
Large Scale Graph Processing - Pregel, GraphLab, and GraphX

Amir H. Payberah
payberah@kth.se

2021-09-29



The Course Web Page

https://id2221kth.github.io

https://tinyurl.com/f6x544h

1 / 1

https://id2221kth.github.io
https://tinyurl.com/f6x544h


Where Are We?

2 / 1



I A flexible abstraction for describing relationships between discrete objects.

3 / 1



Large Graph

4 / 1



Graph Algorithms Challenges

I Difficult to extract parallelism based on partitioning of the data.

I Difficult to express parallelism based on partitioning of computation.

I Graph partition is a challenging problem.

5 / 1



Graph Partitioning

I Partition large scale graphs and distribut to hosts.

6 / 1



Edge-Cut Graph Partitioning

I Divide vertices of a graph into disjoint clusters.

I Nearly equal size (w.r.t. the number of vertices).

I With the minimum number of edges that span separated clusters.

7 / 1



Vertex-Cut Graph Partitioning

I Divide edges of a graph into disjoint clusters.

I Nearly equal size (w.r.t. the number of edges).

I With the minimum number of replicated vertices.

8 / 1



Edge-Cut vs. Vertex-Cut Graph Partitioning (1/2)

I Natural graphs: skewed Power-Law degree distribution.

I Edge-cut algorithms perform poorly on Power-Law Graphs.

9 / 1



Edge-Cut vs. Vertex-Cut Graph Partitioning (2/2)

10 / 1



PageRank with MapReduce

11 / 1



PageRank

R[i] =
∑

j∈Nbrs(i)
wjiR[j]

12 / 1



PageRank Example (1/2)

I R[i] =
∑

j∈Nbrs(i)
wjiR[j]

I Input

V1: [0.25, V2, V3, V4]

V2: [0.25, V3, V4]

V3: [0.25, V1]

V4: [0.25, V1, V3]

I Share the rank among all outgoing links

V1: (V2, 0.25/3), (V3, 0.25/3), (V4, 0.25/3)

V2: (V3, 0.25/2), (V4, 0.25/2)

V3: (V1, 0.25/1)

V4: (V1, 0.25/2), (V3, 0.25/2)

13 / 1



PageRank Example (2/2)

I R[i] =
∑

j∈Nbrs(i)
wjiR[j]

V1: (V2, 0.25/3), (V3, 0.25/3), (V4, 0.25/3)

V2: (V3, 0.25/2), (V4, 0.25/2)

V3: (V1, 0.25/1)

V4: (V1, 0.25/2), (V3, 0.25/2)

I Output after one iteration

V1: [0.37, V2, V3, V4]

V2: [0.08, V3, V4]

V3: [0.33, V1]

V4: [0.20, V1, V3]

14 / 1



PageRank in MapReduce - Map (1/2)

I Map function

map(key: [url, pagerank], value: outlink_list)

for each outlink in outlink_list:

emit(key: outlink, value: pagerank / size(outlink_list))

emit(key: url, value: outlink_list)

I Input (key, value)

((V1, 0.25), [V2, V3, V4])

((V2, 0.25), [V3, V4])

((V3, 0.25), [V1])

((V4, 0.25), [V1, V3])

15 / 1



PageRank in MapReduce - Map (2/2)

I Map function

map(key: [url, pagerank], value: outlink_list)

for each outlink in outlink_list:

emit(key: outlink, value: pagerank / size(outlink_list))

emit(key: url, value: outlink_list)

I Intermediate (key, value)

(V2, 0.25/3), (V3, 0.25/3), (V4, 0.25/3), (V3, 0.25/2), (V4, 0.25/2), (V1, 0.25/1),

(V1, 0.25/2), (V3, 0.25/2)

(V1, [V2, V3, V4])

(V2, [V3, V4])

(V3, [V1])

(V4, [V1, V3])

16 / 1



PageRank in MapReduce - Shuffle

I Intermediate (key, value)

(V2, 0.25/3), (V3, 0.25/3), (V4, 0.25/3), (V3, 0.25/2), (V4, 0.25/2), (V1, 0.25/1),

(V1, 0.25/2), (V3, 0.25/2)

(V1, [V2, V3, V4])

(V2, [V3, V4])

(V3, [V1])

(V4, [V1, V3])

I After shuffling

(V1, 0.25/1), (V1, 0.25/2), (V1, [V2, V3, V4])

(V2, 0.25/3), (V2, [V3, V4])

(V3, 0.25/3), (V3, 0.25/2), (V3, 0.25/2), (V3, [V1])

(V4, 0.25/3), (V4, 0.25/2), (V4, [V1, V3])

17 / 1



PageRank in MapReduce - Reduce (1/2)

I Reduce function

reducer(key: url, value: list_pr_or_urls)

outlink_list = []

pagerank = 0

for each pr_or_urls in list_pr_or_urls:

if is_list(pr_or_urls):

outlink_list = pr_or_urls

else

pagerank += pr_or_urls

emit(key: [url, pagerank], value: outlink_list)

I Input of the Reduce function

(V1, 0.25/1), (V1, 0.25/2), (V1, [V2, V3, V4])

(V2, 0.25/3), (V2, [V3, V4])

(V3, 0.25/3), (V3, 0.25/2), (V3, 0.25/2), (V3, [V1])

(V4, 0.25/3), (V4, 0.25/2), (V4, [V1, V3])

18 / 1



PageRank in MapReduce - Reduce (2/2)

I Reduce function

reducer(key: url, value: list_pr_or_urls)

outlink_list = []

pagerank = 0

for each pr_or_urls in list_pr_or_urls:

if is_list(pr_or_urls):

outlink_list = pr_or_urls

else

pagerank += pr_or_urls

emit(key: [url, pagerank], value: outlink_list)

I Output

((V1, 0.37), [V2, V3, V4])

((V2, 0.08), [V3, V4])

((V3, 0.33), [V1])

((V4, 0.20), [V1, V3])

19 / 1



Problems with MapReduce for Graph Analytics

I MapReduce does not directly support iterative algorithms.
• Invariant graph-topology-data re-loaded and re-processed at each iteration is wasting

I/O, network bandwidth, and CPU

I Materializations of intermediate results at every MapReduce iteration harm perfor-
mance.

20 / 1



Think Like a Vertex

21 / 1



Think Like a Vertex

I Each vertex computes individually its value (in parallel).

I Computation typically depends on the neighbors.

I Also know as graph-parallel processing model.

22 / 1



Data-Parallel vs. Graph-Parallel Computation

23 / 1



Pregel

24 / 1



Pregel

I Large-scale graph-parallel processing platform developed at Google.

I Inspired by bulk synchronous parallel (BSP) model.

25 / 1



Execution Model (1/2)

I Applications run in sequence of iterations, called supersteps.

I A vertex in superstep S can:
• reads messages sent to it in superstep S-1.
• sends messages to other vertices: receiving at superstep S+1.
• modifies its state.

I Vertices communicate directly with one another by sending messages.

26 / 1



Execution Model (2/2)

I Superstep 0: all vertices are in the active state.

I A vertex deactivates itself by voting to halt: no further work to do.

I A halted vertex can be active if it receives a message.

I The whole algorithm terminates when:
• All vertices are simultaneously inactive.
• There are no messages in transit.

27 / 1



Example: Max Value (1/4)

i_val := val

for each message m

if m > val then val := m

if i_val == val then

vote_to_halt

else

for each neighbor v

send_message(v, val)

28 / 1



Example: Max Value (2/4)

i_val := val

for each message m

if m > val then val := m

if i_val == val then

vote_to_halt

else

for each neighbor v

send_message(v, val)

29 / 1



Example: Max Value (3/4)

i_val := val

for each message m

if m > val then val := m

if i_val == val then

vote_to_halt

else

for each neighbor v

send_message(v, val)

30 / 1



Example: Max Value (4/4)

i_val := val

for each message m

if m > val then val := m

if i_val == val then

vote_to_halt

else

for each neighbor v

send_message(v, val)

31 / 1



Example: PageRank

R[i] =
∑

j∈Nbrs(i)
wjiR[j]

32 / 1



Example: PageRank

Pregel_PageRank(i, messages):

// receive all the messages

total = 0

foreach(msg in messages):

total = total + msg

// update the rank of this vertex

R[i] = total

// send new messages to neighbors

foreach(j in out_neighbors[i]):

sendmsg(R[i] * wij) to vertex j

R[i] =
∑

j∈Nbrs(i)
wjiR[j]

33 / 1



Graph Partitioning

I Edge-cut partitioning

I The pregel library divides a graph into a number of partitions.

I Each partition consists of vertices and all of those vertices’ outgoing edges.

I Vertices are assigned to partitions based on their vertex-ID (e.g., hash(ID)).

34 / 1



System Model

I Master-worker model.

I The master
• Coordinates workers.
• Assigns one or more partitions to each worker.
• Instructs each worker to perform a superstep.

I Each worker
• Executes the local computation method on its vertices.
• Maintains the state of its partitions.
• Manages messages to and from other workers.

35 / 1



Fault Tolerance

I Fault tolerance is achieved through checkpointing.
• Saved to persistent storage

I At start of each superstep, master tells workers to save their state:
• Vertex values, edge values, incoming messages

I Master saves aggregator values (if any).

I When master detects one or more worker failures:
• All workers revert to last checkpoint.

36 / 1



Pregel Limitations

I Inefficient if different regions of the graph converge at different speed.

I Runtime of each phase is determined by the slowest machine.

37 / 1



GraphLab/Turi

38 / 1



GraphLab

I GraphLab allows asynchronous iterative computation.

I Vertex scope of vertex v: the data stored in v, and in all adjacent vertices and edges.

I A vertex can read and modify any of the data in its scope (shared memory).

39 / 1



Example: PageRank (GraphLab)

GraphLab_PageRank(i)

// compute sum over neighbors

total = 0

foreach(j in in_neighbors(i)):

total = total + R[j] * wji

// update the PageRank

R[i] = total

// trigger neighbors to run again

foreach(j in out_neighbors(i)):

signal vertex-program on j

R[i] =
∑

j∈Nbrs(i)
wjiR[j]

40 / 1



Consistency (1/5)

I Overlapped scopes: race-condition in simultaneous execution of two update func-
tions.

41 / 1



Consistency (2/5)

I Full consistency: during the execution f(v), no other function reads or modifies data
within the v scope.

42 / 1



Consistency (3/5)

I Edge consistency: during the execution f(v), no other function reads or modifies
any of the data on v or any of the edges adjacent to v.

43 / 1



Consistency (4/5)

I Vertex consistency: during the execution f(v), no other function will be applied to
v.

44 / 1



Consistency (5/5)

Consistency vs. Parallelism

[Low, Y., GraphLab: A Distributed Abstraction for Large Scale Machine Learning (Doctoral dissertation, University of California), 2013.]

45 / 1



Consistency Implementation

I Distributed locking: associating a readers-writer lock with each vertex.

I Vertex consistency
• Central vertex (write-lock)

I Edge consistency
• Central vertex (write-lock), Adjacent vertices (read-locks)

I Full consistency
• Central vertex (write-locks), Adjacent vertices (write-locks)

I Deadlocks are avoided by acquiring locks sequentially following a canonical order.

46 / 1



Graph Partitioning

I Edge-cut partitioning.

I Two-phase partitioning:

1. Convert a large graph into a small meta-graph
2. Partition the meta-graph

47 / 1



Fault Tolerance - Synchronous

I The systems periodically signals all computation activity to halt.

I Then synchronizes all caches, and saves to disk all data which has been modified
since the last snapshot.

I Simple, but eliminates the systems advantage of asynchronous computation.

48 / 1



Fault Tolerance - Asynchronous

I Based on the Chandy-Lamport algorithm.

I The snapshot function is implemented as a function in vertices.
• It takes priority over all other update functions.

49 / 1



GraphLab2/Turi (PowerGraph)

50 / 1



PowerGraph

I Factorizes the local vertices functions into the Gather, Apply and Scatter phases.

51 / 1



Programming Model

I Gather-Apply-Scatter (GAS)

I Gather: accumulate information from neighborhood.

I Apply: apply the accumulated value to center vertex.

I Scatter: update adjacent edges and vertices.

52 / 1



Execution Model (1/2)

I Initially all vertices are active.

I It executes the vertex-program on the active vertices until none remain.
• Once a vertex-program completes the scatter phase it becomes inactive until it is

reactivated.
• Vertices can activate themselves and neighboring vertices.

I PowerGraph can execute both synchronously and asynchronously.

53 / 1



Execution Model (2/2)

I Synchronous scheduling like Pregel.
• Executing the gather, apply, and scatter in order.
• Changes made to the vertex/edge data are committed at the end of each step.

I Asynchronous scheduling like GraphLab.
• Changes made to the vertex/edge data during the apply and scatter functions are

immediately committed to the graph.
• Visible to subsequent computation on neighboring vertices.

54 / 1



Example: PageRank (PowerGraph)

PowerGraph_PageRank(i):

Gather(j -> i):

return wji * R[j]

sum(a, b):

return a + b

// total: Gather and sum

Apply(i, total):

R[i] = total

Scatter(i -> j):

if R[i] changed then activate(j)

R[i] =
∑

j∈Nbrs(i)
wjiR[j]

55 / 1



Graph Partitioning (1/2)

I Vertx-cut partitioning.

I Random vertex-cuts: randomly assign edges to machines.

I Completely parallel and easy to distribute.

I High replication factor.

56 / 1



Graph Partitioning (2/2)

I Greedy vertex-cuts

I A(v): set of machines that vertex v spans.

I Case 1: If A(u) ∩ A(v) 6= ∅, then the edge (u, v) should be assigned to a machine in
the intersection.

I Case 2: If A(u) ∩ A(v) = ∅, then the edge (u, v) should be assigned to one of the
machines from the vertex with the most unassigned edges.

I Case 3: If only one of the two vertices has been assigned, then choose a machine
from the assigned vertex.

I Case 4: If A(u) = A(v) = ∅, then assign the edge (u, v) to the least loaded machine.

57 / 1



Think Like a Table

58 / 1



Data-Parallel vs. Graph-Parallel Computation

59 / 1



Motivation (2/3)

I Graph-parallel computation: restricting the types of computation to achieve perfor-
mance.

I The same restrictions make it difficult and inefficient to express many stages in a
typical graph-analytics pipeline.

60 / 1



Motivation (3/3)

61 / 1



Think Like a Table

I Unifies data-parallel and graph-parallel systems.

I Tables and Graphs are composable views of the same physical data.

62 / 1



GraphX

63 / 1



GraphX

I GraphX is the library to perform graph-parallel processing in Spark.

64 / 1



The Property Graph Data Model

I Spark represent graph structured data as a property graph.

I It is logically represented as a pair of vertex and edge property collections.
• VertexRDD and EdgeRDD

// VD: the type of the vertex attribute

// ED: the type of the edge attribute

class Graph[VD, ED] {

val vertices: VertexRDD[VD]

val edges: EdgeRDD[ED]

}

65 / 1



The Vertex Collection

I VertexRDD: contains the vertex properties keyed by the vertex ID.

class Graph[VD, ED] {

val vertices: VertexRDD[VD]

val edges: EdgeRDD[ED]

}

// VD: the type of the vertex attribute

abstract class VertexRDD[VD] extends RDD[(VertexId, VD)]

66 / 1



The Edge Collection

I EdgeRDD: contains the edge properties keyed by the source and destination vertex
IDs.

class Graph[VD, ED] {

val vertices: VertexRDD[VD]

val edges: EdgeRDD[ED]

}

// ED: the type of the edge attribute

case class Edge[ED](srcId: VertexId, dstId: VertexId, attr: ED)

abstract class EdgeRDD[ED] extends RDD[Edge[ED]]

67 / 1



The Triplet Collection

I The triplets collection consists of each edge and its corresponding source and desti-
nation vertex properties.

I It logically joins the vertex and edge properties: RDD[EdgeTriplet[VD, ED]].

I The EdgeTriplet class extends the Edge class by adding the srcAttr and dstAttr

members, which contain the source and destination properties respectively.

68 / 1



Building a Property Graph

val users: RDD[(VertexId, (String, String))] = sc.parallelize(Array((3L, ("rxin", "student")),

(7L, ("jgonzal", "postdoc")), (5L, ("franklin", "prof")), (2L, ("istoica", "prof"))))

val relationships: RDD[Edge[String]] = sc.parallelize(Array(Edge(3L, 7L, "collab"),

Edge(5L, 3L, "advisor"), Edge(2L, 5L, "colleague"), Edge(5L, 7L, "pi"), Edge(5L, 1L, "-")))

val defaultUser = ("John Doe", "Missing")

val graph: Graph[(String, String), String] = Graph(users, relationships, defaultUser)

69 / 1



Graph Operators

I Information about the graph

I Property operators

I Structural operators

I Joins

I Aggregation

I Iterative computation

I ...

70 / 1



Information About The Graph (1/2)

I Information about the graph

val numEdges: Long

val numVertices: Long

val inDegrees: VertexRDD[Int]

val outDegrees: VertexRDD[Int]

val degrees: VertexRDD[Int]

I Views of the graph as collections

val vertices: VertexRDD[VD]

val edges: EdgeRDD[ED]

val triplets: RDD[EdgeTriplet[VD, ED]]

71 / 1



Information About The Graph (2/2)

// Constructed from above

val graph: Graph[(String, String), String]

// Count all users which are postdocs

graph.vertices.filter { case (id, (name, pos)) => pos == "postdoc" }.count

// Count all the edges where src > dst

graph.edges.filter(e => e.srcId > e.dstId).count

72 / 1



Property Operators

I Transform vertex and edge attributes

I Each of these operators yields a new graph with the vertex or edge properties modified
by the user defined map function.

def mapVertices[VD2](map: (VertexId, VD) => VD2): Graph[VD2, ED]

def mapEdges[ED2](map: Edge[ED] => ED2): Graph[VD, ED2]

def mapTriplets[ED2](map: EdgeTriplet[VD, ED] => ED2): Graph[VD, ED2]

val relations: RDD[String] = graph.triplets.map(triplet =>

triplet.srcAttr._1 + " is the " + triplet.attr + " of " + triplet.dstAttr._1)

relations.collect.foreach(println)

val newGraph = graph.mapTriplets(triplet =>

triplet.srcAttr._1 + " is the " + triplet.attr + " of " + triplet.dstAttr._1)

newGraph.edges.collect.foreach(println)

73 / 1



Structural Operators

I reverse returns a new graph with all the edge directions reversed.

I subgraph takes vertex/edge predicates and returns the graph containing only the
vertices/edges that satisfy the given predicate.

def reverse: Graph[VD, ED]

def subgraph(epred: EdgeTriplet[VD, ED] => Boolean, vpred: (VertexId, VD) => Boolean):

Graph[VD, ED]

// Remove missing vertices as well as the edges to connected to them

val validGraph = graph.subgraph(vpred = (id, attr) => attr._2 != "Missing")

validGraph.vertices.collect.foreach(println)

74 / 1



Join Operators

I joinVertices joins the vertices with the input RDD.
• Returns a new graph with the vertex properties obtained by applying the user defined
map function to the result of the joined vertices.

• Vertices without a matching value in the RDD retain their original value.

def joinVertices[U](table: RDD[(VertexId, U)])(map: (VertexId, VD, U) => VD): Graph[VD, ED]

val rdd: RDD[(VertexId, String)] = sc.parallelize(Array((3L, "phd")))

val joinedGraph = graph.joinVertices(rdd)((id, user, role) => (user._1, role + " " + user._2))

joinedGraph.vertices.collect.foreach(println)

75 / 1



Aggregation (1/2)

I aggregateMessages applies a user defined sendMsg function to each edge triplet
in the graph and then uses the mergeMsg function to aggregate those messages at
their destination vertex.

def aggregateMessages[Msg: ClassTag](

sendMsg: EdgeContext[VD, ED, Msg] => Unit, // map

mergeMsg: (Msg, Msg) => Msg, // reduce

tripletFields: TripletFields = TripletFields.All):

VertexRDD[Msg]

76 / 1



Aggregation (2/2)

// count and list the name of friends of each user

val profs: VertexRDD[(Int, String)] = validUserGraph.aggregateMessages[(Int, String)](

// map

triplet => {

triplet.sendToDst((1, triplet.srcAttr._1))

},

// reduce

(a, b) => (a._1 + b._1, a._2 + " " + b._2)

)

profs.collect.foreach(println)

77 / 1



Iterative Computation (1/6)

78 / 1



Iterative Computation (2/6)

i_val := val

for each message m

if m > val then val := m

if i_val == val then

vote_to_halt

else

for each neighbor v

send_message(v, val)

79 / 1



Iterative Computation (3/6)

I pregel takes two argument lists: graph.pregel(list1)(list2).

I The first list contains configuration parameters
• The initial message, the maximum number of iterations, and the edge direction in

which to send messages.

I The second list contains the user defined functions.
• Gather: mergeMsg, Apply: vprog, Scatter: sendMsg

def pregel[A]

(initialMsg: A, maxIter: Int = Int.MaxValue, activeDir: EdgeDirection = EdgeDirection.Out)

(vprog: (VertexId, VD, A) => VD, sendMsg: EdgeTriplet[VD, ED] => Iterator[(VertexId, A)],

mergeMsg: (A, A) => A):

Graph[VD, ED]

80 / 1



Iterative Computation (4/6)

import org.apache.spark._

import org.apache.spark.graphx._

import org.apache.spark.rdd.RDD

val initialMsg = -9999

// (vertexID, (new vertex value, old vertex value))

val vertices: RDD[(VertexId, (Int, Int))] = sc.parallelize(Array((1L, (1, -1)),

(2L, (2, -1)), (3L, (3, -1)), (6L, (6, -1))))

val relationships: RDD[Edge[Boolean]] = sc.parallelize(Array(Edge(1L, 2L, true),

Edge(2L, 1L, true), Edge(2L, 6L, true), Edge(3L, 6L, true), Edge(6L, 1L, true),

Edge(6L, 3L, true)))

val graph = Graph(vertices, relationships)

81 / 1



Iterative Computation (5/6)

// Gather: the function for combining messages

def mergeMsg(msg1: Int, msg2: Int): Int = math.max(msg1, msg2)

// Apply: the function for receiving messages

def vprog(vertexId: VertexId, value: (Int, Int), message: Int): (Int, Int) = {

if (message == initialMsg) // superstep 0

value

else // superstep > 0

(math.max(message, value._1), value._1) // return (newValue, oldValue)

}

// Scatter: the function for computing messages

def sendMsg(triplet: EdgeTriplet[(Int, Int), Boolean]): Iterator[(VertexId, Int)] = {

val sourceVertex = triplet.srcAttr

if (sourceVertex._1 == sourceVertex._2) // newValue == oldValue for source vertex?

Iterator.empty // do nothing

else

// propogate new (updated) value to the destination vertex

Iterator((triplet.dstId, sourceVertex._1))

}

82 / 1



Iterative Computation (6/6)

val minGraph = graph.pregel(initialMsg,

Int.MaxValue,

EdgeDirection.Out)(

vprog, // apply

sendMsg, // scatter

mergeMsg) // gather

minGraph.vertices.collect.foreach{

case (vertexId, (value, original_value)) => println(value)

}

83 / 1



Graph Representation

I Vertex-cut partitioning

I Representing graphs using two RDDs: edge-collection and vertex-collection

I Routing table: a logical map from a vertex id to the set of edge partitions that
contains adjacent edges.

84 / 1



Summary

85 / 1



Summary

I Think like a vertex
• Pregel: BSP, synchronous parallel model, message passing, edge-cut
• GraphLab: asynchronous model, shared memory, edge-cut
• PowerGraph: synchronous/asynchronous model, GAS, vertex-cut

I Think like a table
• Graphx: unifies data-parallel and graph-parallel systems.

86 / 1



References

I G. Malewicz et al., “Pregel: a system for large-scale graph processing”, ACM SIG-
MOD 2010

I Y. Low et al., “Distributed GraphLab: a framework for machine learning and data
mining in the cloud”, VLDB 2012

I J. Gonzalez et al., “Powergraph: distributed graph-parallel computation on natural
graphs”, OSDI 2012

I J. Gonzalez et al., “GraphX: Graph Processing in a Distributed Dataflow Framework”,
OSDI 2014

87 / 1



Questions?

88 / 1


