consumer client | -
21 s [2[5 [[+ 7] ¥ el
° — offset forB.1=5

Partition 2 ‘ 1 ‘ 2 ‘ 3 | 4 ‘ 5 | 6 ‘ 7 ‘ 8 ‘ 9 ‘10‘11|12‘ _—»| Consumer client | '
—1 B offsetforB2=9 N

read sequentially

Kafka - A Log-Based Message Broker

§@ kafka

Kafka (1/5)

» Kafka is a distributed, topic oriented, partitioned, replicated commit log service.

Web logs
Transactions Warehouse

Metrics Alerting

Audit logs Security

Kafka (2/5)

» Kafka is a distributed, topic oriented, partitioned, replicated commit log service.

Web logs
Transactions

Metrics

Audit logs

Kafka (3/5)

» Kafka is a distributed, topic oriented, partitioned, replicated commit log service.

Source 1

Source 2

Source 3
Broker

Kafka (4/5)

» Kafka is a distributed, topic oriented, partitioned, replicated commit log service.

Topic 1
(Partition 1)

Topic 2

(Partition 1)
—

Broker

Source 1

Source 2

Topic 1
Source 3 (Partition 2)

Topic 2

(Partition 2)
N —

Broker

Kafka (5/5)

» Kafka is a distributed, topic oriented, partitioned, replicated commit log service.

Topic 1
(Partition 1)

Source 1 Topic 2
(Partition 1)

]

Broker

Topic 1
Source 3 (Partition 2)

Topic 2
(Partition 2)

Source 2

Broker

» Kafka is about logs.

Topics and Partition (1/5)

» Topics are queues: a stream of messages of a particular type

GET

jkreps-mn:~ jkreps$ tail ~f -n 20 /var/log/apachez/access log
[00 —

/images/apache_feather.gif HTTP/1.1" 200 4128

f0700 “GET /images/producer_consumer.png HTTP/1.1" 200 8¢
-0700] "GET /images/log_anatomy.png HTTP/1.1" 200 19579
-0700] "GET /images/consumer-groups.png HTTP/1.1" 200 268:
-0700] "GET /images/log_compaction.png HTTP/1.1" 200 4141¢
-0700] "GET /documentation.html HTTP/1.1" 200 189893
-0700] "GET /images/log_cleaner_anatomy.png HTTP/1.1" 200
-0700] "GET /images/kafka_log.png HTTP/1.1" 200 134321
-0700] "GET /images/mirror-maker.png HTTP/1.1" 200 17054
-0700] "GET /documentation.html HTTP/1.1" 200 189937
-0700] "GET /styles.css HTTP/1.1" 304 —
-0700] "GET /images/kafka_logo.png HTTP/1.1" 304 -
-0700] "“GET /images/producer_consumer.png HTTP/1.1" 304 -
-0700] "GET /images/log_anatomy.png HTTP/1.1" 304 -
-0700] "GET /images/consumer-groups.png HTTP/1.1" 304 —
-0700] "GET /images/log_cleaner_anatomy.png HTTP/1.1" 304
-0700] "GET /images/log_compaction.png HTTP/1.1" 304 -
-0700] "GET /images/kafka_log.png HTTP/1.1" 304 —
-0700] "GET /images/mirror-maker.png HTTP/1.1" 304 -
-0700] "GET /documentation.html HTTP/1.1" 200 195264
3|4

5|6|7|8|9 [10]11[12i

Logs, Topics and Partition (2/5)

» Each message is assigned a sequential id called an offset.

Producer

writes

Consumer A Consumer B

(time =7) (time = 11)

Logs, Topics and Partition (3/5)

» Topics are logical collections of partitions (the physical files).

» Ordered
* Append only
e Immutable

Partition0 [0|1]|2|3|4(5|6]|7]|8

Partition1 |0f1]2(3]|4|5(6]|7|8 Writes

Partition2 [0|1]|2|3|4(5|6]|7]|8

Old » New

Logs, Topics and Partition (4/5)

» Ordering is only guaranteed within a partition for a topic.

» Messages sent by a producer to a particular topic partition will be appended in the
order they are sent.

» A consumer instance sees messages in the order they are stored in the log.

Partition0 0|1]2|3(4|5|6(7]|8(9(10/11 125

Partition1 |0f1]2(3]|4|5(6]|7|8 Writes

Partition2 [0|1]|2|3|4(5|6]|7]|8

Old » New

Logs, Topics and Partition (5/5)

» Partitions of a topic are replicated: fault-tolerance
» A broker contains some of the partitions for a topic.

» One broker is the leader of a partition: all writes and reads must go to the leader.

Broker 1 Broker 2

Partition 0 Partition 1

Partition 0 Partition 1

Kafka Architecture

Producer Producer

Kafka Cluster

Partition 1 Partition 2 Partition 3
(leader) (leader) (leader)

Partition 2 Partition 1

Partition 3 Partitici1 3

....~“.'—

Coordination

» Kafka uses Zookeeper for the following tasks:

Coordination

» Kafka uses Zookeeper for the following tasks:
» Detecting the addition and the removal of brokers and consumers.

» Keeping track of the consumed offset of each partition.

State in Kafka

» Brokers are sateless: no metadata for consumers-producers in brokers.

State in Kafka

» Brokers are sateless: no metadata for consumers-producers in brokers.

» Consumers are responsible for keeping track of offsets.

State in Kafka

» Brokers are sateless: no metadata for consumers-producers in brokers.

» Consumers are responsible for keeping track of offsets.

» Messages in queues expire based on pre-configured time periods (e.g., once a day).

Delivery Guarantees

» Kafka guarantees that messages from a single partition are delivered to a consumer
in order.

Delivery Guarantees

» Kafka guarantees that messages from a single partition are delivered to a consumer
in order.

» There is no guarantee on the ordering of messages coming from different partitions.

Delivery Guarantees

» Kafka guarantees that messages from a single partition are delivered to a consumer
in order.

» There is no guarantee on the ordering of messages coming from different partitions.

» Kafka only guarantees at-least-once delivery.

Start and Work With Kafka

Start the ZooKeeper
zookeeper-server-start.sh config/zookeeper.properties

Start and Work With Kafka

Start the ZooKeeper
zookeeper-server-start.sh config/zookeeper.properties

Start the Kafka server
kafka-server-start.sh config/server.properties

Start and Work With Kafka

Start the ZooKeeper
zookeeper-server-start.sh config/zookeeper.properties

Start the Kafka server
kafka-server-start.sh config/server.properties

Create a topic, called "avg"
kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitiomns 1

--topic avg

o8l Start and Work With Kafka

OcH KoN:

Start the ZooKeeper
zookeeper-server-start.sh config/zookeeper.properties

Start the Kafka server
kafka-server-start.sh config/server.properties

Create a topic, called "avg"
kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitiomns 1
--topic avg

Produce messages and send them to the topic "avg"
kafka-console-producer.sh --broker-list localhost:9092 --topic avg

Start and Work With Kafka

Start the ZooKeeper
zookeeper-server-start.sh config/zookeeper.properties

Start the Kafka server
kafka-server-start.sh config/server.properties

"

Create a topic, called "avg"
kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitiomns 1
--topic avg

Produce messages and send them to the topic "avg"
kafka-console-producer.sh --broker-list localhost:9092 --topic avg

Consume the messages sent to the topic "avg"
kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic avg --from-beginning

Data Stream Processing

Streaming Data

» Data stream is unbound data, which is broken into a sequence of individual tuples.

» A data tuple is the atomic data item in a data stream.

» Can be structured, semi-structured, and unstructured.

Streaming Data Processing Design Points

» Continuous vs. micro-batch processing

Record-at-a-Time vs. declarative APls

v

v

Event time vs. processing time

v

Windowing

Streaming Data Processing Design Points

» Continuous vs. micro-batch processing

v

Record-at-a-Time vs. declarative APls

v

Event time vs. processing time

v

Windowing

Streaming Data Processing Patterns

» Micro-batch systems

e Batch engines
e Slicing up the unbounded data into a sets of bounded data, then process each batch.

DDD;&%

Microbatches of DataFromes

Streaming Data Processing Patterns

» Micro-batch systems

e Batch engines
e Slicing up the unbounded data into a sets of bounded data, then process each batch.

DDD;&%

Microbatches of DataFromes

» Continuous processing-based systems

e Each node in the system continually listens to messages from other nodes and outputs
new updates to its child nodes.

=)=

One record at a time

Streaming Data Processing Design Points

» Continuous vs. micro-batch processing

Record-at-a-Time vs. declarative APls

v

v

Event time vs. processing time

v

Windowing

Record-at-a-Time vs. Declarative APls

» Record-at-a-Time API (e.g., Storm)
e Low-level API
e Passes each event to the application and let it react.
e Useful when applications need full control over the processing of data.
e Complicated factors, such as maintaining state, are governed by the application.

Record-at-a-Time vs. Declarative APls

» Record-at-a-Time API (e.g., Storm)
e Low-level API
e Passes each event to the application and let it react.
e Useful when applications need full control over the processing of data.
e Complicated factors, such as maintaining state, are governed by the application.

» Declarative API (e.g., Spark streaming, Flink, Google Dataflow)

e Aapplications specify what to compute not how to compute it in response to each new
event.

Streaming Data Processing Design Points

» Continuous vs. micro-batch processing

v

Record-at-a-Time vs. declarative APls

v

Event time vs. processing time

v

Windowing

Event Time vs. Processing Time (1/2)

» Event time: the time at which events actually occurred.
e Timestamps inserted into each record at the source.

» Prcosseing time: the time when the record is received at the streaming application.

Event Time vs. Processing Time (2/2)

» |deally, event time and processing time should be equal.

» Skew between event time and processing time.

Reality

Event Time

[https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101]

Streaming Data Processing Design Points

» Continuous vs. micro-batch processing

v

Record-at-a-Time vs. declarative APls

v

Event time vs. processing time

v

Windowing

Windowing (1/2)

» Window: a buffer associated with an input port to retain previously received tuples.

» Four different windowing management policies.

Windowing (1/2)

» Window: a buffer associated with an input port to retain previously received tuples.

» Four different windowing management policies.
» Count-based policy: the maximum number of tuples a window buffer can hold

Windowing (1/2)

» Window: a buffer associated with an input port to retain previously received tuples.

» Four different windowing management policies.

» Count-based policy: the maximum number of tuples a window buffer can hold
e Delta-based policy: a delta threshold in a tuple attribute

Windowing (1/2)

» Window: a buffer associated with an input port to retain previously received tuples.

» Four different windowing management policies.
» Count-based policy: the maximum number of tuples a window buffer can hold
e Delta-based policy: a delta threshold in a tuple attribute
e Punctuation-based policy: a punctuation is received

Windowing (1/2)

» Window: a buffer associated with an input port to retain previously received tuples.

» Four different windowing management policies.

» Count-based policy: the maximum number of tuples a window buffer can hold
e Delta-based policy: a delta threshold in a tuple attribute

e Punctuation-based policy: a punctuation is received

e Time-based policy: based on processing or event time period

Windowing (2/2)

» Two types of windows: tumbling and sliding

Windowing (2/2)

» Two types of windows: tumbling and sliding

» Tumbling window: supports batch operations.
e When the buffer fills up, all the tuples are evicted.

1 GERT | EREEIC]

Windowing (2/2)

» Two types of windows: tumbling and sliding

» Tumbling window: supports batch operations.
e When the buffer fills up, all the tuples are evicted.

1 EEET | EEERIC]

» Sliding window: supports incremental operations.
e When the buffer fills up, older tuples are evicted.

C I EE] EER] EREE EEEE] EEEE

Windowing by Processing Time

» The system buffers up incoming data into windows until some amount of processing
time has passed.

» E.g., five-minute fixed windows

[https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101]

Windowing by Event Time

» Reflect the times at which events actually happened.

» Handling out-of-order evnets.

oooaoo oooooo oooooa
ooooon oooooo ooooog
ooogon ooooon CLLEEE)

14:00 13:00

[https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101]

Windowing by Event Time - Watermark (1/2)

» Watermarking helps a stream processing system to deal with lateness.

Stream (in order)

I 1
» =[] [1e]a7][2s] [1a]{fna] [0] o | »
Wwiz2op wi11)

/ Event

Watermark

Event timestamp

Windowing by Event Time - Watermark (1/2)

» Watermarking helps a stream processing system to deal with lateness.

» Watermarks flow as part of the data stream and carry a timestamp t.

Stream (in order)

I 1
» =[] [1e]a7][2s] [1a]{fna] [0] o | »
Wwiz2op wi11)

/ Event

Watermark

Event timestamp

Windowing by Event Time - Watermark (1/2)

» Watermarking helps a stream processing system to deal with lateness.
» Watermarks flow as part of the data stream and carry a timestamp t.

» A watermark is a threshold to specify how long the system waits for late events.

Stream (in order)

I 1
» =[] [1e]a7][2s] [1a]{fna] [0] o | »
Wwiz2op wi11)

/ Event

Watermark

Event timestamp

Windowing by Event Time - Watermark (1/2)

>

Watermarking helps a stream processing system to deal with lateness.

v

Watermarks flow as part of the data stream and carry a timestamp t.

» A watermark is a threshold to specify how long the system waits for late events.

v

Streaming systems uses watermarks to measure progress in event time.

Stream (in order)

I 1
» =[] [1e]a7][2s] [1a]{fna] [0] o | »
Wwiz2op wi11)

/ Event

Watermark

Event timestamp

Windowing by Event Time - Watermark (2/2)

» A W(t) declares that event time has reached time t in that stream
e There should be no more elements from the stream with a timestamp t’ < t.

Stream {out of order)

1]
W (@)]! [2][1] [z]e)] (6] E] 1) o

Wi17) wi1)

Event
Watermark

Event timestamp

Windowing by Event Time - Watermark (2/2)

» A W(t) declares that event time has reached time t in that stream
e There should be no more elements from the stream with a timestamp t’ < t.

» |t is possible that certain elements will violate the watermark condition.
o After the W(t) has occurred, more elements with timestamp t’ < t will occur.

Stream {out of order)

1]
W (@)]! [2][1] [z]e)] (6] E] 1) o

Wi17) wi1)

Event
Watermark

Event timestamp

Windowing by Event Time - Watermark (2/2)

» A W(t) declares that event time has reached time t in that stream
e There should be no more elements from the stream with a timestamp t’ < t.

» |t is possible that certain elements will violate the watermark condition.
o After the W(t) has occurred, more elements with timestamp t’ < t will occur.

» If an arriving event lies within the watermark, it gets used to update a query.

Stream {out of order)

1]
W (@)]! [2][1] [z]e)] (6] E] 1) o

Wi17) wi1)

Event
Watermark

Event timestamp

Windowing by Event Time - Watermark (2/2)

>

A W(t) declares that event time has reached time t in that stream
e There should be no more elements from the stream with a timestamp t’ < t.

v

It is possible that certain elements will violate the watermark condition.
o After the W(t) has occurred, more elements with timestamp t’ < t will occur.

v

If an arriving event lies within the watermark, it gets used to update a query.

v

Streaming programs may explicitly expect some late elements.

Stream {out of order)

1]
W (@)]! [2][1] [z]e)] (6] E] 1) o

Wi17) wi1)

Event
Watermark

Event timestamp

Streaming Data Processing Model

Streaming Data Processing

» The tuples are processed by the application’s operators or processing element (PE).

» A PE is the basic functional unit in an application.

e A PE processes input tuples, applies a function, and outputs tuples.
* A set of PEs and stream connections, organized into a data flow graph.

—>©
—)©

Sink

PEs States (1/3)

» A PE can either maintain internal state across tuples while processing them, or
process tuples independently of each other.

» Stateful vs. stateless tasks

PEs States (2/3)

> Stateless tasks: do not maintain state and process each tuple independently of prior
history, or even from the order of arrival of tuples.

PEs States (2/3)

>

Stateless tasks: do not maintain state and process each tuple independently of prior
history, or even from the order of arrival of tuples.

v

Easily parallelized.

v

No synchronization.

v

Restart upon failures without the need of any recovery procedure.

PEs States (3/3)

» Stateful tasks: involves maintaining information across different tuples to detect
complex patterns.

PEs States (3/3)

» Stateful tasks: involves maintaining information across different tuples to detect
complex patterns.

» A PE is usually a synopsis of the tuples received so far.

» A subset of recent tuples kept in a window buffer.

Runtime Systems

Job and Job Management

» At runtime, an application is represented by one or more jobs.

» Jobs are deployed as a collection of PEs.

» Job management component must identify and track individual PEs, the jobs they
belong to, and associate them with the user that instantiated them.

Logical Plan vs. Physical Plan (1/3)

» Logical plan: a data flow graph, where the vertices correspond to PEs, and the edges

to stream connections.

» Physical plan: a data flow graph, where the vertices correspond to OS processes, and
the edges to transport connections.

Logical plan

s@se xgpo =E8e

Different physical plans

Logical Plan vs. Physical Plan (3/3)

» How to map a network of PEs onto the physical network of nodes?

» Parallelization

e Fault tolerance

e Optimization

Parallelization

Parallelization

» How to scale with increasing the number queries and the rate of incoming events?

» Three forms of parallelisms.

e Pipelined parallelism
e Task parallelism
e Data parallelism

Pipelined Parallelism

» Sequential stages of a computation execute concurrently for different data items.

pipelined parallel tuple 1 A B C
tuple 2 A B C
I IS Gl DR S R E
tuple 4 A BC
tuple 5 ABC
tuple 6 A B C

Task Parallelism

» Independent processing stages of a larger computation are executed concurrently on
the same or distinct data items.

task parallel time
tuple 1, A
tuple 1, B
(B H) tuple 1, C
tuple 2, A
N tuple 2, B
F tuple 2, c

Data Parallelism (1/2)

» The same computation takes place concurrently on different data items.

data parallel time
tuple 1 A
tuple 2 A
(H Al H) tuple 3 A
tuple 4 A
tuple 5 A
A tuple 6 A

Data Parallelism (2/2)

» How to allocate data items to each computation instance?

Broadcast

Shuffle

Key-based

Fault Tolerance

Fault Tolerance

» The recovery methods of streaming frameworks must take:

e Correctness, e.g., data loss and duplicates

e Performance, e.g., low latency

Delivery Guarantees

> At-least-once: might appear many times

» Exactly-once: is consumed just once

Recovery Methods

» Active backup

» Passive backup

» Upstream backup

Recovery Methods - Active Backup

» Each processing node has an associated backup node.

» Both primary and backup nodes are given the same input.

Input

Input

Recovery Methods - Active Backup

» Each processing node has an associated backup node.
» Both primary and backup nodes are given the same input.

» If the primary fails, the backup takes over by sending the logged tuples to all down-
stream neighbors and then continuing its processing.

Input

Recovery Methods - Passive Backup

» Periodically check-points processing state to a shared storage.

» The backup node takes over from the latest checkpoint when the primary fails.

Recovery Methods - Upstream Backup

» Upstream nodes store the tuples until the downstream nodes acknowledge them.

Recovery Methods - Upstream Backup

» Upstream nodes store the tuples until the downstream nodes acknowledge them.

» If a node fails, an empty node rebuilds the latest state of the failed primary from the
logs kept at the upstream server.

Recovery Methods - Upstream Backup

» Upstream nodes store the tuples until the downstream nodes acknowledge them.

» If a node fails, an empty node rebuilds the latest state of the failed primary from the
logs kept at the upstream server.

» There is no backup node in this model.

Summary

Summary

>

Messaging system and partitioned logs

v

Decoupling producers and consumers

v

Kafka: distributed, topic oriented, partitioned, replicated log service

» Logs, topcs, partition

v

Kafka architecture: producer, consumer, broker, coordinator

Summary

» SPS vs. DBMS

» Data stream, unbounded data, tuples

» Event-time vs. processing time

» Micro-batch vs. continues processing (windowing)
» PEs and dataflow

» Stateless vs. Stateful PEs

» SPS runtime: parallelization, fault-tolerance

References

>

J. Kreps et al., “Kafka: A distributed messaging system for log processing”, NetDB
2011

v

M. Zaharia et al., “Spark: The Definitive Guide”, O'Reilly Media, 2018 - Chapter 20

» M. Fragkoulis et al., "A Survey on the Evolution of Stream Processing Systems”,
2020

» J. Hwang et al., “High-availability algorithms for distributed stream processing”,
ICDE 2005

» T. Akidau, “The world beyond batch: Streaming 101",

https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101

Questions?

	

