b

k.
EFXTHE

NSKAP
3% OCH KONST 3%

S

Large Scale Graph Processing - Pregel, GraphLab, and GraphX

Amir H. Payberah
payberah@kth.se
2021-09-29

The Course Web Page

https://1id2221kth.github.io

https://tinyurl.com/f6x544h

https://id2221kth.github.io
https://tinyurl.com/f6x544h

Where Are We?

Data Processing

Pregel, GraphLab, PowerGrapl| Spark SQL Milib
‘ GraphX, X-Streem, Chaos, Tensorflow

MapReduce, Dryad Storm, SEEP, Naiad, Spark Streaming, Flink,
FlumeJava, Spark Millwheel, Google Dataflow

Data Storage

Dynamo, BigTable,
GFS, Flat FS Cassandra

Resource Management

Mesos, YARN

.,..mmllﬁ

SOUNDCLOUD

Large Graph

Graph Algorithms Challenges

» Difficult to extract parallelism based on partitioning of the data.

» Difficult to express parallelism based on partitioning of computation.

» Graph partition is a challenging problem.

Graph Partitioning

» Partition large scale graphs and distribut to hosts.

Edge-Cut Graph Partitioning

» Divide vertices of a graph into disjoint clusters.
» Nearly equal size (w.r.t. the number of vertices).

» With the minimum number of edges that span separated clusters.

Vertex-Cut Graph Partitioning

» Divide edges of a graph into disjoint clusters.
» Nearly equal size (w.r.t. the number of edges).

» With the minimum number of replicated vertices.

Edge-Cut vs. Vertex-Cut Graph Partitioning (1/2)

» Natural graphs: skewed Power-Law degree distribution.

» Edge-cut algorithms perform poorly on Power-Law Graphs.

fraction of nodes
=
o

; A/ //;/l @ a E
< 7 N\ 7)

degree

cpu2 cpul

Edge-Cut vs. Vertex-Cut Graph Partitioning (2/2)

Sxos
SR [

31

PageRank with MapReduce

PageRank

RiJ = > wyR[j]

jENbrs(i)

PageRank Example (1/2)

> R[] = > wyR[j]

jENbrs(i)

> Input

Vi:
V2:
V3:
Vé:

Vi:
vV2:
V3:
V4:

[0.25, V2, V3, V4]
[0.25, V3, V4]
[0.25, Vi]

[0.25, V1, V3]

Share the rank among all outgoing links

(v2, 0.25/3), (V3, 0.25/3), (V4, 0.25/3)
(V3, 0.25/2), (V4, 0.25/2)

(V1, 0.25/1)

(V1, 0.25/2), (V3, 0.25/2)

PageRank Example (2/2)

> Rli= ¥ wnlj]

Vi:
V2:
V3:
V4:

Vi:
V2:
V3:
V4:

jENbrs(i)

(V2, 0.25/3), (V3, 0.25/3), (V4, 0.25/3)
(v3, 0.25/2), (V4, 0.25/2)

(V1, 0.25/1)

(Vi, 0.25/2), (V3, 0.25/2)

Output after one iteration

[0.37, V2, V3, V4]
[0.08, V3, V4]
[0.33, Vi]

[0.20, V1, V3]

PageRank in MapReduce - Map (1/2)

» Map function 0"0

map (key: [url, pagerank], value: outlink_list)
for each outlink in outlink_list:
emit (key: outlink, value: pagerank / size(outlink_list))

emit(key: url, value: outlink_list)

» Input (key, value)

((vi, 0.25), [V2, V3, v4l)
((v2, 0.25), [V3, V4])
((v3, 0.25), [V1])

((v4, 0.25), [Vv1, Vv3])

PageRank in MapReduce - Map (2/2)
<
» Map function o o

map (key: [url, pagerank], value: outlink_list)
for each outlink in outlink_list:

emit (key: outlink, value: pagerank / size(outlink_list))

emit(key: url, value: outlink_list)

» Intermediate (key, value)

(v2, 0.25/3), (V3, 0.25/3), (V4, 0.25/3), (V3, 0.25/2), (V4, 0.25/2),
(V1, 0.25/2), (V3, 0.25/2)

(v1, [v2, v3, v4l)

(v2, [Vv3, v4l)

(v3, [vil)

(v4, [vi, v3l)

(Vi, 0.25/1),

PageRank in MapReduce - Shuffle

» Intermediate (key, value)

(Vv2, 0.25/3), (V3, 0.25/3), (V4, 0.25/3), (V3, 0.25/2), (V4, 0.25/2), (Vi, 0.25/1),
(vi, 0.25/2), (V3, 0.25/2)

(v1, [v2, V3, v4l)

(v2, [v3, v4l)

(v3, [vi])

(va, [vi, v3D)

> After shuffling

(Vi, 0.25/1), (Vi, 0.25/2), (Vi, [V2, V3, V4])

(v2, 0.25/3), (V2, [V3, V4])

(V3, 0.25/3), (V3, 0.25/2), (V3, 0.25/2), (V3, [Vi])
(V4, 0.25/3), (V4, 0.25/2), (V4, [Vi, V3])

PageRank in MapReduce

» Reduce function

reducer (key: url, value: list_pr_or_urls)
outlink_list = []
pagerank = 0

for each pr_or_urls in list_pr_or_urls:
if is_list(pr_or_urls):
outlink _list = pr_or_urls
else
pagerank += pr_or_urls

- Reduce (1/2)

emit(key: [url, pagerank], value: outlink_list)

> Input of the Reduce function

(Vi, 0.25/1), (Vi, 0.25/2), (Vi, [V2, V3, V4])
(v2, 0.25/3), (V2, [V3, Vv4])

(V3, 0.25/3), (V3, 0.25/2), (V3, 0.25/2),
(V4, 0.25/3), (V4, 0.25/2), (V4, [Vi, V3])

(v3, [viD)

PageRank in MapReduce - Reduce (2/2)

» Reduce function

reducer (key: url, value: list_pr_or_urls)
outlink_list = []
pagerank = 0

for each pr_or_urls in list_pr_or_urls:
if is_list(pr_or_urls):
outlink _list = pr_or_urls
else
pagerank += pr_or_urls

emit(key: [url, pagerank], value: outlink_list)

» Output

((vi, 0.37), [V2, V3, v4l)
((v2, 0.08), [V3, Vv4])
((v3, 0.33), [Vi])

((v4, 0.20), [V1, V3])

Problems with MapReduce for Graph Analytics

» MapReduce does not directly support iterative algorithms.

* Invariant graph-topology-data re-loaded and re-processed at each iteration is wasting
[/O, network bandwidth, and CPU

» Materializations of intermediate results at every MapReduce iteration harm perfor-
mance.

Think Like a Vertex

Think Like a Vertex

» Each vertex computes individually its value (in parallel).
» Computation typically depends on the neighbors.

» Also know as graph-parallel processing model.

Data-Parallel vs. Graph-Parallel Computation

Data-Parallel Graph-Parallel

1
A 1
ChEREED | o
|) \ i .,4‘:‘,
Pregel GraphLab" # &%
Soark’ | ohiab" £sd
Table : Property Graph
“Fov i
e] |
—— L Result X
“Row I .
T 0 1 |
o] . e—g—e
1

Pregel

> Large-scale graph-parallel processing platform developed at Google.

» Inspired by bulk synchronous parallel (BSP) model.

Jauueqg

compute communicate

Execution Model (1/2)

» Applications run in sequence of iterations, called supersteps.

> A vertex in superstep S can:
e reads messages sent to it in superstep S-1.
e sends messages to other vertices: receiving at superstep S+1.
* modifies its state.

» Vertices communicate directly with one another by sending messages.

Execution Model (2/2)

>

Superstep 0: all vertices are in the active state.

v

A vertex deactivates itself by voting to halt: no further work to do.

v

A halted vertex can be active if it receives a message.

v

The whole algorithm terminates when:

e All vertices are simultaneously inactive.
e There are no messages in transit.

Vote to halt

nactive -

Message received

Example: Max Value (1/4)

i_val := val

for each message m

if m > val then val :=m “

if i_val == val then Super step 0
vote_to_halt
else

for each neighbor v
send_message (v, val)

Example: Max Value (2/4)

i_val := val

for each message m Super step 0

if m > val then val :=m
if i_val == val then
vote_to_halt
else

Super step 1

for each neighbor v
send_message (v, val)

Example: Max Value (3/4)

Super step 0
i_val := val

for each message m

if m > val then val :=m

if i_val == val then Super step 1
vote_to_halt

else

for each neighbor v
send_message (v, val)

Super step 2

Example: Max Value (4/4)

Super step 0

i_val := val

for each message m Super step 1

if m > val then val :=m
if i_val == val then
vote_to_halt
else

. Super step 2
for each neighbor v

send_message (v, val)

Super step 3

Example: PageRank

RiJ = > wyR[j]

jENbrs(i)

Example: PageRank

Pregel_PageRank(i, messages):
// receive all the messages
total = 0
foreach(msg in messages):

total = total + msg

// update the rank of this vertex
R[i] = total

// send new messages to neighbors
foreach(j in out_neighbors[i]):
sendmsg(R[i] * wij) to vertex j

Rl = > wyR[j]

jENbrs(i)

Graph Partitioning

>

Edge-cut partitioning

v

The pregel library divides a graph into a number of partitions.

>

» Vertices are assigned to partitions based on their vertex-ID (e.g., hash(ID)).

Each partition consists of vertices and all of those vertices’ outgoing edges.

System Model

» Master-worker model.

» The master

e Coordinates workers.
» Assigns one or more partitions to each worker.

e Instructs each worker to perform a superstep.

» Each worker
» Executes the local computation method on its vertices.
e Maintains the state of its partitions.
e Manages messages to and from other workers.

Fault Tolerance

>

Fault tolerance is achieved through checkpointing.
e Saved to persistent storage

v

At start of each superstep, master tells workers to save their state:
e Vertex values, edge values, incoming messages

v

Master saves aggregator values (if any).

When master detects one or more worker failures:

v

» All workers revert to last checkpoint.

Pregel Limitations

» Inefficient if different regions of the graph converge at different speed.

» Runtime of each phase is determined by the slowest machine.

GraphLab/Turi

GraphLab

» GraphLab allows asynchronous iterative computation.

> Vertex scope of vertex v: the data stored in v, and in all adjacent vertices and edges.

» A vertex can read and modify any of the data in its scope (shared memory).

Data Graph
Edge Data

Vertex Data

Example: PageRank (GraphLab)

GraphLab_PageRank (i)
// compute sum over neighbors
total = 0
foreach(j in in_neighbors(i)):
total = total + R[j] * wji

// update the PageRank
R[i] = total

// trigger neighbors to rTun again
foreach(j in out_neighbors(i)):
signal vertex-program on j

Rl = > wyR[j]

jENbrs(i)

Consistency (1/5)

> Overlapped scopes: race-condition in simultaneous execution of two update func-
tions.

vertex
apsistepey

full consistency

full consistency

» Full consistency: during the execution £ (v), no other function reads or modifies data
within the v scope.

edge consistency

» Edge consistency: during the execution f(v), no other function reads or modifies
any of the data on v or any of the edges adjacent to v.

Consistency (4/5)

» Vertex consistency: during the execution £ (v), no other function will be applied to
V.

Consistency (5/5)

Consistency vs. Parallelism

Full

Edge
Consistency ~ Consistency ~ Consistency
Model Model

wsi|a|[eled

Vertex
Model

[Low, Y., GraphLab: A Distributed Abstraction for Large Scale Machine Learning (Doctoral dissertation, University of California), 2013.]

Consistency Implementation

>

Distributed locking: associating a readers-writer lock with each vertex.

» Vertex consistency
e Central vertex (write-lock)

v

Edge consistency
o Central vertex (write-lock), Adjacent vertices (read-locks)

v

Full consistency
e Central vertex (write-locks), Adjacent vertices (write-locks)

v

Deadlocks are avoided by acquiring locks sequentially following a canonical order.

Graph Partitioning

» Edge-cut partitioning.

» Two-phase partitioning:
1. Convert a large graph into a small meta-graph
2. Partition the meta-graph

] @
. meta-graph

Fault Tolerance - Synchronous

> The systems periodically signals all computation activity to halt.

» Then synchronizes all caches, and saves to disk all data which has been modified
since the last snapshot.

» Simple, but eliminates the systems advantage of asynchronous computation.

Fault Tolerance - Asynchronous

» Based on the Chandy-Lamport algorithm.

» The snapshot function is implemented as a function in vertices.
* |t takes priority over all other update functions.

if v was already snapshotted then
| Quit
Save I), // Save current vertex
// Save all edges connected to un-snapshotted vertices
foreach v € N[v] do // Loop over neighbors
if u was not snapshotted then
Save Dy, if edge u — v exists
Save D,,_,, if edge v — w exists
Reschedule u for a Snapshot Update

Mark v as snapshotted

GraphLab2/Turi (PowerGraph)

PowerGraph

» Factorizes the local vertices functions into the Gather, Apply and Scatter phases.

Programming Model

>

Gather-Apply-Scatter (GAS)

v

Gather: accumulate information from neighborhood.

v

Apply: apply the accumulated value to center vertex.

v

Scatter: update adjacent edges and vertices.

Execution Model (1/2)

» Initially all vertices are active.

> |t executes the vertex-program on the active vertices until none remain.
e Once a vertex-program completes the scatter phase it becomes inactive until it is
reactivated.
» Vertices can activate themselves and neighboring vertices.

» PowerGraph can execute both synchronously and asynchronously.

Execution Model (2/2)

» Synchronous scheduling like Pregel.

e Executing the gather, apply, and scatter in order.
e Changes made to the vertex/edge data are committed at the end of each step.

» Asynchronous scheduling like GraphLab.
e Changes made to the vertex/edge data during the apply and scatter functions are
immediately committed to the graph.
 Visible to subsequent computation on neighboring vertices.

Example: PageRank (PowerGraph)

PowerGraph_PageRank (i) :
Gather(j -> i):
return wji * R[j]

sum(a, b):
return a + b

// total: Gather and sum
Apply(i, total):
R[i] = total

Scatter(i —> j):
if R[i] changed then activate(j)

RA]= >0 wjR[j]

jENbrs(i)

Graph Partitioning (1/2)

>

Vertx-cut partitioning.

v

Random vertex-cuts: randomly assign edges to machines.

v

Completely parallel and easy to distribute.

v

High replication factor.

Graph Partitioning (2/2)

Greedy vertex-cuts
A(v): set of machines that vertex v spans.

Case 1: If A(u) NA(v) # (), then the edge (u, v) should be assigned to a machine in
the intersection.

Case 2: If A(u) N A(v) = (), then the edge (u,v) should be assigned to one of the
machines from the vertex with the most unassigned edges.

Case 3: If only one of the two vertices has been assigned, then choose a machine
from the assigned vertex.

Case 4: If A(u) = A(v) = 0, then assign the edge (u, v) to the least loaded machine.

Think Like a Table

Data-Parallel vs. Graph-Parallel Computation

Data-Parallel Graph-Parallel

1
A 1
ChEREED | o
|) \ i .,4‘:‘,
Pregel GraphLab" # &%
Soark’ | ohiab" £sd
Table : Property Graph
“Fov i
e] |
—— L Result X
“Row I .
T 0 1 |
o] . e—g—e
1

Motivation (2/3)

>

Graph-parallel computation: restricting the types of computation to achieve perfor-
mance.

The same restrictions make it difficult and inefficient to express many stages in a
typical graph-analytics pipeline.

v

Preprocessin; Compute Post Proc.
@ nlab %“
= .
1 1 7
Raw | ;
Compute
Fo) :
i Initial | PageRank
! Graph

Motivation (3/3)

Live-Journal: 69 Million Edges

Mahout/Hadoop 1340
Naive Spark R 354
Giraph W, 207
GraphX [l 68
Graphlab I 22
0 200 400 600 800 1000 1200 1400 1600

Runtime (in seconds, PageRank for 10 iterations)

Raw Wikipedia Hyperlinks PageRank Top 20 Pages
—
- Pl
5ok Freprocess — \Colbie Y Soark Fos. 3
Spark “ S
Giraph + Spark J 605
GraphX_ | 342
GraphLab + Spark Ll | 375

0 200 400 600 800 1000 1200 1400 1600
Total Runtime (in Seconds)

Think Like a Table

» Unifies data-parallel and graph-parallel systems.

» Tables and Graphs are composable views of the same physical data.

17 == —=

e —
Table View W Graph View

Representation

GraphX

» GraphX is the library to perform graph-parallel processing in Spark.

[T

SGraph X

The Property Graph Data Model

» Spark represent graph structured data as a property graph.

» It is logically represented as a pair of vertex and edge property collections.
e VertexRDD and EdgeRDD

Property Graph Vertex Table
Id Property (V)
3 (rin, student)
// VD: the type of the vertex attribute e
// ED: the type of the edge attribute 2 (toin professor
class Graph[VD, ED] { Edge Table
val vertices: VertexRDD[VD] g
Srcld | Dstld Property (E)
val edges: EdgeRDD[ED] 3 7 CO‘Eb:,:m,
} S 3 Advisor
2 5 Colleague
5 7 PI

The Vertex Collection

» VertexRDD: contains the vertex properties keyed by the vertex ID.

class Graph[VD, ED] {
val vertices: VertexRDD[VD]
val edges: EdgeRDD [ED]

}

// VD: the type of the wertex attribute
abstract class VertexRDD[VD] extends RDD[(VertexId, VD)]

Property Graph Vertex Table

Id Property (V)

3 (i student)

7 (jgonzal, postdoc)
5 (franki, professor)
2

(i pofo) Vertices:@
@

Edge Table

Srcld | Dsud | Property (E)

3 7 Collaborator
5 3 Advsor
2 5 Colleague
5 7 i

The Edge Collection

> EdgeRDD: contains the edge properties keyed by the source and destination vertex

IDs.

class Graph[VD, ED] {
val vertices: VertexRDD[VD]

val edges: EdgeRDD [ED]
}

// ED: the type of the edge attribute
case class Edge[ED] (srcId: VertexId, dstId: VertexId, attr: ED)

abstract class EdgeRDD[ED] extends RDD[Edge [ED]]

Property Graph Vertex Table
] Property (V)
B 3 (i stucent)
(o QI) poste
5 (rankin.prof
p (iocn profess =
Edges:
Edge Table & Q 9

Srcld | Dsud [Property (8)
3 7 Colaborator.
Advisor

7 2 s 3
2 5 Colleague
5 7

]

The Triplet Collection

> The triplets collection consists of each edge and its corresponding source and desti-
nation vertex properties.

» It logically joins the vertex and edge properties: RDD [EdgeTriplet [VD, ED]].

» The EdgeTriplet class extends the Edge class by adding the srcAttr and dstAttr
members, which contain the source and destination properties respectively.

Vertices: % Edges: Triplets:

Building a Property Graph

Property Graph Vertex Table

4 Property (V)
3 (rdin, student)

7 (lgonzal, postdoc)
5 (frankiin, professor)
2 (istoica, professor)

Edge Table

Sreld | Dstd | Property (E)

3 7 Collaborator
5 3 Advisor
2 5 Colleague
5 7

Pl

val users: RDD[(VertexId, (String, String))] = sc.parallelize(Array((3L, ("rxin", "student")),
"prof"))))

(7L, ("jgonzal", "postdoc")), (5L, ("franklin", "prof")), (2L, ("istoica",

val relationships: RDD[Edge[String]] = sc.parallelize(Array(Edge(3L, 7L, "collab"),

Edge (5L, 3L, "advisor"), Edge(2L, 5L, "colleague"), Edge(5L, 7L, "pi"), Edge(5L, 1L, "-")))

val defaultUser = ("John Doe", "Missing")

val graph: Graph[(String, String), String] = Graph(users, relationships, defaultUser)

Graph Operators

>

Information about the graph

v

Property operators

v

Structural operators

» Joins

v

Aggregation

v

Iterative computation

>

val
val
val
val
val

val
val
val

Information About The Graph (1/2)

Information about the graph

numEdges: Long
numVertices: Long
inDegrees: VertexRDD[Int]
outDegrees: VertexRDD[Int]
degrees: VertexRDD[Int]

Views of the graph as collections

vertices: VertexRDD[VD]
edges: EdgeRDD[ED]
triplets: RDD[EdgeTriplet[VD, ED]]

Information About The Graph (2/2)

Property Graph Vertex Table
1d Property (V)
3 (i, student)
7 (i I, postdk
5 (frankin, professor)
2 (it fosaor)
Edge Table
Srcld | Dsdd | Property ()
3 7 Collaborator
5 3 Advisor
2 5 Colleague
5 7 Pl
// Constructed from above
val graph: Graph[(String, String), String]
// Count all users which are postdocs
graph.vertices.filter { case (id, (name, pos)) => pos == "postdoc" }.count

// Count all the edges where src > dst
graph.edges.filter(e => e.srcId > e.dstId).count

Property Operators

» Transform vertex and edge attributes

» Each of these operators yields a new graph with the vertex or edge properties modified
by the user defined map function.

def mapVertices[VD2] (map: (VertexId, VD) => VD2): Graph[VD2, ED]
def mapEdges[ED2] (map: Edge[ED] => ED2): Graph[VD, ED2]
def mapTriplets[ED2] (map: EdgeTriplet[VD, ED] => ED2): Graph[VD, ED2]

val relations: RDD[String] = graph.triplets.map(triplet =>
triplet.srcAttr._1 + " is the " + triplet.attr + " of " + triplet.dstAttr._1)
relations.collect.foreach(println)

val newGraph = graph.mapTriplets(triplet =>
triplet.srcAttr._1 + " is the " + triplet.attr + " of " + triplet.dstAttr._1)
newGraph.edges.collect.foreach(println)

Structural Operators

» reverse returns a new graph with all the edge directions reversed.

» subgraph takes vertex/edge predicates and returns the graph containing only the
vertices/edges that satisfy the given predicate.

def reverse: Graph[VD, ED]

def subgraph(epred: EdgeTriplet[VD, ED] => Boolean, vpred: (VertexId, VD) => Boolean):
Graph [VD, ED]

// Remove missing vertices as well as the edges to comnected to them
val validGraph = graph.subgraph(vpred = (id, attr) => attr._2 != "Missing")

validGraph.vertices.collect.foreach(println)

Join Operators

> joinVertices joins the vertices with the input RDD.

e Returns a new graph with the vertex properties obtained by applying the user defined
map function to the result of the joined vertices.
e Vertices without a matching value in the RDD retain their original value.

def joinVertices[U] (table: RDD[(VertexId, U)]) (map: (VertexId, VD, U) => VD): Graph[VD, ED]

val rdd: RDD[(VertexId, String)] = sc.parallelize(Array((3L, "phd")))

val joinedGraph = graph.joinVertices(rdd) ((id, user, role) => (user._1, role + " " + user._2))

joinedGraph.vertices.collect.foreach(println)

Aggregation (1/2)

> aggregateMessages applies a user defined sendMsg function to each edge triplet
in the graph and then uses the mergeMsg function to aggregate those messages at
their destination vertex.

def aggregateMessages[Msg: ClassTag] (
sendMsg: EdgeContext[VD, ED, Msgl => Unit, // map
mergeMsg: (Msg, Msg) => Msg, // reduce
tripletFields: TripletFields = TripletFields.All):
VertexRDD [Msg]

Aggregation (2/2)

// count and list the name of friends of each user
val profs: VertexRDD[(Int, String)] = validUserGraph.aggregateMessages[(Int, String)](
// map
triplet => {
triplet.sendToDst((1, triplet.srcAttr._1))

¥y
// reduce
(a, b) => (a._1 +b._1, a. .2 +" " + b._2)

)

profs.collect.foreach(println)

lterative Computation (1/6)

Jdalieg

compute communicate

lterative Computation (2/6)

Super step 0

i_val := val

for each message m Super step 1

if m > val then val :=m
if i_val == val then
vote_to_halt
else

. Super step 2
for each neighbor v

send_message (v, val)

Super step 3

lterative Computation (3/6)

> pregel takes two argument lists: graph.pregel(list1) (1ist2).

» The first list contains configuration parameters

e The initial message, the maximum number of iterations, and the edge direction in
which to send messages.

» The second list contains the user defined functions.
¢ Gather: mergeMsg, Apply: vprog, Scatter: sendMsg

def pregell[A]
(initialMsg: A, maxIter: Int = Int.MaxValue, activeDir: EdgeDirection = EdgeDirection.Out)
(vprog: (VertexId, VD, A) => VD, sendMsg: EdgeTriplet[VD, ED] => Iterator[(VertexId, A)],
mergeMsg: (A, A) => A):
Graph[VD, ED]

lterative Computation (4/6)

Super step 0

import org.apache.spark._
import org.apache.spark.graphx._
import org.apache.spark.rdd.RDD

val initialMsg = -9999

// (vertezID, (new vertex walue, old vertex value))
val vertices: RDD[(VertexId, (Int, Int))] = sc.parallelize(Array((1L, (1, -1)),
(2L, (2, -1)), (3L, (3, -1)), (6L, (6, -1))))

val relationships: RDD[Edge[Boolean]] = sc.parallelize(Array(Edge(iL, 2L, true),
Edge (2L, 1L, true), Edge(2L, 6L, true), Edge(3L, 6L, true), Edge(6L, 1L, true),
Edge (6L, 3L, true)))

val graph = Graph(vertices, relationships)

lterative Computation (5/6)

// Gather: the function for combining messages
def mergeMsg(msgl: Int, msg2: Int): Int = math.max(msgl, msg2)

// Apply: the function for receiving messages
def vprog(vertexId: VertexId, value: (Int, Int), message: Int): (Int, Int) = {
if (message == initialMsg) // superstep O
value
else // superstep > 0
(math.max (message, value._1), value._1) // return (newValue, oldValue)

}

// Scatter: the function for computing messages
def sendMsg(triplet: EdgeTriplet[(Int, Int), Boolean]): Iterator[(VertexId, Int)] = {
val sourceVertex = triplet.srcAttr

if (sourceVertex._1 == sourceVertex._2) // newValue == oldValue for source vertez?
Iterator.empty // do nothing
else

// propogate new (updated) value to the destination vertex
Iterator((triplet.dstId, sourceVertex._1))

lterative Computation (6/6)

val minGraph = graph.pregel(initialMsg,
Int.MaxValue,
EdgeDirection.0Out) (
vprog, // apply
sendMsg, // scatter
mergeMsg) // gather

minGraph.vertices.collect.foreach{
case (vertexId, (value, original_value)) => println(value)

}

Graph Representation

» Vertex-cut partitioning
» Representing graphs using two RDDs: edge-collection and vertex-collection

» Routing table: a logical map from a vertex id to the set of edge partitions that
contains adjacent edges.

VertexTable: Routing Edge Tabi
Property Graph RDD) Table ROD)
= (ROD)

Part. | IR \

_ @ [om

@ |en | |G

\ 2D Vertex Cut Heuristic e oﬂ
W e o

’

@ | |08 | | ek

Part2 e ()8l)

Summary

Summary

> Think like a vertex
¢ Pregel: BSP, synchronous parallel model, message passing, edge-cut
e GraphlLab: asynchronous model, shared memory, edge-cut
e PowerGraph: synchronous/asynchronous model, GAS, vertex-cut

» Think like a table
e Graphx: unifies data-parallel and graph-parallel systems.

References

» G. Malewicz et al., "Pregel: a system for large-scale graph processing”, ACM SIG-
MOD 2010

> Y. Low et al., “Distributed GraphLab: a framework for machine learning and data
mining in the cloud”, VLDB 2012

» J. Gonzalez et al., “"Powergraph: distributed graph-parallel computation on natural
graphs”, OSDI 2012

» J. Gonzalez et al., “GraphX: Graph Processing in a Distributed Dataflow Framework”,

OSDI 2014

Questions?

