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Where Are We?

Data Processing

Pregel, GraphLab, PowerGraph Spark SQL Milib
GraphX, X-Streem, Chaos Tensorflow

MapReduce, Dryad Storm, SEEP, Naiad, Spark Streaming, Flink,
FlumeJava, Spark h Millwheel, Google Dataflow ‘

Data Storage

Dynamo, BigTable,
GFS, Flat FS Cassandra

Resource Management

Mesos, YARN




Stream Processing Systems Design Issues

» Continuous vs. micro-batch processing

» Record-at-a-Time vs. declarative APls




Spark Streaming



Contribution

» Design issues

e Continuous vs. micro-batch processing
e Record-at-a-Time vs. declarative APls
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Spark Streaming

» Run a streaming computation as a series of very small, deterministic batch jobs.

e Chops up the live stream into batches of X seconds.

Treats each batch as RDDs and processes them using RDD operations.

Discretized Stream Processing (DStream)

input data batches of batches of
stream Spark input data Spark processed data

Streaming |1 Engine |1




DStream (1/2)

» DStream: sequence of RDDs representing a stream of data.

input data batches of batches of
stream Spark input data Spark processed data
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DStream (1/2)

» DStream: sequence of RDDs representing a stream of data.

input data batches of batches of
stream Spark input data Spark processed data
|:> Streaming |1 |:> Engine |:||:||:>

RDD @time1 RDD@time2 RDD@time3 RDD @ time4

~| detafom || datafrom | _| datafrom | o
time 1to 2 time2to3 time3to4

DStream = data from
time 0 to 1




DStream (2/2)

» Any operation applied on a DStream translates to operations on the underlying RDDs.

lines — | tfinesfrom |__| linesfrom | _ | linesfrom | _ | linesfrom | .
DStream timeOto 1 time 1to 2 time 2 to 3 time3to4
flatMap
operation
N A 4 A 4 A 4
words _ | wordsfrom | _| wordsfrom | _ | wordsfrom |_ | wordsfrom |_ >
DStream time O to 1 time 1to 2 time 2 to 3 time3to 4




StreamingContext

» StreamingContext is the main entry point of all Spark Streaming functionality.

val conf = new SparkConf () .setAppName (appName) .setMaster (master)
val ssc = new StreamingContext(conf, Seconds(1))

» The second parameter, Seconds (1), represents the time interval at which streaming
data will be divided into batches.




Input Operations

» Every input DStream is associated with a Receiver object.
o It receives the data from a source and stores it in Spark’s memory for processing.
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Input Operations

» Every input DStream is associated with a Receiver object.
o It receives the data from a source and stores it in Spark’s memory for processing.

» Basic sources directly available in the StreamingContext API, e.g., file systems,
socket connections.

» Advanced sources, e.g., Kafka, Flume, Kinesis, Twitter.




Input Operations - Basic Sources

» Socket connection
o Creates a DStream from text data received over a TCP socket connection.

ssc.socketTextStream("localhost", 9999)




Input Operations - Basic Sources

» Socket connection
o Creates a DStream from text data received over a TCP socket connection.

ssc.socketTextStream("localhost", 9999)

» File stream
e Reads data from files.

streamingContext.fileStream[KeyClass, ValueClass, InputFormatClass] (dataDirectory)

streamingContext.textFileStream(dataDirectory)




Input Operations - Advanced Sources

» Connectors with external sources

» Twitter, Kafka, Flume, Kinesis, ...

TwitterUtils.createStream(ssc, None)

KafkaUtils.createStream(ssc, [ZK quorum], [consumer group id], [number of partitions])




Transformations (1/2)

» Transformations on DStreams are still lazy!

» DStreams support many of the transformations available on normal Spark RDDs.




Transformations (1/2)

» Transformations on DStreams are still lazy!

» DStreams support many of the transformations available on normal Spark RDDs.

» Computation is kicked off explicitly by a call to the start () method.




Transformations (2/2)

» map: a new DStream by passing each element of the source DStream through a given
function.




Transformations (2/2)

» map: a new DStream by passing each element of the source DStream through a given
function.

» reduce: a new DStream of single-element RDDs by aggregating the elements in
each RDD using a given function.




Transformations (2/2)

» map: a new DStream by passing each element of the source DStream through a given
function.

» reduce: a new DStream of single-element RDDs by aggregating the elements in
each RDD using a given function.

» reduceByKey: a new DStream of (K, V) pairs where the values for each key are
aggregated using the given reduce function.




Example - Word Count (1/6)

» First we create a StreamingContex

import org.apache.spark._
import org.apache.spark.streaming._

// Create a local StreamingContext with two working threads and batch interval of 1 second.
val conf = new SparkConf ().setMaster("local[2]").setAppName ("NetworkWordCount")
val ssc = new StreamingContext(conf, Seconds(1))




Example - Word Count (2/6)

» Create a DStream that represents streaming data from a TCP source.

» Specified as hostname (e.g., localhost) and port (e.g., 9999).

val lines = ssc.socketTextStream("localhost", 9999)




Example - Word Count (3/6)

» Use flatMap on the stream to split the records text to words.

» |t creates a new DStream.

val words = lines.flatMap(_.split(" "))

lines _ | lines from _| linesfrom | _ | linesfrom
DStream timeOto 1 time 1to 2 time 2to 3

lines from
time3to4 >

flatMap

operation
words  _ | wordsfrom |__| wordsfrom | _ | wordsfrom |_ | wordsfrom >
DStream time0to 1 time 1to 2 time2to3 time 3to 4




Example - Word Count (4/6)

» Map the words DStream to a DStream of (word, 1).
» Get the frequency of words in each batch of data.

» Finally, print the result.

val pairs = words.map(word => (word, 1))

val wordCounts = pairs.reduceByKey(_ + _)

wordCounts.print ()




Example - Word Count (5/6)

> Start the computation and wait for it to terminate.

// Start the computation
ssc.start ()

// Wait for the computation to terminate
ssc.awaitTermination()




Example - Word Count (6/6)

val conf = new SparkConf () .setMaster("local[2]").setAppName ("NetworkWordCount")
val ssc = new StreamingContext(conf, Seconds(1))

val lines = ssc.socketTextStream("localhost", 9999)
val words = lines.flatMap(_.split(" "))

val pairs = words.map(word => (word, 1))

val wordCounts = pairs.reduceByKey(_ + _)
wordCounts.print ()

ssc.start ()
ssc.awaitTermination()

lines lines from lines from lines from lines from
DStream timeO0to 1 time 1t0 2 time 2 to 3 time3to4
flatMap
operation
words words from

DStream

time 0to 1 time 1to 2 time2to3 time3to4

words from | | words from | ‘ words from |




Window Operations (1/2)

» Spark provides a set of transformations that apply to a over a sliding window of data.
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» Spark provides a set of transformations that apply to a over a sliding window of data.

» A window is defined by two parameters: window length and slide interval.
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Window Operations (1/2)

» Spark provides a set of transformations that apply to a over a sliding window of data.
» A window is defined by two parameters: window length and slide interval.

» A tumbling window effect can be achieved by making slide interval = window length

time 1 time 2 time 3 time 4 time 5
original
DStream D U [ U D D ]
window-based
operation

windowed
DStream

window window window

at time 1 attime 3 attime 5




Window Operations (2/2)

» window(windowLength, slideInterval)

e Returns a new DStream which is computed based on windowed batches.
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e Returns a new DStream which is computed based on windowed batches.
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e Returns a new single-element DStream, created by aggregating elements in the stream
over a sliding interval using func.




Window Operations (2/2)

» window(windowLength, slideInterval)
e Returns a new DStream which is computed based on windowed batches.

» reduceByWindow(func, windowLength, slidelInterval)

e Returns a new single-element DStream, created by aggregating elements in the stream
over a sliding interval using func.

» reduceByKeyAndWindow(func, windowLength, slideInterval)
¢ Called on a DStream of (K, V) pairs.
¢ Returns a new DStream of (K, V) pairs where the values for each key are aggregated
using function func over batches in a sliding window.




Example - Word Count with Window

val conf = new SparkConf () .setMaster("local[2]").setAppName ("NetworkWordCount")
val ssc = new StreamingContext(conf, Seconds(1))

val lines = ssc.socketTextStream("localhost", 9999)

val words = lines.flatMap(_.split(" "))

val pairs = words.map(word => (word, 1))

val windowedWordCounts = pairs.reduceByKeyAndWindow(_ + _, Seconds(30), Seconds(10))
windowedWordCounts.print ()

ssc.start()
ssc.awaitTermination()

time 1 time 2 time 3 time 4 time 5
original
DStream

window-based
operation

windowed
DStream

window window window

at time 1 attime 3 attime 5




What about States?

» Accumulate and aggregate the results from the start of the streaming job.

» Need to check the previous state of the RDD in order to do something with the
current RDD.




What about States?

» Accumulate and aggregate the results from the start of the streaming job.

» Need to check the previous state of the RDD in order to do something with the
current RDD.

» Spark supports stateful streams.




Checkpointing

» It is mandatory that you provide a checkpointing directory for stateful streams.

val ssc = new StreamingContext(conf, Seconds(1))
ssc.checkpoint ("path/to/persistent/storage")




Stateful Stream Operations

» mapWithState
* It is executed only on set of keys that are available in the last micro batch.

def mapWithState[StateType, MappedTypel (spec: StateSpec[K, V, StateType, MappedTypel) :
DStream[MappedType]

StateSpec.function(updateFunc)
val updateFunc = (batch: Time, key: String, value: Option[Int], state: State[Int])




Stateful Stream Operations

» mapWithState
* It is executed only on set of keys that are available in the last micro batch.

def mapWithState[StateType, MappedTypel (spec: StateSpec[K, V, StateType, MappedTypel) :
DStream[MappedType]

StateSpec.function(updateFunc)
val updateFunc = (batch: Time, key: String, value: Option[Int], state: State[Int])

» Define the update function (partial updates) in StateSpec.




Example - Stateful Word Count (1/4)

val ssc = new StreamingContext(conf, Seconds(1))
ssc.checkpoint (".")

val lines = ssc.socketTextStream(IP, Port)
val words = lines.flatMap(_.split(" "))

val pairs = words.map(word => (word, 1))

val stateWordCount = pairs.mapWithState(StateSpec.function(updateFunc))

val updateFunc = (key: String, value: Option[Int], state: State[Int]) => {
val newCount = value.getOrElse(0)
val oldCount = state.getOption.getOrElse(0)
val sum = newCount + oldCount
state.update (sum)
(key, sum)




Example - Stateful Word Count (2/4)

» The first micro batch contains a message a.




Example - Stateful Word Count (2/4)

» The first micro batch contains a message a.

» updateFunc = (key: String, value: Option[Int], state: Statel[Int]) => (key, sum)

> Input: key = a, value = Some(1), state = 0




Example - Stateful Word Count (2/4)

>

The first micro batch contains a message a.

» updateFunc = (key: String, value: Option[Int], state: Statel[Int]) => (key, sum)

v

Input: key = a, value = Some(1), state = 0

v

Output: key = a, sum = 1




Example - Stateful Word Count (3/4)

» The second micro batch contains messages a and b.




Example - Stateful Word Count (3/4)

The second micro batch contains messages a and b.

>

» updateFunc = (key: String, value: Option[Int], state: State[Int]) => (key, sum)
» Input: key = a, value = Some(1), state = 1

» Input: key = b, value = Some(1), state = 0




Example - Stateful Word Count (3/4)

>

The second micro batch contains messages a and b.

» updateFunc = (key: String, value: Option[Int], state: State[Int]) => (key, sum)
» Input: key = a, value = Some(1), state = 1

» Input: key = b, value = Some(1), state = 0

» Output: key = a, sum = 2

» Output: key = b, sum = 1




Example - Stateful Word Count (4/4)

» The third micro batch contains a message b.




Example - Stateful Word Count (4/4)

» The third micro batch contains a message b.

» updateFunc = (key: String, value: Option[Int], state: Statel[Int]) => (key, sum)

> Input: key = b, value = Some(1), state = 1




Example - Stateful Word Count (4/4)

>

» updateFunc = (key: String, value: Option[Int], state: Statel[Int]) => (key, sum)

>

The third micro batch contains a message b.

Input: key = b, value = Some(1), state = 1

v

Output: key = b, sum = 2




Structured Streaming



Structured Streaming

» Treating a live data stream as a table that is being continuously appended.

Data stream Unbounded Table

new datain the
data stream
new rows appended
to a unbounded table

Data stream as an unbounded table




Programming Model (1/2)

» Defines a query on the input table, as a static table.
e Spark automatically converts this batch-like query to a streaming execution plan.




Programming Model (1/2)

» Defines a query on the input table, as a static table.
e Spark automatically converts this batch-like query to a streaming execution plan.

» Specify triggers to control when to update the results.

e Each time a trigger fires, Spark checks for new data (new row in the input table), and
incrementally updates the result.




Programming Model (2/2)

Input
Table

User
Query

Result
Table

User's batch-like
queryon inputtable

Spark SQL
Planner

Triggers
System 1 2 3 N
Time T T —>
Input dataup dataup dataup
Table tot=1 tot=2 tot=3
Incremental
Query
Result resultup resultup result up
Table tot=1 tot=2 tot=3
Update Mode
rows rows
updated updated
att=2 att=3

Incremental execution on streaming data




Output Modes

» Three output modes:

1. Append: only the new rows appended to the result table since the last trigger will
be written to the external storage.
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Output Modes

» Three output modes:

1. Append: only the new rows appended to the result table since the last trigger will
be written to the external storage.

2. Complete: the entire updated result table will be written to external storage.

3. Update: only the rows that were updated in the result table since the last trigger will
be changed in the external storage.




Five Steps to Define a Streaming Query (1/5)

» Define input sources.

» Use spark.readStream to create a DataStreamReader.

val spark = SparkSession...

val lines = spark.readStream.format("socket")
.option("host", "localhost")
.option("port", 9999)
.load ()




Five Steps to Define a Streaming Query (2/5)

» Transform data.

» E.g., below counts is a streaming DataFrame that represents the running word counts.

import org.apache.spark.sql.functions._

val words = lines.select(split(col("value"), "\\s").as("word"))

val counts = words.groupBy("word") .count ()




Five Steps to Define a Streaming Query (3/5)

» Define output sink and output mode.

» Use DataFrame.writeStream to define how to write the processed output data.

val writer = counts.writeStream.format("console").outputMode("complete")




Five Steps to Define a Streaming Query (4/5)

» Specify processing details.

\\ word count details
import org.apache.spark.sql.streaming._

val checkpointDir = "..."

val writer2 = writer
.trigger (Trigger.ProcessingTime("1 second"))
.option("checkpointLocation", checkpointDir)




Five Steps to Define a Streaming Query (5/5)

» Start the query.

» streamingQuery represents an active query and can be used to manage the query.

val streamingQuery = writer2.start()




Streaming Data Sources and Sinks - Files (1/2)

» Reading from files.

import org.apache.spark.sql.types._
val inputDirectoryOfJsonFiles = ...
val fileSchema = new StructType()

.add("key", IntegerType)
.add("value", IntegerType)

val inputDF = spark.readStream
.format ("json")
.schema(fileSchema)
.load (inputDirectory0fJsonFiles)




Streaming Data Sources and Sinks - Files (2/2)

» Writing to files.

val outputDir = ...
val checkpointDir = ...
val resultDF = ...

val streamingQuery = resultDF
.writeStream
.format ("parquet")
.option("path", outputDir)
.option("checkpointLocation", checkpointDir)
.start ()




Streaming Data Sources and Sinks - Kafka (1/2)

» Reading from Kafka.

val inputDF = spark
.readStream
.format ("kafka")
.option("kafka.bootstrap.servers", "hostl:portl,host2:port2")
.option("subscribe", "events")
.load ()




Streaming Data Sources and Sinks - Kafka (2/2)

» Writing to Kafka.

val counts = ... // DataFrame[word: string, count: long]

val streamingQuery = counts
.selectExpr("cast(word as string) as key", "cast(count as string) as value")
.writeStream
.format ("kafka")
.option("kafka.bootstrap.servers", "hostl:portil,host2:port2")
.option("topic", "wordCounts")

.outputMode ("update")
.option("checkpointLocation", checkpointDir)
.start ()




Basic Operations (1/2)

» Most of operations on DataFrame/Dataset are supported for streaming.

case class Call(action: String, time: Timestamp, id: Int)

val df: DataFrame = spark.readStream.json("s3://logs")
val ds: Dataset[Call] = df.as[Call]

» Selection and projection

df .select("action") .where("id > 10") // using untyped APIs
ds.filter(_.id > 10) .map(_.action) // using typed APIs




Basic Operations (2/2)

> Aggregation

df .groupBy("action") // using untyped API
ds.groupByKey(_.action) // using typed API

» SQL commands

df . createOrReplaceTempView("dfView")
spark.sql("select count(*) from dfView") // returns another streaming DF




Window Operation (1/3)

» Aggregations over a sliding event-time window.

> E.g., below is expressing a five-minute count.

// The sensorReadings DataFrame has the gemeration timestamp as a column named eventTime

sensorReadings.groupBy("sensorId", window("eventTime", "5 minute")).count ()

. 12:00 12:05 12:10 12:15
Processing Time + — L Tt
v v v
Input Stream Events ~ events  [12:02 id1 ...| [1211 id3 .| [1207 id1 ...
late, out-of-
order event
Fvent Time 12:00 12:05 12;10 12:15

Tumbling Windows

Mappingof eventtimeto # When event is being processed

A - . ~— Event-time the event maps to
5-min tumbling windows —» Window the event is mapped to




Window Operation (2/3)

» Computing counts corresponding to 10-minute windows sliding every five minutes.

import org.apache.spark.sql.functions.*

sensorReadings.groupBy("sensorId", window("eventTime", "10 minute", "5 minute")).count()

- 12:00 12:05 1210 1215
Processing Time + —t +— —
v v v
Input Stream Events [12:02 id ...| 21 id3)..] [1207 idi ..
T >
late, out-of-
/ \/orderwem
- 1200 1205 : R
Overlaping
Windows
Mappingof eventtime to overlapping - % When event s being processed
windows of length 10 mins and sliding » Event time the event mapsto

interval 5 mins — Window the event is mapped to




Window Operation (3/3)

» Assume that the input records are processed with a trigger interval of five minutes.

» The state of the result table at each of the micro-batches is shown in this figure.

12:00 12:05 12:10 1215
Processing Time t —t t— — >
v o [ 4 vl
Input Stream Events [1202 id ... (1211 id3 ...| [12:07 i1 ...
e smin . ) late evént
n Triggers v v

Result tablesafter [11:55-12:05 idl 1]  [T55-12:05 Tidi ] [155 1205 il
S-mintriggers |12:00-1210 id1 1]  [1200- 1210 [idi[1| |12:00-1210 idi 2
12:05-1215 [id3[1| [12:05-1215 [id3[i
1

1

12101220 id31 12:05-1215 |id1

12:10- 12:20 |id3
dark rows are updated counts
light rows are not updated counts Counts for older
windows are updated

with late event




Handling Late Data

> A watermark is defined as a moving threshold in event time that trails behind the
maximum event time seen by the query in the processed data.

» The trailing gap (watermark delay) defines how long the engine will wait for late data

to arrive.
sensorReadings
.withWatermark("eventTime", "10 minutes")
.groupBy ("sensorId", window("eventTime", "10 minutes", "5 minute"))

.mean("value")




Stateful Operations

» Stateful processing using groupByKey() and mapGroupsWithState().

def arbitraryStateUpdateFunction(
key: K,
newDataForKey: Iterator[V],
previousStateForKey: GroupState[S]
): U

val inputDataset: Dataset[V] = ...// input streaming Dataset

inputDataset.groupByKey (keyFunction) // keyFunction() generates key from input
.mapGroupsWithState (arbitraryStateUpdateFunction)




Stateful Operations - Example (1/3)

» Define the data types of K, V, S, and U.
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Keys (K): String (that is the userld)



Stateful Operations - Example (1/3)

>

Define the data types of K, V, S, and U.

v

Input data (V): case class UserAction(userld: String, action: String)

v

Keys (K): String (that is the userld)

v

State (S): case class UserStatus(userld: String, active: Boolean)



Stateful Operations - Example (1/3)

>

Define the data types of K, V, S, and U.

v

Input data (V): case class UserAction(userld: String, action: String)

v

Keys (K): String (that is the userld)

v

State (S): case class UserStatus(userld: String, active: Boolean)

v

Output (U): UserStatus, as we want to output the latest user status.




Stateful Operations - Example (2/3)

» Define a function that is called with new user actions.

def updateUserStatus(

userId: String,

newActions: Iterator[UserAction],

state: GroupState[UserStatus]): UserStatus = {
val userStatus = state.getOption.getOrElse { new UserStatus(userId, false) }
newActions.foreach { action => userStatus.updateWith(action) }
state.update (userStatus)
return userStatus




Stateful Operations - Example (2/3)

» Define a function that is called with new user actions.

» Two situations we need to handle: whether a previous state exists for that key (i.e.,
userld) or not.

def updateUserStatus(
userId: String,
newActions: Iterator[UserAction],
state: GroupState[UserStatus]): UserStatus = {
val userStatus = state.getOption.getOrElse { new UserStatus(userId, false) }
newActions.foreach { action => userStatus.updateWith(action) }
state.update (userStatus)

return userStatus




def

Stateful Operations - Example (2/3)

Define a function that is called with new user actions.

Two situations we need to handle: whether a previous state exists for that key (i.e.,
userld) or not.
Accordingly, we will initialize the user’s status, or update the existing status with the

new actions.

updateUserStatus(
userId: String,
newActions: Iterator[UserAction],
state: GroupState[UserStatus]): UserStatus = {
val userStatus = state.getOption.getOrElse { new UserStatus(userId, false) }
newActions.foreach { action => userStatus.updateWith(action) }
state.update (userStatus)
return userStatus




Stateful Operations - Example (3/3)

» Apply the function on the actions.

» We group the input actions Dataset using groupByKey() and then apply the upda-
teUserStatus function using mapGroupsWithState().

val userActions: Dataset[UserAction] = ...

val latestStatuses = userActions
.groupByKey (userAction => userAction.userId)
.mapGroupsWithState (updateUserStatus _)




Google Dataflow and Beam



History

> Google's Zeitgeist: tracking trends in web queries.

v

v

Builds a historical model of each query.

Google discontinued Zeitgeist, but most of its features can be found in Google Trends.

Global Home
More Data
United States

Overview

Inthe News
Celebrities.

Thats Entertaining
Around the Home
Sports
City by City

More Regions

U.S. Overview

“This year started off on a roll and never stopped. From bills in Washington D.C. to blow-
on TV, there was no shortage of events to captivate our attention. We hope you enjoy

this look back to what was on the minds of Americans throughout 2009. Unless otherwise

Roted, these o the e .

in

Fastest Rising By Quarter

‘american idol
® swineflu
® cash for clunkers

® paranormal activity




MillWheel Dataflow

> MillWheel is a framework for building low-latency data-processing applications.
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MillWheel Dataflow

> MillWheel is a framework for building low-latency data-processing applications.

» A dataflow graph of transformations (computations).
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MillWheel Dataflow

> MillWheel is a framework for building low-latency data-processing applications.

» A dataflow graph of transformations (computations).

» Stream: unbounded data of (key, value, timestamp) records.
e Timestamp: event-time

Model

Calculator
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Key Extraction Function and Computations

» Stream of (key, value, timestamp) records.

» Key extraction function: specified by the stream consumer to assign keys to records.

Computation A
Key Extractor:
Search Query

Computation B

Key Extractor: "bf8el",
Cookie ID

"britney",
"carly"

Stream:
Queries

"a79bc2"




Key Extraction Function and Computations

>

Stream of (key, value, timestamp) records.

v

Key extraction function: specified by the stream consumer to assign keys to records.

» Computation can only access state for the specific key.

v

Multiple computations can extract different keys from the same stream.

Computation A

Key Extractor:
Search Query

| Key A || Key A || Key A |
Computation B

Key Extractor: "bf8el",
Cookie ID

"a79bc2" Wall Time

Computation

"britney",
"carly"

Stream:
Queries

Key B | | Key B |




Persistent State

>

Keep the states of the computations

v

Managed on per-key basis

v

Stored n Blgta ble or Spa nner ("britney”, [bytes], 10:59:10

("britney", [bytes], 10:59:11)
("britney", [bytes],
("carly", [bytes], 10:59:10)

» Common use: aggregation, joins, ...

Window Counter Model
Calculator

britney: (10:59:10, 2)
(10:59:11, 1)

[ early: (105910, 1)] [ eary o |




Delivery Guarantees

» Emitted records are checkpointed before delivery.
e The checkpoints allow fault-tolerance.
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Delivery Guarantees

>

Emitted records are checkpointed before delivery.
e The checkpoints allow fault-tolerance.

v

When a delivery is ACKed the checkpoints can be garbage collected.

v

If an ACK is not received, the record can be re-sent.

v

Exactly-one delivery: duplicates are discarded by MillWheel at the recipient.




What is Google Cloud Dataflow?




Google Cloud Dataflow (1/2)

» Google managed service for unified batch and stream data processing.

Cloud Dataflow

MapReduce

Big Table T MillWheel

2002 2004 2006 2008 2010 2012 2013




Google Cloud Dataflow (2/2)

» Open source Cloud Dataflow SDK

» Express your data processing pipeline using FlumeJava.
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Google Cloud Dataflow (2/2)

» Open source Cloud Dataflow SDK

v

Express your data processing pipeline using FlumeJava.

v

If you run it in batch mode, it executed on the MapReduce framework.

v

If you run it in streaming mode, it is executed on the MillWheel framework.
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» Pipeline, a directed graph of data processing transformations

Complete pipeline online
concurrently
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Programming Model

>

Pipeline, a directed graph of data processing transformations

Complete pipeline online
concurrently

v

Optimized and executed as a unit

v

May include multiple inputs and multiple outputs

» May encompass many logical MapReduce or Millwheel
operations

source tokenizer window count




Windowing and Triggering

» Windowing determines where in event time data are grouped together for processing.
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Windowing and Triggering

» Windowing determines where in event time data are grouped together for processing.
e Fixed time windows (tumbling windows)
e Sliding time windows
e Session windows

> Triggering determines when in processing time the results of groupings are emitted
as panes.

e Time-based triggers
e Data-driven triggers
e Composit triggers




Example (1/3)

» Batch processing
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Example (2/3)

Trigger at period (time-based triggers)

3 &
3
= @ 18
2
g s 11
P @ ®
= ; @ 12
®

'
12:01 12:02 12:03 12:04 12:05 12:06 12:07 12:08

Event Time




Example (2/3)

Trigger at period (time-based triggers)
Trigger at count (data-driven triggers)
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Example (3/3)

» Fixed window, trigger at period (micro-batch)
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Example (3/3)

» Fixed window, trigger at period (micro-batch)

» Fixed window, trigger at watermark (streaming)
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Where is Apache Beam?




From Google Cloud Dataflow to Apache Beam

» In 2016, Google Cloud Dataflow team announced its intention to donate the pro-
gramming model and SDKs to the Apache Software Foundation.




From Google Cloud Dataflow to Apache Beam

» In 2016, Google Cloud Dataflow team announced its intention to donate the pro-
gramming model and SDKs to the Apache Software Foundation.

» That resulted in the incubating project Apache Beam.




Programming Components

>

Pipelines

PCollections

v

Transforms

v

v

[/O sources and sinks




Pipelines (1/2)

> A pipeline represents a data processing job.

» Directed graph of operating on data.

» A pipeline consists of two parts:

e Data (PCollection)
e Transforms applied to that data




Pipelines (2/2)

public static void main(String[] args) {

// Create a pipeline
PipelineOptions options = PipelineOptionsFactory.create();
Pipeline p = Pipeline.create(options);

p.apply(TextI0.Read.from("gs://...")) // Read input.
.apply(new CountWords()) // Do some processing.
.apply(TextIO0.Write.to("gs://...")); // Write output.

// Run the pipeline.
p.runQ);




PCollections (1/2)

» A parallel collection of records
» Immutable
» Must specify bounded or unbounded

.

Output




PCollections (2/2)

// Create a Java Collection, in this case a List of Strings.
static final List<String> LINES = Arrays.asList("line 1", "line 2", "line 3");

PipelineOptions options = PipelineOptionsFactory.create();
Pipeline p = Pipeline.create(options);

// Create the PCollection
p.apply(Create.of (LINES)) .setCoder (StringUtf8Coder.of ())




Transformations

» A processing operation that transforms data

» Each transform accepts one (or multiple) PCollections as input, performs an op-
eration, and produces one (or multiple) new PCollections as output.

» Core transforms: ParDo, GroupByKey, Combine, Flatten




Transformations - ParDo

» Processes each element of a PCollection independently using a user-provided DoFn.
E— !
0!
B — El!

// The input PCollection of Strings.
PCollection<String> words = ...;

// The DoFn to perform on each element in the input PCollection.
static class ComputeWordLengthFn extends DoFn<String, Integer> { ... }

// Apply a ParDo to the PCollection "words" to compute lengths for each word.
PCollection<Integer> wordLengths = words.apply(ParDo.of (new ComputeWordLengthFn()));




// A PCollection of key/value pairs: words and line numbers.
PCollection<KV<String, Integer>> wordsAndLines = ...;

// Apply a GroupByKey transform to the PCollection "wordsAndLines".
PCollection<KV<String, Iterable<Integer>>> groupedWords = wordsAndLines.apply(
GroupByKey.<String, Integer>create());




Transformations - Join and CoGroubByKey

» Groups together the values from multiple PCollections of key-value pairs.

// Each data set is represented by key-value pairs in separate PCollections.
// Both data sets share a common key type ("K").

PCollection<KV<K, V1>> pcl = 3

PCollection<KV<K, V2>> pc2 2008

// Create tuple tags for the value types in each collection.
final TupleTag<V1i> tagl = new TupleTag<V1i>();
final TupleTag<V2> tag2 = new TupleTag<V2>();

// Merge collection values into a CoGbkResult collection.
PCollection<KV<K, CoGbkResult>> coGbkResultCollection =
KeyedPCollectionTuple.of (tagl, pcl)
.and(tag2, pc2)
.apply (CoGroupByKey.<K>create()) ;




Example: HashTag Autocompletion (1/3)

#SuperBo Q

#SuperBowl

#SuperBowlXLIX

#superbowlcommercials

#SuperBowlSunday




{Go Hawks #Seahawks!, #Seattle works museum pass. Free!
Go #PatriotsNation! Having fun at #seaside, .. }

{seahawks->5M, seattle->2M, patriots->9M, ...}

{d->(deflategate, 10M), d->(denver, 2M), ..,

ExpandPrefixes
P sea->(seahawks, 5M), sea->(seaside, 2M), ...}

{d->[deflategate, desafiodatransa, djokovic],

Top(3) de->[deflategate, desafiodatransa, dead5@],...}




Example: HashTag Autocompletion (3/3)

Pipeline p = Pipeline.create();
p.begin()

.apply(TextIO.Read.from(“gs://.."))

.apply(ParDo.of (new O»n

.apply(Count.perElement())

ExpandPrefixes .apply(ParDo.of (new ExpandPrefixes())
Top(3) .apply(Top.largestPerKey(3))

.apply(TextIO.Write.to(“gs://..”));

—




Summary




Summary

» Spark
e Mini-batch processing
e DStream: sequence of RDDs
e RDD and window operations
e Structured streaming

» Google cloud dataflow
e Pipeline
e PCollection: windows and triggers
e Transforms
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