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Where Are We?

Data Processing

Pregel, GraphLab, PowerGrapl| Spark SQL Milib
‘ GraphX, X-Streem, Chaos, Tensorflow

MapReduce, Dryad Storm, SEEP, Naiad, Spark Streaming, Flink,
FlumeJava, Spark Millwheel, Google Dataflow

Data Storage

Dynamo, BigTable,
GFS, Flat FS Cassandra

Resource Management

Mesos, YARN
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Large Graph




Graph Algorithms Challenges

» Difficult to extract parallelism based on partitioning of the data.

» Difficult to express parallelism based on partitioning of computation.

» Graph partition is a challenging problem.




Graph Partitioning

» Partition large scale graphs and distribut to hosts.




Edge-Cut Graph Partitioning

» Divide vertices of a graph into disjoint clusters.
» Nearly equal size (w.r.t. the number of vertices).

» With the minimum number of edges that span separated clusters.




Vertex-Cut Graph Partitioning

» Divide edges of a graph into disjoint clusters.
» Nearly equal size (w.r.t. the number of edges).

» With the minimum number of replicated vertices.




Edge-Cut vs. Vertex-Cut Graph Partitioning (1/2)

» Natural graphs: skewed Power-Law degree distribution.

» Edge-cut algorithms perform poorly on Power-Law Graphs.

fraction of nodes
=
o

; A/ //;/l @ a E
< 7 N\ 7)

degree



cpu2 cpul

Edge-Cut vs. Vertex-Cut Graph Partitioning (2/2)
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PageRank with MapReduce



PageRank

RiJ = >  wyR[j]

jENbrs(i)



PageRank Example (1/2)

> R[] = > wyR[j]

jENbrs(i)

> Input

Vi:
V2:
V3:
Vé:

Vi:
vV2:
V3:
V4:

[0.25, V2, V3, V4]
[0.25, V3, V4]
[0.25, Vi]

[0.25, V1, V3]

Share the rank among all outgoing links

(v2, 0.25/3), (V3, 0.25/3), (V4, 0.25/3)
(V3, 0.25/2), (V4, 0.25/2)

(V1, 0.25/1)

(V1, 0.25/2), (V3, 0.25/2)




PageRank Example (2/2)

> Rli= ¥ wnlj]

Vi:
V2:
V3:
V4:

Vi:
V2:
V3:
V4:

jENbrs(i)

(V2, 0.25/3), (V3, 0.25/3), (V4, 0.25/3)
(v3, 0.25/2), (V4, 0.25/2)

(V1, 0.25/1)

(Vi, 0.25/2), (V3, 0.25/2)

Output after one iteration

[0.37, V2, V3, V4]
[0.08, V3, V4]
[0.33, Vi]

[0.20, V1, V3]



PageRank in MapReduce - Map (1/2)

» Map function 0"0

map (key: [url, pagerank], value: outlink_list)
for each outlink in outlink_list:
emit (key: outlink, value: pagerank / size(outlink_list))

emit(key: url, value: outlink_list)

» Input (key, value)

((vi, 0.25), [V2, V3, v4l)
((v2, 0.25), [V3, V4])
((v3, 0.25), [V1])

((v4, 0.25), [Vv1, Vv3])




PageRank in MapReduce - Map (2/2)
<
» Map function o o

map (key: [url, pagerank], value: outlink_list)
for each outlink in outlink_list:

emit (key: outlink, value: pagerank / size(outlink_list))

emit(key: url, value: outlink_list)

» Intermediate (key, value)

(v2, 0.25/3), (V3, 0.25/3), (V4, 0.25/3), (V3, 0.25/2), (V4, 0.25/2),
(V1, 0.25/2), (V3, 0.25/2)

(v1, [v2, v3, v4l)

(v2, [Vv3, v4l)

(v3, [vil)

(v4, [vi, v3l)

(Vi, 0.25/1),




PageRank in MapReduce - Shuffle

» Intermediate (key, value)

(Vv2, 0.25/3), (V3, 0.25/3), (V4, 0.25/3), (V3, 0.25/2), (V4, 0.25/2), (Vi, 0.25/1),
(vi, 0.25/2), (V3, 0.25/2)

(v1, [v2, V3, v4l)

(v2, [v3, v4l)

(v3, [vi])

(va, [vi, v3D)

> After shuffling

(Vi, 0.25/1), (Vi, 0.25/2), (Vi, [V2, V3, V4])

(v2, 0.25/3), (V2, [V3, V4])

(V3, 0.25/3), (V3, 0.25/2), (V3, 0.25/2), (V3, [Vi])
(V4, 0.25/3), (V4, 0.25/2), (V4, [Vi, V3])




PageRank in MapReduce

» Reduce function

reducer (key: url, value: list_pr_or_urls)
outlink_list = []
pagerank = 0

for each pr_or_urls in list_pr_or_urls:
if is_list(pr_or_urls):
outlink _list = pr_or_urls
else
pagerank += pr_or_urls

- Reduce (1/2)

emit(key: [url, pagerank], value: outlink_list)

> Input of the Reduce function

(Vi, 0.25/1), (Vi, 0.25/2), (Vi, [V2, V3, V4])
(v2, 0.25/3), (V2, [V3, Vv4])

(V3, 0.25/3), (V3, 0.25/2), (V3, 0.25/2),
(V4, 0.25/3), (V4, 0.25/2), (V4, [Vi, V3])

(v3, [viD)



PageRank in MapReduce - Reduce (2/2)

» Reduce function

reducer (key: url, value: list_pr_or_urls)
outlink_list = []
pagerank = 0

for each pr_or_urls in list_pr_or_urls:
if is_list(pr_or_urls):
outlink _list = pr_or_urls
else
pagerank += pr_or_urls

emit(key: [url, pagerank], value: outlink_list)

» Output

((vi, 0.37), [V2, V3, v4l)
((v2, 0.08), [V3, Vv4])
((v3, 0.33), [Vi])

((v4, 0.20), [V1, V3])




Problems with MapReduce for Graph Analytics

» MapReduce does not directly support iterative algorithms.

* Invariant graph-topology-data re-loaded and re-processed at each iteration is wasting
[/O, network bandwidth, and CPU

» Materializations of intermediate results at every MapReduce iteration harm perfor-
mance.




Think Like a Vertex



Think Like a Vertex

» Each vertex computes individually its value (in parallel).
» Computation typically depends on the neighbors.

» Also know as graph-parallel processing model.




Data-Parallel vs. Graph-Parallel Computation

Data-Parallel Graph-Parallel
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Pregel




> Large-scale graph-parallel processing platform developed at Google.

» Inspired by bulk synchronous parallel (BSP) model.

Jauueqg

compute communicate




Execution Model (1/2)

» Applications run in sequence of iterations, called supersteps.

> A vertex in superstep S can:
e reads messages sent to it in superstep S-1.
e sends messages to other vertices: receiving at superstep S+1.
* modifies its state.

» Vertices communicate directly with one another by sending messages.




Execution Model (2/2)

>

Superstep 0: all vertices are in the active state.

v

A vertex deactivates itself by voting to halt: no further work to do.

v

A halted vertex can be active if it receives a message.

v

The whole algorithm terminates when:

e All vertices are simultaneously inactive.
e There are no messages in transit.

Vote to halt

nactive -

Message received




Example: Max Value (1/4)

i_val := val

for each message m

if m > val then val :=m “

if i_val == val then Super step 0
vote_to_halt
else

for each neighbor v
send_message (v, val)




Example: Max Value (2/4)

i_val := val

for each message m Super step 0

if m > val then val :=m
if i_val == val then
vote_to_halt
else

Super step 1

for each neighbor v
send_message (v, val)




Example: Max Value (3/4)

Super step 0
i_val := val

for each message m

if m > val then val :=m

if i_val == val then Super step 1
vote_to_halt

else

for each neighbor v
send_message (v, val)

Super step 2




Example: Max Value (4/4)

Super step 0

i_val := val

for each message m Super step 1

if m > val then val :=m
if i_val == val then
vote_to_halt
else

. Super step 2
for each neighbor v

send_message (v, val)

Super step 3




Example: PageRank

RiJ = >  wyR[j]

jENbrs(i)



Example: PageRank

Pregel_PageRank(i, messages):
// receive all the messages
total = 0
foreach(msg in messages):

total = total + msg

// update the rank of this vertex
R[i] = total

// send new messages to neighbors
foreach(j in out_neighbors[i]):
sendmsg(R[i] * wij) to vertex j

Rl = > wyR[j]

jENbrs(i)




Graph Partitioning

>

Edge-cut partitioning

v

The pregel library divides a graph into a number of partitions.

>

» Vertices are assigned to partitions based on their vertex-ID (e.g., hash(ID)).

Each partition consists of vertices and all of those vertices’ outgoing edges.




System Model

» Master-worker model.

» The master

e Coordinates workers.
» Assigns one or more partitions to each worker.

e Instructs each worker to perform a superstep.

» Each worker
» Executes the local computation method on its vertices.
e Maintains the state of its partitions.
e Manages messages to and from other workers.




Fault Tolerance

>

Fault tolerance is achieved through checkpointing.
e Saved to persistent storage

v

At start of each superstep, master tells workers to save their state:
e Vertex values, edge values, incoming messages

v

Master saves aggregator values (if any).

When master detects one or more worker failures:

v

» All workers revert to last checkpoint.




Pregel Limitations

» Inefficient if different regions of the graph converge at different speed.

» Runtime of each phase is determined by the slowest machine.




GraphLab/Turi



GraphLab

» GraphLab allows asynchronous iterative computation.

> Vertex scope of vertex v: the data stored in v, and in all adjacent vertices and edges.

» A vertex can read and modify any of the data in its scope (shared memory).

Data Graph
Edge Data

Vertex Data




Example: PageRank (GraphLab)

GraphLab_PageRank (i)
// compute sum over neighbors
total = 0
foreach(j in in_neighbors(i)):
total = total + R[j] * wji

// update the PageRank
R[i] = total

// trigger neighbors to rTun again
foreach(j in out_neighbors(i)):
signal vertex-program on j

Rl = > wyR[j]

jENbrs(i)




Consistency (1/5)

> Overlapped scopes: race-condition in simultaneous execution of two update func-
tions.

vertex
apsistepey

full consistency




full consistency

» Full consistency: during the execution £ (v), no other function reads or modifies data
within the v scope.




edge consistency

» Edge consistency: during the execution f(v), no other function reads or modifies
any of the data on v or any of the edges adjacent to v.




Consistency (4/5)

» Vertex consistency: during the execution £ (v), no other function will be applied to
V.




Consistency (5/5)

Consistency vs. Parallelism

Full

Edge
Consistency ~ Consistency ~ Consistency
Model Model

wsi|a|[eled

Vertex
Model

[Low, Y., GraphLab: A Distributed Abstraction for Large Scale Machine Learning (Doctoral dissertation, University of California), 2013.]




Consistency Implementation

>

Distributed locking: associating a readers-writer lock with each vertex.

» Vertex consistency
e Central vertex (write-lock)

v

Edge consistency
o Central vertex (write-lock), Adjacent vertices (read-locks)

v

Full consistency
e Central vertex (write-locks), Adjacent vertices (write-locks)

v

Deadlocks are avoided by acquiring locks sequentially following a canonical order.




Graph Partitioning

» Edge-cut partitioning.

» Two-phase partitioning:
1. Convert a large graph into a small meta-graph
2. Partition the meta-graph

] @
. meta-graph




Fault Tolerance - Synchronous

> The systems periodically signals all computation activity to halt.

» Then synchronizes all caches, and saves to disk all data which has been modified
since the last snapshot.

» Simple, but eliminates the systems advantage of asynchronous computation.




Fault Tolerance - Asynchronous

» Based on the Chandy-Lamport algorithm.

» The snapshot function is implemented as a function in vertices.
* |t takes priority over all other update functions.

if v was already snapshotted then
| Quit
Save I), // Save current vertex
// Save all edges connected to un-snapshotted vertices
foreach v € N[v] do // Loop over neighbors
if u was not snapshotted then
Save Dy, if edge u — v exists
Save D,,_,, if edge v — w exists
Reschedule u for a Snapshot Update

Mark v as snapshotted




GraphLab2/Turi (PowerGraph)



PowerGraph

» Factorizes the local vertices functions into the Gather, Apply and Scatter phases.




Programming Model

>

Gather-Apply-Scatter (GAS)

v

Gather: accumulate information from neighborhood.

v

Apply: apply the accumulated value to center vertex.

v

Scatter: update adjacent edges and vertices.




Execution Model (1/2)

» Initially all vertices are active.

> |t executes the vertex-program on the active vertices until none remain.
e Once a vertex-program completes the scatter phase it becomes inactive until it is
reactivated.
» Vertices can activate themselves and neighboring vertices.

» PowerGraph can execute both synchronously and asynchronously.




Execution Model (2/2)

» Synchronous scheduling like Pregel.

e Executing the gather, apply, and scatter in order.
e Changes made to the vertex/edge data are committed at the end of each step.

» Asynchronous scheduling like GraphLab.
e Changes made to the vertex/edge data during the apply and scatter functions are
immediately committed to the graph.
 Visible to subsequent computation on neighboring vertices.




Example: PageRank (PowerGraph)

PowerGraph_PageRank (i) :
Gather(j -> i):
return wji * R[j]

sum(a, b):
return a + b

// total: Gather and sum
Apply(i, total):
R[i] = total

Scatter(i —> j):
if R[i] changed then activate(j)

RA]= >0 wjR[j]

jENbrs(i)




Graph Partitioning (1/2)

>

Vertx-cut partitioning.

v

Random vertex-cuts: randomly assign edges to machines.

v

Completely parallel and easy to distribute.

v

High replication factor.




Graph Partitioning (2/2)

Greedy vertex-cuts
A(v): set of machines that vertex v spans.

Case 1: If A(u) NA(v) # (), then the edge (u, v) should be assigned to a machine in
the intersection.

Case 2: If A(u) N A(v) = (), then the edge (u,v) should be assigned to one of the
machines from the vertex with the most unassigned edges.

Case 3: If only one of the two vertices has been assigned, then choose a machine
from the assigned vertex.

Case 4: If A(u) = A(v) = 0, then assign the edge (u, v) to the least loaded machine.




Think Like a Table



Data-Parallel vs. Graph-Parallel Computation

Data-Parallel Graph-Parallel
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Motivation (2/3)

>

Graph-parallel computation: restricting the types of computation to achieve perfor-
mance.

The same restrictions make it difficult and inefficient to express many stages in a
typical graph-analytics pipeline.

v

Preprocessin; Compute Post Proc.
@ nlab %“
= .
1 1 7
Raw | ;
Compute
Fo ) :
i Initial | PageRank
! Graph




Motivation (3/3)

Live-Journal: 69 Million Edges

Mahout/Hadoop 1340
Naive Spark R 354
Giraph W, 207
GraphX [l 68
Graphlab I 22
0 200 400 600 800 1000 1200 1400 1600

Runtime (in seconds, PageRank for 10 iterations)

Raw Wikipedia Hyperlinks PageRank Top 20 Pages
—
- Pl
5ok Freprocess — \Colbie Y Soark Fos. 3
Spark “ S
Giraph + Spark J 605
GraphX_ | 342
GraphLab + Spark Ll | 375

0 200 400 600 800 1000 1200 1400 1600
Total Runtime (in Seconds)




Think Like a Table

» Unifies data-parallel and graph-parallel systems.

» Tables and Graphs are composable views of the same physical data.

17 == —=

e —
Table View W Graph View

Representation




GraphX




» GraphX is the library to perform graph-parallel processing in Spark.

[T

SGraph X




The Property Graph Data Model

» Spark represent graph structured data as a property graph.

» It is logically represented as a pair of vertex and edge property collections.
e VertexRDD and EdgeRDD

Property Graph Vertex Table
Id Property (V)
3 (rin, student)
// VD: the type of the vertex attribute e
// ED: the type of the edge attribute 2 (toin professor
class Graph[VD, ED] { Edge Table
val vertices: VertexRDD[VD] g
Srcld | Dstld Property (E)
val edges: EdgeRDD[ED] 3 7 CO‘Eb:,:m,
} S 3 Advisor
2 5 Colleague
5 7 PI




The Vertex Collection

» VertexRDD: contains the vertex properties keyed by the vertex ID.

class Graph[VD, ED] {
val vertices: VertexRDD[VD]
val edges: EdgeRDD [ED]

}

// VD: the type of the wertex attribute
abstract class VertexRDD[VD] extends RDD[(VertexId, VD)]

Property Graph Vertex Table

Id Property (V)

3 (i student)

7 (jgonzal, postdoc)
5 (franki, professor)
2

(i pofo) Vertices:@
@

Edge Table

Srcld | Dsud | Property (E)

3 7 Collaborator
5 3 Advsor
2 5 Colleague
5 7 i




The Edge Collection

> EdgeRDD: contains the edge properties keyed by the source and destination vertex

IDs.

class Graph[VD, ED] {
val vertices: VertexRDD[VD]

val edges: EdgeRDD [ED]
}

// ED: the type of the edge attribute
case class Edge[ED] (srcId: VertexId, dstId: VertexId, attr: ED)

abstract class EdgeRDD[ED] extends RDD[Edge [ED]]

Property Graph Vertex Table
] Property (V)
B 3 (i stucent)
(o QI ) poste
5 (rankin.prof
p (iocn profess =
Edges:
Edge Table & Q 9

Srcld | Dsud [ Property (8)
3 7 Colaborator.
Advisor

7 2 s 3
2 5 Colleague
5 7

]




The Triplet Collection

> The triplets collection consists of each edge and its corresponding source and desti-
nation vertex properties.

» It logically joins the vertex and edge properties: RDD [EdgeTriplet [VD, ED]].

» The EdgeTriplet class extends the Edge class by adding the srcAttr and dstAttr
members, which contain the source and destination properties respectively.

Vertices: % Edges: Triplets:




Building a Property Graph

Property Graph Vertex Table

4 Property (V)
3 (rdin, student)

7 (lgonzal, postdoc)
5 (frankiin, professor)
2 (istoica, professor)

Edge Table

Sreld | Dstd | Property (E)

3 7 Collaborator
5 3 Advisor
2 5 Colleague
5 7

Pl

val users: RDD[(VertexId, (String, String))] = sc.parallelize(Array((3L, ("rxin", "student")),
"prof"))))

(7L, ("jgonzal", "postdoc")), (5L, ("franklin", "prof")), (2L, ("istoica",

val relationships: RDD[Edge[String]] = sc.parallelize(Array(Edge(3L, 7L, "collab"),

Edge (5L, 3L, "advisor"), Edge(2L, 5L, "colleague"), Edge(5L, 7L, "pi"), Edge(5L, 1L, "-")))

val defaultUser = ("John Doe", "Missing")

val graph: Graph[(String, String), String] = Graph(users, relationships, defaultUser)




Graph Operators

>

Information about the graph

v

Property operators

v

Structural operators

» Joins

v

Aggregation

v

Iterative computation




>

val
val
val
val
val

val
val
val

Information About The Graph (1/2)

Information about the graph

numEdges: Long
numVertices: Long
inDegrees: VertexRDD[Int]
outDegrees: VertexRDD[Int]
degrees: VertexRDD[Int]

Views of the graph as collections

vertices: VertexRDD[VD]
edges: EdgeRDD[ED]
triplets: RDD[EdgeTriplet[VD, ED]]



Information About The Graph (2/2)

Property Graph Vertex Table
1d Property (V)
3 (i, student)
7 (i I, postdk
5 (frankin, professor)
2 (it fosaor)
Edge Table
Srcld | Dsdd | Property ()
3 7 Collaborator
5 3 Advisor
2 5 Colleague
5 7 Pl
// Constructed from above
val graph: Graph[(String, String), String]
// Count all users which are postdocs
graph.vertices.filter { case (id, (name, pos)) => pos == "postdoc" }.count

// Count all the edges where src > dst
graph.edges.filter(e => e.srcId > e.dstId).count




Property Operators

» Transform vertex and edge attributes

» Each of these operators yields a new graph with the vertex or edge properties modified
by the user defined map function.

def mapVertices[VD2] (map: (VertexId, VD) => VD2): Graph[VD2, ED]
def mapEdges[ED2] (map: Edge[ED] => ED2): Graph[VD, ED2]
def mapTriplets[ED2] (map: EdgeTriplet[VD, ED] => ED2): Graph[VD, ED2]

val relations: RDD[String] = graph.triplets.map(triplet =>
triplet.srcAttr._1 + " is the " + triplet.attr + " of " + triplet.dstAttr._1)
relations.collect.foreach(println)

val newGraph = graph.mapTriplets(triplet =>
triplet.srcAttr._1 + " is the " + triplet.attr + " of " + triplet.dstAttr._1)
newGraph.edges.collect.foreach(println)




Structural Operators

» reverse returns a new graph with all the edge directions reversed.

» subgraph takes vertex/edge predicates and returns the graph containing only the
vertices/edges that satisfy the given predicate.

def reverse: Graph[VD, ED]

def subgraph(epred: EdgeTriplet[VD, ED] => Boolean, vpred: (VertexId, VD) => Boolean):
Graph [VD, ED]

// Remove missing vertices as well as the edges to comnected to them
val validGraph = graph.subgraph(vpred = (id, attr) => attr._2 != "Missing")

validGraph.vertices.collect.foreach(println)




Join Operators

> joinVertices joins the vertices with the input RDD.

e Returns a new graph with the vertex properties obtained by applying the user defined
map function to the result of the joined vertices.
e Vertices without a matching value in the RDD retain their original value.

def joinVertices[U] (table: RDD[(VertexId, U)]) (map: (VertexId, VD, U) => VD): Graph[VD, ED]

val rdd: RDD[(VertexId, String)] = sc.parallelize(Array((3L, "phd")))

val joinedGraph = graph.joinVertices(rdd) ((id, user, role) => (user._1, role + " " + user._2))

joinedGraph.vertices.collect.foreach(println)




Aggregation (1/2)

> aggregateMessages applies a user defined sendMsg function to each edge triplet
in the graph and then uses the mergeMsg function to aggregate those messages at
their destination vertex.

def aggregateMessages[Msg: ClassTag] (
sendMsg: EdgeContext[VD, ED, Msgl => Unit, // map
mergeMsg: (Msg, Msg) => Msg, // reduce
tripletFields: TripletFields = TripletFields.All):
VertexRDD [Msg]




Aggregation (2/2)

// count and list the name of friends of each user
val profs: VertexRDD[(Int, String)] = validUserGraph.aggregateMessages[(Int, String)](
// map
triplet => {
triplet.sendToDst((1, triplet.srcAttr._1))

¥y
// reduce
(a, b) => (a._1 +b._1, a. .2 +" " + b._2)

)

profs.collect.foreach(println)




lterative Computation (1/6)

Jdalieg

compute communicate



lterative Computation (2/6)

Super step 0

i_val := val

for each message m Super step 1

if m > val then val :=m
if i_val == val then
vote_to_halt
else

. Super step 2
for each neighbor v

send_message (v, val)

Super step 3




lterative Computation (3/6)

> pregel takes two argument lists: graph.pregel(list1) (1ist2).

» The first list contains configuration parameters

e The initial message, the maximum number of iterations, and the edge direction in
which to send messages.

» The second list contains the user defined functions.
¢ Gather: mergeMsg, Apply: vprog, Scatter: sendMsg

def pregell[A]
(initialMsg: A, maxIter: Int = Int.MaxValue, activeDir: EdgeDirection = EdgeDirection.Out)
(vprog: (VertexId, VD, A) => VD, sendMsg: EdgeTriplet[VD, ED] => Iterator[(VertexId, A)],
mergeMsg: (A, A) => A):
Graph[VD, ED]




lterative Computation (4/6)

Super step 0

import org.apache.spark._
import org.apache.spark.graphx._
import org.apache.spark.rdd.RDD

val initialMsg = -9999

// (vertezID, (new vertex walue, old vertex value))
val vertices: RDD[(VertexId, (Int, Int))] = sc.parallelize(Array((1L, (1, -1)),
(2L, (2, -1)), (3L, (3, -1)), (6L, (6, -1))))

val relationships: RDD[Edge[Boolean]] = sc.parallelize(Array(Edge(iL, 2L, true),
Edge (2L, 1L, true), Edge(2L, 6L, true), Edge(3L, 6L, true), Edge(6L, 1L, true),
Edge (6L, 3L, true)))

val graph = Graph(vertices, relationships)




lterative Computation (5/6)

// Gather: the function for combining messages
def mergeMsg(msgl: Int, msg2: Int): Int = math.max(msgl, msg2)

// Apply: the function for receiving messages
def vprog(vertexId: VertexId, value: (Int, Int), message: Int): (Int, Int) = {
if (message == initialMsg) // superstep O
value
else // superstep > 0
(math.max (message, value._1), value._1) // return (newValue, oldValue)

}

// Scatter: the function for computing messages
def sendMsg(triplet: EdgeTriplet[(Int, Int), Boolean]): Iterator[(VertexId, Int)] = {
val sourceVertex = triplet.srcAttr

if (sourceVertex._1 == sourceVertex._2) // newValue == oldValue for source vertez?
Iterator.empty // do nothing
else

// propogate new (updated) value to the destination vertex
Iterator((triplet.dstId, sourceVertex._1))




lterative Computation (6/6)

val minGraph = graph.pregel(initialMsg,
Int.MaxValue,
EdgeDirection.0Out) (
vprog, // apply
sendMsg, // scatter
mergeMsg) // gather

minGraph.vertices.collect.foreach{
case (vertexId, (value, original_value)) => println(value)

}




Graph Representation

» Vertex-cut partitioning
» Representing graphs using two RDDs: edge-collection and vertex-collection

» Routing table: a logical map from a vertex id to the set of edge partitions that
contains adjacent edges.
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Summary




Summary

> Think like a vertex
¢ Pregel: BSP, synchronous parallel model, message passing, edge-cut
e GraphlLab: asynchronous model, shared memory, edge-cut
e PowerGraph: synchronous/asynchronous model, GAS, vertex-cut

» Think like a table
e Graphx: unifies data-parallel and graph-parallel systems.
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