Resource Management - Mesos, YARN, and Borg

Amir H. Payberah
payberah@kth.se
2021-10-04

The Course Web Page

https://1id2221kth.github.io

https://tinyurl.com/f6x544h

https://id2221kth.github.io
https://tinyurl.com/f6x544h

Where Are We?

Data Processing

Pregel, GraphLab, PowerGraph Spark SQL Milib
GraphX, X-Streem, Chaos Tensorflow

MapReduce, Dryad Storm, SEEP, Naiad, Spark Streaming, Flink,
FlumeJava, Spark Millwheel, Google Dataflow

Data Storage

Dynamo, BigTable,
GFS, Flat FS Cassandra

Resource Management

Motivation

» Rapid innovation in cloud computing.
» No single framework optimal for all applications.

» Running each framework on its dedicated cluster:

e Expensive
* Hard to share data

Proposed Solution

» Running multiple frameworks on a single cluster.

» Maximize utilization and share data between frameworks.

» Three resource management systems:

* Mesos
* YARN
* Borg

Mesos

» Mesos is a common resource sharing layer, over which diverse frameworks can run.

- T
oce{nodeJiorefnoce vocefnode]noce]voce|

Computation Model

» A framework (e.g., Hadoop, Spark) manages and runs one or more jobs.
> A job consists of one or more tasks.

» A task (e.g., map, reduce) consists of one or more processes running on same ma-
chine.

Executor Executor
"j (e.g., task tracker) S| (e.g., task tracker) :
= = ~... i
- ’ S Framework
| Scheduler
Executor = (e.g., job tracker)

Executor -
: . (e.g., task tracker) ~ (e.g., task tracker) -
L I§ S

Mesos Design Elements

» Fine-grained sharing

» Resource offers

Fine-Grained Sharing

» Allocation at the level of tasks within a job.

» Improves utilization, latency, and data locality.

Coarse-grained sharing Fine-grained sharing

Resource Offer

» Offer available resources to frameworks, let them pick which resources to use and
which tasks to launch.

» Keeps Mesos simple, lets it support future frameworks.

-] as
_— 060 o
~ asceas
rwiriu i
g [(TrXY])
> £ L
e EEa

ed screens

_,

Question?
How to schedule resource offering among frameworks?

Schedule Frameworks

» Global scheduler

» Distributed scheduler

» Job requirements

e Response time
e Throughput
e Availability

» Job execution plan

e Task DAG
e Inputs/outputs

» Estimates
e Task duration
e Input sizes
e Transfer sizes

Global Scheduler (1/2)

Organization policies -
Resource availability -
Job requirements -
Job execution plan -
Estimates -

Global
Scheduler

-Task schedule

Global Scheduler (2/2)

» Advantages
e Can achieve optimal schedule.

» Disadvantages
e Complexity: hard to scale and ensure resilience.
» Hard to anticipate future frameworks requirements.
e Need to refactor existing frameworks.

Distributed Scheduler (1/3)

Organization
policies

Resource

availability Framework

schedule

Distributed Scheduler (2/3)

» Master sends resource offers to frameworks.

» Frameworks select which offers to accept and which tasks to run.

» Unit of allocation: resource offer

» Vector of available resources on a node
e For example, nodel: (1CPU, 1GB), node2: (4CPU, 16GB)

Distributed Scheduler (3/3)

» Advantages

e Simple: easier to scale and make resilient.
e Easy to port existing frameworks, support new ones.

» Disadvantages

 Distributed scheduling decision: not optimal.

Mesos Architecture (1/4)

Framework 1

Framework 2

Job1 [Job2

Job1 [Job2

FW Scheduler

FW Scheduler

<s1, 4cpu, 4gb, ... > 9 e
AW

<task1, s1, 2cpu, 1gb, .__ >
<task2, s1, 1cpu, 2gb, . >

]

Allocation
module

Mesos
master

<s1, 4cpu, 4gb, ... > o

/ \
<fw1, task1, 2¢cpu, 1gb, ... >

<fw1, task2, 1cpu, 2gb, ... >

Slave 1

] Slave 2

Executor

» Slaves continuously send status updates

about resources to the Master.

Mesos Architecture (2/4)

Framework 1

Framework 2

Job1 [Job2

Job1 [Job2

FW Scheduler

FW Scheduler

<s1, 4cpu, 4gb, ... > 9 e
AW

<task1, s1, 2cpu, 1gb, .__ >
<task2, s1, 1cpu, 2gb, . >

]

Allocation
module

Mesos
master

<s1, 4cpu, 4gb, ... > o

/ \
<fw1, task1, 2¢cpu, 1gb, ... >

<fw1, task2, 1cpu, 2gb, ... >

Slave 1

] Slave 2

Executor

» Pluggable scheduler picks framework to send an offer to.

Mesos Architecture (3/4)

Framework 1

Framework 2

Job1 [Job2

Job1 [Job2

FW Scheduler

FW Scheduler

<s1, 4cpu, 4gb, ... > 9 e
AW

<task1, s1, 2cpu, 1gb, .__ >
<task2, s1, 1cpu, 2gb, . >

]

Allocation
module

Mesos
master

<s1, 4cpu, 4gb, ... > o

/ \
<fw1, task1, 2¢cpu, 1gb, ... >

<fw1, task2, 1cpu, 2gb, ... >

Slave 1

] Slave 2

Executor

» Framework scheduler selects resources and provides tasks.

Mesos Architecture (4/4)

Framework 1
Job1 [Job2
FW Scheduler

Framework 2
Job1 [Job2
FW Scheduler

<lask1, s1, 2cpu, 1gb, ... >]

<s1,4cpu, 4gb, > e e <task2, s1, 1cpu, 2gb, ... >
AW

Allocation
module

Mesos
master

L

<s1, 4cpu, 4gb, ... > o

<fw1, task1, 2cpu, 1gb, .._ >
<fw1, task2, 1cpu, 2gb, >

Slave 1

1
P i 1!
1 L Task ;1 Task ;!

] Slave 2

Executor

» Framework executors launch tasks.

Question?
How to allocate resources of different types?

Single Resource: Fair Sharing

> n users want to share a resource, e.g., CPU.
e Solution: allocate each 1—11 of the shared resource.

» Generalized by max-min fairness.

e Handles if a user wants less than its fair share.
« E.g., user 1 wants no more than 20%.

» Generalized by weighted max-min fairness.

e Give weights to users according to importance.
e E.g., user 1 gets weight 1, user 2 weight 2.

>

v

v

Max-Min Fairness - Example

1 resource: CPU

Total resources: 20 CPU

User 1 has x tasks and wants (1CPU) per task
User 2 has y tasks and wants (2CPU) per task

max(x,y) (maximize allocation)
subject to

x + 2y < 20 (CPU constraint)
x =2y

so

x =10

y =

Properties of Max-Min Fairness

>

Share guarantee

e Each user can get at least % of the resource.
e But will get less if her demand is less.

v

Strategy proof

e Users are not better off by asking for more than they need.
» Users have no reason to lie.

v

Max-Min fairness is the only reasonable mechanism with these two properties.

v

Widely used: OS, networking, datacenters, ...

Question?
When is Max-Min Fairness NOT Enough?

Need to schedule multiple, heterogeneous resources, e.g.,
CPU, memory, etc.

Problem

» Single resource example 100%
e 1 resource: CPU

e User 1 wants (1CPU) per task
e User 2 wants (2CPU) per task 50%

: 100%

» Multi-resource example
e 2 resources: CPUs and mem B S -
e User 1 wants (1CPU, 4GB) per task sool -} -2
e User 2 wants (2CPU, 1GB) per task

e What is a fair allocation?

CPU 'mem

A Natural Policy (1/2)

» Asset fairness: give weights to resources (e.g., 1 CPU = 1 GB) and equalize total
value given to each user.

» Total resources: 28 CPU and 56GB RAM (e.g., 1 CPU = 2 GB)

e User 1 has x tasks and wants (1CPU, 2GB) per task

e User 2 has y tasks and wants (1CPU, 4GB) per task I User 1[] User 2

100%j -

> Asset fairness yields:

max(x,y) 50%
x+y <28

2x 4 4y < 56 0%
2x =3y

User 1: x = 12: (43%CPU, 43%GB) (. = 86%)
User 2: y = 8: (28%CPU, 57%GB) (> = 86%)

A Natural Policy (2/2)

I User 1 [] User 2

100%¢

50%
- i57%
28%
O% N bl
CPU RAM

» Problem: violates share grantee.

» User 1 gets less than 50% of both CPU and RAM.

» Better off in a separate cluster with half the resources.

Challenge

» Can we find a fair sharing policy that provides:

e Share guarantee
e Strategy-proofness

» Can we generalize max-min fairness to multiple resources?

Proposed Solution

Dominant Resource Fairness (DRF)

Dominant Resource Fairness (DRF) (1/2)

» Dominant resource of a user: the resource that user has the biggest share of.
e Total resources: (8CPU,5GB)
e User 1 allocation: (2CPU, 1GB): 2 = 25% CPU and £ = 20% RAM
+ Dominant resource of User 1 is CPU (25% > 20%)

» Dominant share of a user: the fraction of the dominant resource she is allocated.
o User 1 dominant share is 25%.

Dominant Resource Fairness (DRF) (2/2)

» Apply max-min fairness to dominant shares: give every user an equal share of her

dominant resource.

» Equalize the dominant share of the users.
e Total resources: (9CPU, 18GB)

« User 1 wants (1CPU, 4GB); Dominant resource: RAM (1 < %)
« User 2 wants (3CPU, 1GB); Dominant resource: CPU (£ > 1)
> max(x,y) 100% § 3CPUs 12GB
x+3y <9
dx +y <18 s0%
4x _ 3y {66%

18 = 9
User 1: x = 3: (33%CPU, 66%GB) 0%
User 2: y = 2: (66%CPU, 16%GB) (o o)

& 6CPUs

mem

(18 total)

O user1

W user2

YARN

YARN Architecture

» Resource Manager (RM)
» Application Master (AM)
» Node Manager (NM)

ResourceManager
-—'m
Client - RM Scheduler
client

AMService

RM - AM

mpr | Container [
- Container « 1 J

MR
AM

Umbilical
Container

RM -- NodeManager

3
_

{ Node Manager J [Node Manager J

!

L

Node Manager

|

~)

<)

YARN Architecture - Resource Manager (1/2)

» One per cluster
e Central: global view

» Job requests are submitted to RM.

e To start a job, RM finds a container to spawn AM. s
Scheduler

cue nt - RM
((client }————|

AMServlce

» Container: logical bundle of resources (CPU/memory) - w

»m
Umblll al Container

[Node Manager] [Node Manager] - [Nodel‘danager J

YARN Architecture - Resource Manager (2/2)

» Only handles an overall resource profile for each job.
e Local optimization is up to the job.

» Preemption

e Request resources back from an job.
e Checkpoint jobs

ResourceManager
RM -- NodeManager
Cetient } Client — RM Scheduler 2 ~)
client .
AMService
RM - AM
—»| Container
I:QSII XIS Umbilical Container
O otaner)
{ Node Manager J [Node Manager J - Node Manager
L I : —

YARN Architecture - Application Manager

» The head of a job.
» Runs as a container.

» Request resources from RM (num. of containers/resource per container/locality ...)

ResourceManager
RM -- NodeManager
(etient) Cliont — RM Scheduler 2 ~)
client .
AMService
RM - AM I
—»| Container
hA:II hA’II\? Umbilical Container
U i)
{ Node Manager J [Node Manager J - Node Manager
L I : 2

|

YARN Architecture - Node Manager (1/2)

>

The worker daemon.

> Registers with RM.
[ResourceManager|
RM - NodeManager
» One per node. G} [sonedier |3
=

v

Report resources to RM: memory, CPU, ...

Umbilical Container
S o)

[Node Manager r] [Node Manager] . [Node I‘Janager]

U . S

2

YARN Architecture - Node Manager (2/2)

» Configure the environment for task execution.

» Garbage collection.

» Auxiliary services.

* A process may produce data that persist beyond the life of the container.
e Output intermediate data between map and reduce tasks.

RM - NodeManager

(oot oo [seneauer] |3
e

RM - AM
—+ (Container
e E Mo | umbilical Container
|)
o | (e] .

=

N S 2

YARN Framework

» Containers are described by a Container Launch Context (CLC).

e The command necessary to create the process, environment variables, security tokens,
etc.

v

Submitting the job: passing a CLC for the AM to the RM.

v

When RM starts the AM, it should register with the RM.

Once the RM allocates a container, AM can construct a CLC to launch the container
on the corresponding NM.

v

v

Once the AM is done with its work, it should unregister from the RM and exit cleanly.

Submitting a Job (1/9)

> A client submits a job.

Resource

Client e

Management Node

Data Node Data Node Data Node

Node Node (s
Manager Manager e

Submitting a Job (2/9)

» The RM provides an Application Id.

Resource
Manager

Management Node

Node N
Manager i

UL.J

Data Node Data Node

Submitting a Job (3/9)

» The client provides a CLC (queue, resource requirements, files, security token, etc.)

Resource

Client e

Management Node

Node
Manager

&

Data Node Data Node Data Node

Node Node
Manager ey

Submitting a Job (4/9)

» The RM asks a NM to launch an AM.

Submitting a Job (5/9)

» The selected NM launches an AM.

Resource

Client ERagE

Management Node

Node Node Node
Manager Manager M

Application
Master

Data Node Data Node Data Node

Submitting a Job (6/9)

» The AM registers with the RM.

Resource

Client P

Management Node

Node
Manager

&

Data Node Data Node Data Node

Node o
Manager i

Submitting a Job (7/9)

» The RM shares resource capabilities with the AM.

Resource

Client e

Management Node

Node
Manager

&

Data Node Data Node Data Node

Node o
Manager i

Submitting a Job (8/9)

» The AM requests containers.

Resource

Client P

Management Node

Node
Manager

&

Data Node Data Node Data Node

Node o
Manager i

Submitting a Job (9/9)

» The RM assigns containers based on policies and available resources.

Resource

Client P

Management Node

Node
Manager
Application
Master

&

Data Node Data Node Data Node

Node o
Manager i

Borg

Borg

» Cluster management system at Google.

Google

Borg User View

job hello_world = {

runtime = { cell = 'ic' } // Cell (cluster) to run in
binary = '.../hello_world_webserver' // Program to run
args = { port = 'Z%port%' } // Command line parameters

requirements = { // Resource requirements

(optional)

¥
replicas = 10000 // Number of tasks

Borg Cell, Job, Task, and Alloc

Cell: a set of machines managed by Borg as one unit.

Job: users submit work in the form of jobs.
Task: each job contains one or more tasks.

Alloc: reserved set of resources and a job can
run in an alloc set.

Alloc instance: making each of its tasks run in
an alloc instance.

Cell

Alloc
instance

Job Alloc set

n'_n._l_n'

Borg Architecture (1/2)

> BorgMaster

e The central brain of the system

Config
file

e Holds the cluster state -
 Replicated for reliability (using paxos)

BorgMaster | read/Ul
. . 2 shard
e Scheduling: where to place tasks? [b—] pesnt
I link shard |
> Borglet /v
e Manage and monitor tasks and resource i< e
» Borgmaster polls Borglet every few seconds Loee |l podel “"S'e' '
=IO ==
(B | [

Borg Architecture (2/2)

Config
1. Compile the program and stick it in the cloud |
2. Pass configuration to command line (borgcfg) oo
BorgMaster f:ﬁgg'
3. Send an RPC to BorgMaster @‘;?J:;i\'_,.i:'xos)
4. BorgMaster writes to persistent store and tasks ik shard
added to pending queue M/;
]
5. Scheduler asynchronous scan [Borgr J ||l oroet e i fLeersr J
(B | [==

Scheduler

» Feasibility checking: find machines for a given job

Config
file
cel —_—

» Scoring: pick one machines

» User prefs and built-in criteria p—
« Minimize the number and priority of the [scneauer Jb—s] =008
preempted tasks lnk sherd

e Picking machines that already have a copy of the
task's packages

¢ Spreading tasks across power and failure domains =

e Packing by mixing high and low priority tasks =

i

N

e
Borglet Boi Borglet

| g

el
bl

Monolithic vs. Two-Level

» Monolithic schedulers: use a single, centralized scheduling algorithm for all jobs.
* Borg

» Two-level schedulers: separate concerns of resource allocation and task placement.

e An active resource manager offers compute resources to multiple parallel, independent
scheduler frameworks.
e Mesos and Yarn Monolithic Two-level

®

scheduling subset | 2

cluster state
information

: cluster
) machines
no pessimistic
concurrency concurrency
(offers)

[Schwarzkopf et al., Omega: flexible, scalable schedulers for large compute clusters, EuroSys'13.]

Docker and Kubernetes

Application Deployment

App App App App
sty T
Virtual Machine Virtual Machine Container Container Container

App App App
| omeesrn |

Traditional Deployment Virtualized Deployment Container Deployment

Traditional Deployment Era

Running applications on physical servers.
No resource boundaries for applications in a physical server

Resource allocation issues, e.g., one application would take up most of the resources,
so the other applications would underperform.
App App App

Alternatively runnig each application on a different physical
server: not scalable _

Traditional Deployment

Virtualized Deployment Era

» Virtual Machines (VMs): a full machine running all the components, including its
own operating system (OS), on top of the virtualized hardware.

» Virtualization allows to run multiple VMs on a single physical server's CPU.

e Allows applications to be isolated between VMs.
» Secure, as the information of one application cannot be il Bl Bl e

freely accessed by another application. [y] Moy]

 Utilizes the resources of a physical server better.

Virtual Machine Virtual Machine

e Better scalability as applications can be added/updated easily. _

Virtualized Deployment

Container Deployment Era

» Containers are similar to VMs, but they have relaxed isolation properties to share the
OS among the applications.

» Similar to a VM, a container packages applications as images that contain everything
needed to run them: code, runtime environment, libraries, and configuration.

» As they are decoupled from the underlying infrastructure,
they are portable across clouds and OS distributions.

App. App

Container Container

App

Container

Container Deployment

Docker

» Docker is a virtualization software.
» It is a client-server application.

» A docker image is a template, and a container is a copy of that template.

Docker
= =
Image 1
DOC ke ﬁ Container 1
Client p—
docker pull Container 2
Image 3
docker run Container 3

docker

Docker Components

» Docker images: the blueprints of our application that form the basis of containers.
» Docker containers: they are created from images and run the actual application.
¢ We can have multiple containers (copies) of the same image.
» Docker daemon: it represents the server.
» Docker client: the command line tool that allows the user to interact with the
daemon.
» Docker registries: Docker stores the images in registries (public and private).

e Docker hub: A public registry of Docker images.

Docker Important Commands (1/2)

get the docker information
docker info

download an image
docker pull

Tun an tmage as a container
docker run -i -t image_name /bin/bash

start and stop a container
docker start container_name
docker stop container_name

Docker Important Commands (2/2)

list all running containers
docker ps

get the contatiner information
docker stats

list the downloaded images
docker images

Container Challenges

>

Container scalability is an operational challenge.

v

If we have 10 containers and four applications, it is not difficult to manage the
deployment and maintenance of the containers.

v

But, what if we have 1000 containers and 400 services?

v

Container orchestration can help to manage the lifecycles of containers, especially in
large and dynamic environments.

Container Orchestration Tasks (1/2)

» Provisioning and deployment of containers.
» Redundancy and availability of containers.

» Scaling up or removing containers to spread application load evenly across host
infrastructure

» Movement of containers from one host to another, if there is a shortage of resources
in a host, or if a host dies

Container Orchestration Tasks (2/2)

>

Allocation of resources between containers.

v

Load balancing of service discovery between containers.

v

Health monitoring of containers and hosts

v

Configuration of an application in relation to the containers running it.

How Does Container Orchestration Work?

» Typically describe the configuration of your application in a YAML or JSON file.

» Using these configurations files you tell the orchestration tool:
e Where to gather container images (e.g., from Docker Hub).
* How to establish networking between containers.
e How to mount storage volumes.
e Where to store logs for that container.

» Container orchestration tools: Kubernetes (based on Borg), Marathon (runs on

kubernetes

Mesos)

Kubernetes and Borg

» Kubernetes is the Google open source project loosely inspired by Borg.

» Directly derived

* Borglet — Kubelet

e alloc — pod

» Borg containers — docker
» Declarative specifications

» Improved
e Job — labels
e Managed ports — IP per pod
e Monolithic master — micro-services

Kubernetes Architecture (1/5)

» Cluster: a set of nodes with at least one master node and several worker nodes
(minions).

Kubernetes Architecture (2/5)

» Kubernetes master: manages the scheduling and deployment of application instances
across nodes.

» The full set of services the master node runs is known as the control plane.

Kubernetes Architecture (3/5)

» Kubelet: an agent process on each Kubernetes node that is responsible for managing
the state of the node, e.g., starting, stopping, and maintaining application containers.

Kubernetes Architecture (4/5)

» Pods: the basic scheduling unit that consists of one or more containers guaranteed
to be co-located on the host machine and able to share resources.

> You describe the desired state of the containers in a pod through a YAML or JSON
object called a PodSpec.

Kubernetes Architecture (5/5)

» Deployments: a deployment is a YAML object that defines the pods and the number
of container instances (replicas) for each pod.

> ReplicaSets: You define the number of replicas you want to have running in the
cluster via a ReplicaSet.

Summary

Summary

» Mesos

» Offered-based
e Max-Min fairness: DRF

» YARN
e Request-based
« RM, AM, NM
» Borg

* Request-based
e BorgMaster, Borglet
e Kubernetes

References

» B. Hindman et al., “Mesos: A Platform for Fine-Grained Resource Sharing in the
Data Center”, NSDI 2011

» V. Vavilapalli et al., “Apache hadoop yarn: Yet another resource negotiator”, ACM
Cloud Computing 2013

> A. Verma et al., “Large-scale cluster management at Google with Borg”, EuroSys
2015

Questions?

Acknowledgements

Some slides were derived from lon Stoica and Ali Ghodsi slides (Berkeley University),
Wei-Chiu Chuang slides (Purdue University), and Arnon Rotem-Gal-Oz (Amdocs).

	

