Large Scale Graph Processing - Pregel, GraphLab, and GraphX

Amir H. Payberah
payberah@kth.se
2021-09-29

https://id2221kth.github.io

https://tinyurl.com/f6x544h

Where Are We?

- A flexible abstraction for describing relationships between discrete objects.

ETH Large Graph

Graph Algorithms Challenges

- Difficult to extract parallelism based on partitioning of the data.
- Difficult to express parallelism based on partitioning of computation.

Graph Algorithms Challenges

- Difficult to extract parallelism based on partitioning of the data.
- Difficult to express parallelism based on partitioning of computation.
- Graph partition is a challenging problem.

KTH Graph Partitioning

- Partition large scale graphs and distribut to hosts.

Edge-Cut Graph Partitioning

- Divide vertices of a graph into disjoint clusters.
- Nearly equal size (w.r.t. the number of vertices).
- With the minimum number of edges that span separated clusters.

Vertex-Cut Graph Partitioning

- Divide edges of a graph into disjoint clusters.
- Nearly equal size (w.r.t. the number of edges).
- With the minimum number of replicated vertices.

Edge-Cut vs. Vertex-Cut Graph Partitioning (1/2)

- Natural graphs: skewed Power-Law degree distribution.
- Edge-cut algorithms perform poorly on Power-Law Graphs.

Edge-Cut vs. Vertex-Cut Graph Partitioning (2/2)

PageRank with MapReduce

PageRank

$$
R[i]=\sum_{j \in \operatorname{Nbrs}(i)} w_{j i} R[j]
$$

토 P PageRank Example (1/2)

- $R[i]=\sum_{j \in \operatorname{Mbrs}(i)} W_{j i} R[j]$

PageRank Example (1/2)

- R[i] $=\sum_{j \in \operatorname{Nbrs}(i)} W_{j i} R[j]$
- Input


```
V1: [0.25, V2, V3, V4]
V2: [0.25, V3, V4]
V3: [0.25, V1]
V4: [0.25, V1, V3]
```


PageRank Example (1/2)

- $R[i]=\sum_{j \in \operatorname{Nbrs}(i)} W_{j i} R[j]$
- Input


```
V1: [0.25, V2, V3, V4]
V2: [0.25, V3, V4]
V3: [0.25, V1]
V4: [0.25, V1, V3]
```

- Share the rank among all outgoing links

```
V1: (V2, 0.25/3), (V3, 0.25/3), (V4, 0.25/3)
V2: (V3, 0.25/2), (V4, 0.25/2)
V3: (V1, 0.25/1)
V4: (V1, 0.25/2), (V3, 0.25/2)
```

- $R[\mathrm{i}]=\sum_{\mathrm{j} \in \mathrm{Nbrs}(\mathrm{i})} \mathrm{W}_{\mathrm{ji}} \mathrm{R}[\mathrm{j}]$


```
V1: (V2, 0.25/3), (V3, 0.25/3), (V4, 0.25/3)
V2: (V3, 0.25/2), (V4, 0.25/2)
V3: (V1, 0.25/1)
V4: (V1, 0.25/2), (V3, 0.25/2)
```


PageRank Example (2/2)

- $R[i]=\sum_{j \in \operatorname{Nbrs}(i)} w_{j i} R[j]$


```
V1: (V2, 0.25/3), (V3, 0.25/3), (V4, 0.25/3)
V2: (V3, 0.25/2), (V4, 0.25/2)
V3: (V1, 0.25/1)
V4: (V1, 0.25/2), (V3, 0.25/2)
```

- Output after one iteration

```
V1: [0.37, V2, V3, V4]
V2: [0.08, V3, V4]
V3: [0.33, V1]
V4: [0.20, V1, V3]
```

PageRank in MapReduce - Map (1/2)

- Map function


```
map(key: [url, pagerank], value: outlink_list)
    for each outlink in outlink_list:
            emit(key: outlink, value: pagerank / size(outlink_list))
    emit(key: url, value: outlink_list)
```


PageRank in MapReduce - Map (1/2)

- Map function


```
map(key: [url, pagerank], value: outlink_list)
    for each outlink in outlink_list:
            emit(key: outlink, value: pagerank / size(outlink_list))
    emit(key: url, value: outlink_list)
```

- Input (key, value)

```
((V1, 0.25), [V2, V3, V4])
((V2, 0.25), [V3, V4])
((V3, 0.25), [V1])
((V4, 0.25), [V1, V3])
```


PageRank in MapReduce - Map (2/2)

- Map function


```
map(key: [url, pagerank], value: outlink_list)
    for each outlink in outlink_list:
            emit(key: outlink, value: pagerank / size(outlink_list))
    emit(key: url, value: outlink_list)
```


PageRank in MapReduce - Map (2/2)

- Map function

```
map(key: [url, pagerank], value: outlink_list)
    for each outlink in outlink_list:
            emit(key: outlink, value: pagerank / size(outlink_list))
    emit(key: url, value: outlink_list)
```

- Intermediate (key, value)

```
(V2, 0.25/3), (V3, 0.25/3), (V4, 0.25/3), (V3, 0.25/2), (V4, 0.25/2), (V1, 0.25/1),
(V1, 0.25/2), (V3, 0.25/2)
(V1, [V2, V3, V4])
(V2, [V3, V4])
(V3, [V1])
(V4, [V1, V3])
```


PageRank in MapReduce - Shuffle

- Intermediate (key, value)

```
(V2, 0.25/3), (V3, 0.25/3), (V4, 0.25/3), (V3, 0.25/2), (V4, 0.25/2), (V1, 0.25/1),
(V1, 0.25/2), (V3, 0.25/2)
(V1, [V2, V3, V4])
(V2, [V3, V4])
(V3, [V1])
(V4, [V1, V3])
```


PageRank in MapReduce - Shuffle

- Intermediate (key, value)

```
(V2, 0.25/3), (V3, 0.25/3), (V4, 0.25/3), (V3, 0.25/2), (V4, 0.25/2), (V1, 0.25/1),
(V1, 0.25/2), (V3, 0.25/2)
(V1, [V2, V3, V4])
(V2, [V3, V4])
(V3, [V1])
(V4, [V1, V3])
```

- After shuffling

```
(V1, 0.25/1), (V1, 0.25/2), (V1, [V2, V3, V4])
(V2, 0.25/3), (V2, [V3, V4])
(V3, 0.25/3), (V3, 0.25/2), (V3, 0.25/2), (V3, [V1])
(V4, 0.25/3), (V4, 0.25/2), (V4, [V1, V3])
```


PageRank in MapReduce - Reduce (1/2)

- Reduce function

```
reducer(key: url, value: list_pr_or_urls)
    outlink_list = []
    pagerank = 0
    for each pr_or_urls in list_pr_or_urls:
        if is_list(pr_or_urls):
            outlink_list = pr_or_urls
        else
            pagerank += pr_or_urls
    emit(key: [url, pagerank], value: outlink_list)
```


PageRank in MapReduce - Reduce (1/2)

- Reduce function

```
reducer(key: url, value: list_pr_or_urls)
    outlink_list = []
    pagerank = 0
    for each pr_or_urls in list_pr_or_urls:
        if is_list(pr_or_urls):
            outlink_list = pr_or_urls
        else
            pagerank += pr_or_urls
    emit(key: [url, pagerank], value: outlink_list)
```

- Input of the Reduce function

```
(V1, 0.25/1), (V1, 0.25/2), (V1, [V2, V3, V4])
(V2, 0.25/3), (V2, [V3, V4])
(V3, 0.25/3), (V3, 0.25/2), (V3, 0.25/2), (V3, [V1])
(V4, 0.25/3), (V4, 0.25/2), (V4, [V1, V3])
```


PageRank in MapReduce - Reduce (2/2)

- Reduce function

```
reducer(key: url, value: list_pr_or_urls)
    outlink_list = []
    pagerank = 0
    for each pr_or_urls in list_pr_or_urls:
        if is_list(pr_or_urls):
            outlink_list = pr_or_urls
        else
            pagerank += pr_or_urls
    emit(key: [url, pagerank], value: outlink_list)
```


PageRank in MapReduce - Reduce (2/2)

- Reduce function

```
reducer(key: url, value: list_pr_or_urls)
    outlink_list = []
    pagerank = 0
    for each pr_or_urls in list_pr_or_urls:
        if is_list(pr_or_urls):
            outlink_list = pr_or_urls
        else
            pagerank += pr_or_urls
    emit(key: [url, pagerank], value: outlink_list)
```

- Output

```
((V1, 0.37), [V2, V3, V4])
((V2, 0.08), [V3, V4])
((V3, 0.33), [V1])
((V4, 0.20), [V1, V3])
```


Problems with MapReduce for Graph Analytics

- MapReduce does not directly support iterative algorithms.
- Invariant graph-topology-data re-loaded and re-processed at each iteration is wasting I/O, network bandwidth, and CPU

Problems with MapReduce for Graph Analytics

- MapReduce does not directly support iterative algorithms.
- Invariant graph-topology-data re-loaded and re-processed at each iteration is wasting I/O, network bandwidth, and CPU
- Materializations of intermediate results at every MapReduce iteration harm performance.

Think Like a Vertex

Think Like a Vertex

- Each vertex computes individually its value (in parallel).
- Computation typically depends on the neighbors.

Think Like a Vertex

- Each vertex computes individually its value (in parallel).
- Computation typically depends on the neighbors.
- Also know as graph-parallel processing model.

Data-Parallel vs. Graph-Parallel Computation

Graph-Parallel

"ctaxss"

Pregel

Pregel

- Large-scale graph-parallel processing platform developed at Google.
- Inspired by bulk synchronous parallel (BSP) model.

Execution Model (1/2)

- Applications run in sequence of iterations, called supersteps.

Execution Model (1/2)

- Applications run in sequence of iterations, called supersteps.
- A vertex in superstep S can:
- reads messages sent to it in superstep $S-1$.
- sends messages to other vertices: receiving at superstep $\mathrm{S}+1$.
- modifies its state.

Execution Model (1/2)

- Applications run in sequence of iterations, called supersteps.
- A vertex in superstep S can:
- reads messages sent to it in superstep $S-1$.
- sends messages to other vertices: receiving at superstep $\mathrm{S}+1$.
- modifies its state.
- Vertices communicate directly with one another by sending messages.

Execution Model (2/2)

- Superstep 0: all vertices are in the active state.

Execution Model (2/2)

- Superstep 0: all vertices are in the active state.
- A vertex deactivates itself by voting to halt: no further work to do.

Execution Model (2/2)

- Superstep 0: all vertices are in the active state.
- A vertex deactivates itself by voting to halt: no further work to do.
- A halted vertex can be active if it receives a message.

Execution Model (2/2)

- Superstep 0: all vertices are in the active state.
- A vertex deactivates itself by voting to halt: no further work to do.
- A halted vertex can be active if it receives a message.
- The whole algorithm terminates when:
- All vertices are simultaneously inactive.
- There are no messages in transit.

Example: Max Value (1/4)

```
i_val := val
for each message m
    if m > val then val := m
if i_val == val then
    vote_to_halt
else
    for each neighbor v
        send_message(v, val)
```


Example: Max Value (2/4)

```
i_val := val
for each message m
    if m > val then val := m
if i_val == val then
    vote_to_halt
else
    for each neighbor v
        send_message(v, val)
```


Example: Max Value (3/4)

```
i_val := val
for each message m
    if m > val then val := m
if i_val == val then
    vote_to_halt
else
    for each neighbor v
        send_message(v, val)
```


Example: Max Value (4/4)

```
i_val := val
for each message m
    if m > val then val := m
if i_val == val then
    vote_to_halt
else
    for each neighbor v
        send_message(v, val)
```


Example: PageRank

$$
R[i]=\sum_{j \in \operatorname{Nbrs}(i)} w_{j i} R[j]
$$

Example: PageRank

```
Pregel_PageRank(i, messages):
    // receive all the messages
    total = 0
    foreach(msg in messages):
        total = total + msg
    // update the rank of this vertex
    R[i] = total
    // send new messages to neighbors
    foreach(j in out_neighbors[i]):
        sendmsg(R[i] * wij) to vertex j
```

$$
R[i]=\sum_{j \in \operatorname{Nbrs}(i)} W_{j i} R[j]
$$

Graph Partitioning

- Edge-cut partitioning

Graph Partitioning

- Edge-cut partitioning
- The pregel library divides a graph into a number of partitions.

Graph Partitioning

- Edge-cut partitioning
- The pregel library divides a graph into a number of partitions.
- Each partition consists of vertices and all of those vertices' outgoing edges.

Graph Partitioning

- Edge-cut partitioning
- The pregel library divides a graph into a number of partitions.
- Each partition consists of vertices and all of those vertices' outgoing edges.
- Vertices are assigned to partitions based on their vertex-ID (e.g., hash(ID)).

System Model

- Master-worker model.
- The master
- Coordinates workers.
- Assigns one or more partitions to each worker.
- Instructs each worker to perform a superstep.

System Model

- Master-worker model.
- The master
- Coordinates workers.
- Assigns one or more partitions to each worker.
- Instructs each worker to perform a superstep.
- Each worker
- Executes the local computation method on its vertices.
- Maintains the state of its partitions.
- Manages messages to and from other workers.

Fault Tolerance

- Fault tolerance is achieved through checkpointing.
- Saved to persistent storage

Fault Tolerance

- Fault tolerance is achieved through checkpointing.
- Saved to persistent storage
- At start of each superstep, master tells workers to save their state:
- Vertex values, edge values, incoming messages

Fault Tolerance

- Fault tolerance is achieved through checkpointing.
- Saved to persistent storage
- At start of each superstep, master tells workers to save their state:
- Vertex values, edge values, incoming messages
- Master saves aggregator values (if any).

Fault Tolerance

- Fault tolerance is achieved through checkpointing.
- Saved to persistent storage
- At start of each superstep, master tells workers to save their state:
- Vertex values, edge values, incoming messages
- Master saves aggregator values (if any).
- When master detects one or more worker failures:
- All workers revert to last checkpoint.

Pregel Limitations

- Inefficient if different regions of the graph converge at different speed.
- Runtime of each phase is determined by the slowest machine.

GraphLab/Turi

- GraphLab allows asynchronous iterative computation.

GraphLab

- GraphLab allows asynchronous iterative computation.
- Vertex scope of vertex v: the data stored in v, and in all adjacent vertices and edges.

GraphLab

- GraphLab allows asynchronous iterative computation.
- Vertex scope of vertex v: the data stored in v, and in all adjacent vertices and edges.
- A vertex can read and modify any of the data in its scope (shared memory).

Example: PageRank (GraphLab)

```
GraphLab_PageRank(i)
    // compute sum over neighbors
    total = 0
    foreach(j in in_neighbors(i)):
        total = total + R[j] * wji
    // update the PageRank
    R[i] = total
    // trigger neighbors to run again
    foreach(j in out_neighbors(i)):
        signal vertex-program on j
```

$$
R[i]=\sum_{j \in \operatorname{Nbrs}(i)} W_{j i} R[j]
$$

Consistency (1/5)

- Overlapped scopes: race-condition in simultaneous execution of two update functions.

Consistency (1/5)

- Overlapped scopes: race-condition in simultaneous execution of two update functions.

Consistency (2/5)

- Full consistency: during the execution $f(v)$, no other function reads or modifies data within the v scope.

Consistency (3/5)

- Edge consistency: during the execution $f(v)$, no other function reads or modifies any of the data on v or any of the edges adjacent to v .

Consistency (4/5)

- Vertex consistency: during the execution $f(v)$, no other function will be applied to V .

Consistency (5/5)

Consistency vs. Parallelism

[Low, Y., GraphLab: A Distributed Abstraction for Large Scale Machine Learning (Doctoral dissertation, University of California), 2013.]

Consistency Implementation

- Distributed locking: associating a readers-writer lock with each vertex.

Consistency Implementation

- Distributed locking: associating a readers-writer lock with each vertex.
- Vertex consistency
- Central vertex (write-lock)

Consistency Implementation

- Distributed locking: associating a readers-writer lock with each vertex.
- Vertex consistency
- Central vertex (write-lock)
- Edge consistency
- Central vertex (write-lock), Adjacent vertices (read-locks)

Consistency Implementation

- Distributed locking: associating a readers-writer lock with each vertex.
- Vertex consistency
- Central vertex (write-lock)
- Edge consistency
- Central vertex (write-lock), Adjacent vertices (read-locks)
- Full consistency
- Central vertex (write-locks), Adjacent vertices (write-locks)

Consistency Implementation

- Distributed locking: associating a readers-writer lock with each vertex.
- Vertex consistency
- Central vertex (write-lock)
- Edge consistency
- Central vertex (write-lock), Adjacent vertices (read-locks)
- Full consistency
- Central vertex (write-locks), Adjacent vertices (write-locks)
- Deadlocks are avoided by acquiring locks sequentially following a canonical order.

Graph Partitioning

- Edge-cut partitioning.
- Two-phase partitioning:

1. Convert a large graph into a small meta-graph
2. Partition the meta-graph

Fault Tolerance - Synchronous

- The systems periodically signals all computation activity to halt.

Fault Tolerance - Synchronous

- The systems periodically signals all computation activity to halt.
- Then synchronizes all caches, and saves to disk all data which has been modified since the last snapshot.

Fault Tolerance - Synchronous

- The systems periodically signals all computation activity to halt.
- Then synchronizes all caches, and saves to disk all data which has been modified since the last snapshot.
- Simple, but eliminates the systems advantage of asynchronous computation.

Fault Tolerance - Asynchronous

- Based on the Chandy-Lamport algorithm.
- The snapshot function is implemented as a function in vertices.
- It takes priority over all other update functions.

Fault Tolerance - Asynchronous

- Based on the Chandy-Lamport algorithm.
- The snapshot function is implemented as a function in vertices.
- It takes priority over all other update functions.

```
if v was already snapshotted then
    Quit
Save D}\mp@subsup{D}{v}{\prime// Save current vertex
// Save all edges connected to un-snapshotted vertices
foreach }u\in\mathbf{N}[v]\mathrm{ do // Loop over neighbors
    if u was not snapshotted then
        Save }\mp@subsup{D}{u->v}{}\mathrm{ if edge }u->v\mathrm{ exists
        Save }\mp@subsup{D}{v->u}{}\mathrm{ if edge v}->u\mathrm{ exists
        Reschedule u for a Snapshot Update
Mark \(v\) as snapshotted
```


GraphLab2/Turi (PowerGraph)

PowerGraph

- Factorizes the local vertices functions into the Gather, Apply and Scatter phases.

Programming Model

- Gather-Apply-Scatter (GAS)
- Gather: accumulate information from neighborhood.
- Apply: apply the accumulated value to center vertex.
- Scatter: update adjacent edges and vertices.

Execution Model (1/2)

- Initially all vertices are active.
- It executes the vertex-program on the active vertices until none remain.
- Once a vertex-program completes the scatter phase it becomes inactive until it is reactivated.
- Vertices can activate themselves and neighboring vertices.

Execution Model (1/2)

- Initially all vertices are active.
- It executes the vertex-program on the active vertices until none remain.
- Once a vertex-program completes the scatter phase it becomes inactive until it is reactivated.
- Vertices can activate themselves and neighboring vertices.
- PowerGraph can execute both synchronously and asynchronously.

Execution Model (2/2)

- Synchronous scheduling like Pregel.
- Executing the gather, apply, and scatter in order.
- Changes made to the vertex/edge data are committed at the end of each step.

Execution Model (2/2)

- Synchronous scheduling like Pregel.
- Executing the gather, apply, and scatter in order.
- Changes made to the vertex/edge data are committed at the end of each step.
- Asynchronous scheduling like GraphLab.
- Changes made to the vertex/edge data during the apply and scatter functions are immediately committed to the graph.
- Visible to subsequent computation on neighboring vertices.

Example: PageRank (PowerGraph)

```
PowerGraph_PageRank(i):
    Gather(j -> i):
        return wji * R[j]
    sum(a, b):
        return a + b
    // total: Gather and sum
    Apply(i, total):
        R[i] = total
```

 Scatter (i \(->\) j):
 if \(R[i]\) changed then activate (\(j\))
 $$
R[i]=\sum_{j \in \operatorname{Nbrs}(i)} W_{j i} R[j]
$$

- Vertx-cut partitioning.

atb
 KTH
 ,
 4.
 Graph Partitioning (1/2)

- Vertx-cut partitioning.
- Random vertex-cuts: randomly assign edges to machines.
- Vertx-cut partitioning.
- Random vertex-cuts: randomly assign edges to machines.
- Completely parallel and easy to distribute.

Graph Partitioning (1/2)

- Vertx-cut partitioning.
- Random vertex-cuts: randomly assign edges to machines.
- Completely parallel and easy to distribute.
- High replication factor.

KITH Graph Partitioning (2/2)

- Greedy vertex-cuts
- $A(v)$: set of machines that vertex v spans.

Graph Partitioning (2/2)

- Greedy vertex-cuts
- A(v): set of machines that vertex v spans.
- Case 1: If $A(u) \cap A(v) \neq \emptyset$, then the edge (u, v) should be assigned to a machine in the intersection.

Graph Partitioning (2/2)

- Greedy vertex-cuts
- A(v): set of machines that vertex v spans.
- Case 1: If $A(u) \cap A(v) \neq \emptyset$, then the edge (u, v) should be assigned to a machine in the intersection.
- Case 2: If $A(u) \cap A(v)=\emptyset$, then the edge (u, v) should be assigned to one of the machines from the vertex with the most unassigned edges.

Graph Partitioning (2/2)

- Greedy vertex-cuts
- $A(v)$: set of machines that vertex v spans.
- Case 1: If $A(u) \cap A(v) \neq \emptyset$, then the edge (u, v) should be assigned to a machine in the intersection.
- Case 2: If $A(u) \cap A(v)=\emptyset$, then the edge (u, v) should be assigned to one of the machines from the vertex with the most unassigned edges.
- Case 3: If only one of the two vertices has been assigned, then choose a machine from the assigned vertex.

Graph Partitioning (2/2)

- Greedy vertex-cuts
- $A(v)$: set of machines that vertex v spans.
- Case 1: If $A(u) \cap A(v) \neq \emptyset$, then the edge (u, v) should be assigned to a machine in the intersection.
- Case 2: If $A(u) \cap A(v)=\emptyset$, then the edge (u, v) should be assigned to one of the machines from the vertex with the most unassigned edges.
- Case 3: If only one of the two vertices has been assigned, then choose a machine from the assigned vertex.
- Case 4: If $\mathrm{A}(\mathrm{u})=\mathrm{A}(\mathrm{v})=\emptyset$, then assign the edge (u, v) to the least loaded machine.

Think Like a Table

Data-Parallel vs. Graph-Parallel Computation

Graph-Parallel

Motivation (2/3)

- Graph-parallel computation: restricting the types of computation to achieve performance.

Motivation (2/3)

- Graph-parallel computation: restricting the types of computation to achieve performance.
- The same restrictions make it difficult and inefficient to express many stages in a typical graph-analytics pipeline.

Motivation (3/3)

Live-Journal: 69 Million Edges

Motivation (3/3)

Live-Journal: 69 Million Edges

Think Like a Table

- Unifies data-parallel and graph-parallel systems.
- Tables and Graphs are composable views of the same physical data.

Graph View

GraphX

GraphX

- GraphX is the library to perform graph-parallel processing in Spark.

The Property Graph Data Model

- Spark represent graph structured data as a property graph.
- It is logically represented as a pair of vertex and edge property collections.
- VertexRDD and EdgeRDD

```
// VD: the type of the vertex attribute
// ED: the type of the edge attribute
class Graph[VD, ED] {
    val vertices: VertexRDD[VD]
    val edges: EdgeRDD[ED]
}
```


Vertex Table

Id	Property (V)
3	(rin, student)
7	(jgonzal, postdoc)
5	(franklin, professor)
2	(istoica, professor)

Edge Table

Srcld	Dstld	Property (E)
3	7	Collaborator
5	3	Advisor
2	5	Colleague
5	7	PI

The Vertex Collection

- VertexRDD: contains the vertex properties keyed by the vertex ID.

```
class Graph[VD, ED] {
    val vertices: VertexRDD[VD]
    val edges: EdgeRDD[ED]
}
```

// VD: the type of the vertex attribute
abstract class VertexRDD[VD] extends RDD[(VertexId, VD)]

The Edge Collection

- EdgeRDD: contains the edge properties keyed by the source and destination vertex IDs.

```
class Graph[VD, ED] {
    val vertices: VertexRDD[VD]
    val edges: EdgeRDD[ED]
}
// ED: the type of the edge attribute
case class Edge[ED] (srcId: VertexId, dstId: VertexId, attr: ED)
abstract class EdgeRDD[ED] extends RDD[Edge[ED]]
```


VertexTable

Edge Table

Sreld	Dstld	Property (E)
3	7	Collbarator
5	3	Adisor
2	5	Collegue
5	7	A

The Triplet Collection

- The triplets collection consists of each edge and its corresponding source and destination vertex properties.

The Triplet Collection

- The triplets collection consists of each edge and its corresponding source and destination vertex properties.
- It logically joins the vertex and edge properties: RDD [EdgeTriplet [VD, ED]].

The Triplet Collection

- The triplets collection consists of each edge and its corresponding source and destination vertex properties.
- It logically joins the vertex and edge properties: RDD[EdgeTriplet [VD, ED]].
- The EdgeTriplet class extends the Edge class by adding the srcAttr and dstAttr members, which contain the source and destination properties respectively.

Building a Property Graph

val users: RDD[(VertexId, (String, String))] = sc.parallelize(Array((3L, ("rxin", "student")), (7L, ("jgonzal", "postdoc")), (5L, ("franklin", "prof")), (2L, ("istoica", "prof"))))

Building a Property Graph

val users: RDD $[(V e r t e x I d, ~(S t r i n g, ~ S t r i n g))]=s c . p a r a l l e l i z e(A r r a y((3 L, ~(" r x i n ", ~ " s t u d e n t ")), ~$ (7L, ("jgonzal", "postdoc")), (5L, ("franklin", "prof")), (2L, ("istoica", "prof"))))
val relationships: RDD[Edge[String]] = sc.parallelize(Array(Edge(3L, 7L, "collab"), Edge(5L, 3L, "advisor"), Edge(2L, 5L, "colleague"), Edge(5L, 7L, "pi"), Edge(5L, 1L, "-")))

Building a Property Graph


```
val users: RDD[(VertexId, (String, String))] = sc.parallelize(Array((3L, ("rxin", "student")),
    (7L, ("jgonzal", "postdoc")), (5L, ("franklin", "prof")), (2L, ("istoica", "prof"))))
```

val relationships: RDD[Edge[String]] = sc.parallelize(Array(Edge(3L, 7L, "collab"),
Edge(5L, 3L, "advisor"), Edge(2L, 5L, "colleague"), Edge(5L, 7L, "pi"), Edge(5L, 1L, "-")))
val defaultUser = ("John Doe", "Missing")

Building a Property Graph


```
val users: RDD[(VertexId, (String, String))] = sc.parallelize(Array((3L, ("rxin", "student")),
    (7L, ("jgonzal", "postdoc")), (5L, ("franklin", "prof")), (2L, ("istoica", "prof"))))
val relationships: RDD[Edge[String]] = sc.parallelize(Array(Edge(3L, 7L, "collab"),
    Edge(5L, 3L, "advisor"), Edge(2L, 5L, "colleague"), Edge(5L, 7L, "pi"), Edge(5L, 1L, "-")))
```

val defaultUser = ("John Doe", "Missing")
val graph: Graph[(String, String), String] = Graph(users, relationships, defaultUser)

Graph Operators

- Information about the graph
- Property operators
- Structural operators
- Joins
- Aggregation
- Iterative computation
- ...

Information About The Graph (1/2)

- Information about the graph

```
val numEdges: Long
val numVertices: Long
val inDegrees: VertexRDD[Int]
val outDegrees: VertexRDD[Int]
val degrees: VertexRDD[Int]
```


Information About The Graph (1/2)

- Information about the graph

```
val numEdges: Long
val numVertices: Long
val inDegrees: VertexRDD[Int]
val outDegrees: VertexRDD[Int]
val degrees: VertexRDD[Int]
```

- Views of the graph as collections

```
val vertices: VertexRDD[VD]
val edges: EdgeRDD[ED]
val triplets: RDD[EdgeTriplet[VD, ED]]
```


Information About The Graph (2/2)


```
// Constructed from above
val graph: Graph[(String, String), String]
```


Information About The Graph (2/2)


```
// Constructed from above
val graph: Graph[(String, String), String]
```

```
// Count all users which are postdocs
graph.vertices.filter { case (id, (name, pos)) => pos == "postdoc" }.count
```


Information About The Graph (2/2)


```
// Constructed from above
val graph: Graph[(String, String), String]
```

```
// Count all users which are postdocs
graph.vertices.filter { case (id, (name, pos)) => pos == "postdoc" }.count
```

// Count all the edges where src > dst
graph.edges.filter (e \Rightarrow e.srcId $>$ e.dstId).count

Property Operators

- Transform vertex and edge attributes
- Each of these operators yields a new graph with the vertex or edge properties modified by the user defined map function.

```
def mapVertices[VD2] (map: (VertexId, VD) => VD2): Graph[VD2, ED]
def mapEdges[ED2] (map: Edge[ED] => ED2): Graph[VD, ED2]
def mapTriplets[ED2] (map: EdgeTriplet[VD, ED] => ED2): Graph[VD, ED2]
```


Property Operators

- Transform vertex and edge attributes
- Each of these operators yields a new graph with the vertex or edge properties modified by the user defined map function.

```
def mapVertices[VD2] (map: (VertexId, VD) => VD2): Graph[VD2, ED]
def mapEdges[ED2] (map: Edge[ED] => ED2): Graph[VD, ED2]
def mapTriplets[ED2] (map: EdgeTriplet[VD, ED] => ED2): Graph[VD, ED2]
```

```
val relations: RDD[String] = graph.triplets.map(triplet =>
    triplet.srcAttr._1 + " is the " + triplet.attr + " of " + triplet.dstAttr._1)
relations.collect.foreach(println)
```


Property Operators

- Transform vertex and edge attributes
- Each of these operators yields a new graph with the vertex or edge properties modified by the user defined map function.

```
def mapVertices[VD2] (map: (VertexId, VD) => VD2): Graph[VD2, ED]
def mapEdges[ED2] (map: Edge[ED] => ED2): Graph[VD, ED2]
def mapTriplets[ED2] (map: EdgeTriplet[VD, ED] => ED2): Graph[VD, ED2]
```

```
val relations: RDD[String] = graph.triplets.map(triplet =>
    triplet.srcAttr._1 + " is the " + triplet.attr + " of " + triplet.dstAttr._1)
relations.collect.foreach(println)
```

```
val newGraph = graph.mapTriplets(triplet =>
    triplet.srcAttr._1 + " is the " + triplet.attr + " of " + triplet.dstAttr._1)
newGraph.edges.collect.foreach(println)
```


Structural Operators

- reverse returns a new graph with all the edge directions reversed.
- subgraph takes vertex/edge predicates and returns the graph containing only the vertices/edges that satisfy the given predicate.

```
def reverse: Graph[VD, ED]
def subgraph(epred: EdgeTriplet[VD, ED] => Boolean, vpred: (VertexId, VD) => Boolean):
    Graph [VD, ED]
```


Structural Operators

- reverse returns a new graph with all the edge directions reversed.
- subgraph takes vertex/edge predicates and returns the graph containing only the vertices/edges that satisfy the given predicate.

```
def reverse: Graph[VD, ED]
def subgraph(epred: EdgeTriplet[VD, ED] => Boolean, vpred: (VertexId, VD) => Boolean):
    Graph [VD, ED]
```

```
// Remove missing vertices as well as the edges to connected to them
val validGraph = graph.subgraph(vpred = (id, attr) => attr._2 != "Missing")
validGraph.vertices.collect.foreach(println)
```


Join Operators

- joinVertices joins the vertices with the input RDD.

```
def joinVertices[U](table: RDD[(VertexId, U)])(map: (VertexId, VD, U) => VD): Graph[VD, ED]
```


Join Operators

- joinVertices joins the vertices with the input RDD.
- Returns a new graph with the vertex properties obtained by applying the user defined map function to the result of the joined vertices.
- Vertices without a matching value in the RDD retain their original value.

```
def joinVertices[U](table: RDD[(VertexId, U)])(map: (VertexId, VD, U) => VD): Graph[VD, ED]
val rdd: RDD[(VertexId, String)] = sc.parallelize(Array((3L, "phd")))
val joinedGraph = graph.joinVertices(rdd)((id, user, role) => (user._1, role + " " + user._2))
joinedGraph.vertices.collect.foreach(println)
```


Aggregation (1/2)

- aggregateMessages applies a user defined sendMsg function to each edge triplet in the graph and then uses the mergeMsg function to aggregate those messages at their destination vertex.

```
def aggregateMessages[Msg: ClassTag](
    sendMsg: EdgeContext[VD, ED, Msg] => Unit, // map
    mergeMsg: (Msg, Msg) => Msg, // reduce
    tripletFields: TripletFields = TripletFields.All):
    VertexRDD [Msg]
```


Aggregation (2/2)

```
// count and list the name of friends of each user
val profs: VertexRDD[(Int, String)] = validUserGraph.aggregateMessages[(Int, String)](
    // map
    triplet => {
        triplet.sendToDst((1, triplet.srcAttr._1))
    },
    // reduce
    (a,b) => (a._1 + b._1, a._2 + " " + b._2)
)
profs.collect.foreach(println)
```


Iterative Computation (1/6)

Iterative Computation (2/6)

```
i_val := val
for each message m
    if m > val then val := m
if i_val == val then
    vote_to_halt
else
    for each neighbor v
        send_message(v, val)
```


Iterative Computation (3/6)

- pregel takes two argument lists: graph.pregel(list1)(list2).

```
def pregel[A]
    (initialMsg: A, maxIter: Int = Int.MaxValue, activeDir: EdgeDirection = EdgeDirection.Out)
    (vprog: (VertexId, VD, A) => VD, sendMsg: EdgeTriplet[VD, ED] => Iterator[(VertexId, A)],
        mergeMsg: (A, A) => A):
    Graph[VD, ED]
```


Iterative Computation (3/6)

- pregel takes two argument lists: graph.pregel(list1)(list2).
- The first list contains configuration parameters
- The initial message, the maximum number of iterations, and the edge direction in which to send messages.

```
def pregel[A]
    (initialMsg: A, maxIter: Int = Int.MaxValue, activeDir: EdgeDirection = EdgeDirection.Out)
    (vprog: (VertexId, VD, A) => VD, sendMsg: EdgeTriplet[VD, ED] => Iterator[(VertexId, A)],
        mergeMsg: (A, A) => A):
    Graph [VD, ED]
```


Iterative Computation (3/6)

- pregel takes two argument lists: graph.pregel(list1)(list2).
- The first list contains configuration parameters
- The initial message, the maximum number of iterations, and the edge direction in which to send messages.
- The second list contains the user defined functions.
- Gather: mergeMsg, Apply: vprog, Scatter: sendMsg

```
def pregel[A]
    (initialMsg: A, maxIter: Int = Int.MaxValue, activeDir: EdgeDirection = EdgeDirection.Out)
    (vprog: (VertexId, VD, A) => VD, sendMsg: EdgeTriplet[VD, ED] => Iterator[(VertexId, A)],
        mergeMsg: (A, A) => A):
    Graph[VD, ED]
```


Iterative Computation (4/6)


```
import org.apache.spark._
import org.apache.spark.graphx._
import org.apache.spark.rdd.RDD
val initialMsg = -9999
```


Iterative Computation (4/6)


```
import org.apache.spark._
import org.apache.spark.graphx._
import org.apache.spark.rdd.RDD
val initialMsg = -9999
```

```
// (vertexID, (new vertex value, old vertex value))
```

// (vertexID, (new vertex value, old vertex value))
val vertices: RDD[(VertexId, (Int, Int))] = sc.parallelize(Array((1L, (1, -1)),
val vertices: RDD[(VertexId, (Int, Int))] = sc.parallelize(Array((1L, (1, -1)),
(2L, (2, -1)), (3L, (3, -1)), (6L, (6, -1))))

```
    (2L, (2, -1)), (3L, (3, -1)), (6L, (6, -1))))
```

Iterative Computation (4/6)


```
import org.apache.spark._
import org.apache.spark.graphx._
import org.apache.spark.rdd.RDD
val initialMsg = -9999
```

```
// (vertexID, (new vertex value, old vertex value))
```

// (vertexID, (new vertex value, old vertex value))
val vertices: RDD[(VertexId, (Int, Int))] = sc.parallelize(Array((1L, (1, -1)),
val vertices: RDD[(VertexId, (Int, Int))] = sc.parallelize(Array((1L, (1, -1)),
(2L, (2, -1)), (3L, (3, -1)), (6L, (6, -1))))

```
    (2L, (2, -1)), (3L, (3, -1)), (6L, (6, -1))))
```

val relationships: RDD[Edge[Boolean]] = sc.parallelize(Array(Edge(1L, 2L, true),
Edge(2L, 1L, true), Edge(2L, 6L, true), Edge(3L, 6L, true), Edge(6L, 1L, true),
Edge(6L, 3L, true)))

Iterative Computation (4/6)


```
import org.apache.spark._
import org.apache.spark.graphx._
import org.apache.spark.rdd.RDD
val initialMsg = -9999
```

```
// (vertexID, (new vertex value, old vertex value))
```

// (vertexID, (new vertex value, old vertex value))
val vertices: RDD[(VertexId, (Int, Int))] = sc.parallelize(Array((1L, (1, -1)),
val vertices: RDD[(VertexId, (Int, Int))] = sc.parallelize(Array((1L, (1, -1)),
(2L, (2, -1)), (3L, (3, -1)), (6L, (6, -1))))

```
    (2L, (2, -1)), (3L, (3, -1)), (6L, (6, -1))))
```

val relationships: RDD[Edge[Boolean]] = sc.parallelize(Array(Edge(1L, 2L, true),
Edge(2L, 1L, true), Edge(2L, 6L, true), Edge(3L, 6L, true), Edge(6L, 1L, true),
Edge(6L, 3L, true)))
val graph $=$ Graph(vertices, relationships)

Iterative Computation (5/6)

```
// Gather: the function for combining messages
def mergeMsg(msg1: Int, msg2: Int): Int = math.max(msg1, msg2)
```


Iterative Computation (5/6)

```
// Gather: the function for combining messages
def mergeMsg(msg1: Int, msg2: Int): Int = math.max(msg1, msg2)
```

```
// Apply: the function for receiving messages
def vprog(vertexId: VertexId, value: (Int, Int), message: Int): (Int, Int) = {
    if (message == initialMsg) // superstep 0
        value
    else // superstep > 0
        (math.max(message, value._1), value._1) // return (newValue, oldValue)
}
```


Iterative Computation (5/6)

```
// Gather: the function for combining messages
def mergeMsg(msg1: Int, msg2: Int): Int = math.max(msg1, msg2)
```

```
// Apply: the function for receiving messages
def vprog(vertexId: VertexId, value: (Int, Int), message: Int): (Int, Int) = {
    if (message == initialMsg) // superstep 0
        value
    else // superstep > 0
        (math.max(message, value._1), value._1) // return (newValue, oldValue)
}
```

```
// Scatter: the function for computing messages
def sendMsg(triplet: EdgeTriplet[(Int, Int), Boolean]): Iterator[(VertexId, Int)] = {
    val sourceVertex = triplet.srcAttr
    if (sourceVertex._1 == sourceVertex._2) // newValue == oldValue for source vertex?
            Iterator.empty // do nothing
    else
        // propogate new (updated) value to the destination vertex
        Iterator((triplet.dstId, sourceVertex._1))
}
```


Iterative Computation (6/6)

```
val minGraph = graph.pregel(initialMsg,
    Int.MaxValue,
    EdgeDirection.Out)(
    vprog, // apply
    sendMsg, // scatter
    mergeMsg) // gather
minGraph.vertices.collect.foreach{
    case (vertexId, (value, original_value)) => println(value)
}
```

Graph Representation

- Vertex-cut partitioning
- Representing graphs using two RDDs: edge-collection and vertex-collection
- Routing table: a logical map from a vertex id to the set of edge partitions that contains adjacent edges.

Property Graph	Vertex Table (RDD)	$\begin{aligned} & \text { Routing } \\ & \text { Tatbob } \\ & \text { (RDD) } \end{aligned}$	Edge Table (RDD)
		A) 12 B) 1 C) 1	$\begin{aligned} & \text { A }=-B \\ & \text { A }=-(C) \\ & B=-C \\ & \text { C }=-D \end{aligned}$
			$\begin{aligned} & \text { (A) }=-(E) \\ & (A)=-(F \\ & \text { (E) }=-D \\ & \text { (E) }=-(\mathrm{F} \end{aligned}$

Summary

Summary

- Think like a vertex
- Pregel: BSP, synchronous parallel model, message passing, edge-cut
- GraphLab: asynchronous model, shared memory, edge-cut
- PowerGraph: synchronous/asynchronous model, GAS, vertex-cut
- Think like a table
- Graphx: unifies data-parallel and graph-parallel systems.

References

- G. Malewicz et al., "Pregel: a system for large-scale graph processing", ACM SIGMOD 2010
- Y. Low et al., "Distributed GraphLab: a framework for machine learning and data mining in the cloud", VLDB 2012
- J. Gonzalez et al., "Powergraph: distributed graph-parallel computation on natural graphs", OSDI 2012
- J. Gonzalez et al., "GraphX: Graph Processing in a Distributed Dataflow Framework", OSDI 2014

Questions?

