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Where Are We?
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What Are The Challenges?
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The Biggest Challenges With Data Today

I Data quality

I Staleness

I Data volume

I Scale

4 / 65



Fivetran Data Analyst Survey

I 60% reported data quality as top challenge.

I 86% of analysts had to use stale data,
with 41% using data that is > 2 months old.

I 90% regularly had unreliable data sources over
the last 12 months
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Kaggle Data Analyst Survey
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Getting high-quality, timely data is hard!
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The Evolution of Data Management
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Data Warehouses (1980s)

I ETL (Extract, Transform, Load) data directly
from operational database systems.

I Purpose-built for SQL analytics and BI:
schemas, indexes, caching, etc.

I Powerful management features such as
ACID transactions and time travel
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Data Warehouses - Problems (2010s)

I Could not support rapidly growing unstructured and
semi-structured data: time series, logs, images,
documents, etc.

I High cost to store large datasets.

I No support for data science and ML.
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Data Lakes (2010s)

I Low-cost storage to hold all raw data,
e.g., Amazon S3, and HDFS.

I ETL jobs then load specific data into warehouses,
possibly for further ELT.

I Directly readable in ML libraries (e.g., TensorFlow and
PyTorch) due to open file format.
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Data Lakes - Problems (Todays)

I Cheap to store all the data, but system architecture is
much more complex!

I Data reliability suffers:
• Multiple storage systems with different semantics,

SQL dialects, etc.
• Extra ETL steps that can go wrong.

I Timeliness suffers and high cost:
• Extra ETL steps before data is available in data warehouses.
• Continuous ETL, duplicated storage
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Data Lake vs. Data Warehouse (1/2)

I Data Lake stores all data irrespective of the source and its structure whereas Data
Warehouse stores data in quantitative metrics with their attributes.

I Data Lake is a storage repository that stores huge structured, semi-structured and
unstructured data while Data Warehouse is blending of technologies and component
that allows the strategic use of data.
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Data Lake vs. Data Warehouse (2/2)

I Data Lake defines the schema after data is stored whereas Data Warehouse defines
the schema before data is stored.

I Data Lake uses the ELT process while the Data Warehouse uses ETL process.

I Data Lake is ideal for those who want in-depth analysis whereas Data Warehouse is
ideal for operational users.
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Lakehouse
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Lakehouse Vision

I Lakehouse systems combine the benefits of Data Warehouses and Data Lakes while
simplifying enterprise data architectures.
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Lakehouse Systems

I Implement Data Warehouse management and
performance features on top of directly-accessible
data in open formats.

I Can we get state-of-the-art performance and
governance features with this design?
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Key Technologies Enabling Lakehouse

I Metadata layers for Data Lakes

I New query engine designs

I Declarative access for data science and ML
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Metadata Layers for Data Lakes (1/2)

I Add transactions, versioning, and more ...

I Track which files are part of a table version to offer rich
management features like transactions.

• Clients can then access the underlying files at high speed.
• Optimistic concurrency.
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Metadata Layers for Data Lakes (2/2)

I Implemented in multiple systems, such as Delta Lake.
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New Query Engine Designs

I Great SQL performance on Data Lake storage systems and file formats.

I Directly-accessible file storage optimizations can enable high SQL performance:

• Caching hot data in RAM/SSD, possibly transcoded
• Data layout within files to cluster co-accessed data (e.g., sorting or multi-dimensional

clustering)
• Auxiliary data structures like statistics and indexes
• Vectorized execution engines for modern CPUs
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Declarative Access for Data Science and ML

I ML frameworks already support reading Parquet, ORC, etc.

I New declarative interfaces for I/O enable further optimization.

I Example: Spark DataFrame API compiles to relational algebra.
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Delta Lake (1/2)

I Delta Lake is an open source storage layer that brings reliability to Data Lakes.

I Provides ACID transactions.

I Provides scalable metadata handling.

I Provides time travel and versioning.

I Unifies streaming and batch data processing.

24 / 65



Delta Lake (1/2)

I Delta Lake is an open source storage layer that brings reliability to Data Lakes.

I Provides ACID transactions.

I Provides scalable metadata handling.

I Provides time travel and versioning.

I Unifies streaming and batch data processing.

24 / 65



Delta Lake (1/2)

I Delta Lake is an open source storage layer that brings reliability to Data Lakes.

I Provides ACID transactions.

I Provides scalable metadata handling.

I Provides time travel and versioning.

I Unifies streaming and batch data processing.

24 / 65



Delta Lake (1/2)

I Delta Lake is an open source storage layer that brings reliability to Data Lakes.

I Provides ACID transactions.

I Provides scalable metadata handling.

I Provides time travel and versioning.

I Unifies streaming and batch data processing.

24 / 65



Delta Lake (1/2)

I Delta Lake is an open source storage layer that brings reliability to Data Lakes.

I Provides ACID transactions.

I Provides scalable metadata handling.

I Provides time travel and versioning.

I Unifies streaming and batch data processing.

24 / 65



Delta Lake (2/2)

I Delta Lake maintains information about which objects are part of a Delta table in
an ACID manner using a write-ahead log.

I A Delta Lake table is a directory (e.g., mytable) that holds data objects and a log
of transaction operations.
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Diving into Delta Lake

I Transaction log

I Schema enforcement and evolution
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Transaction Log

27 / 65



Transaction Log

I The transaction log (DeltaLog) is a single source of truth to show users correct views
of the data at all times.

I A central repository that tracks all changes that users make to the table (an ordered
record of every transaction).

I Delta Lake uses the DeltaLog for many features including ACID transactions, scalable
metadata handling, time travel, etc.

I Before apply any operation on a Delta Lake table, Spark checks the table DeltaLog
to see what new transactions have posted to the table.
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The Transaction Log Structure (1/2)

I When a user creates a Delta Lake table, that table’s DeltaLog is automatically created
in the delta log subdirectory.

I Any changes to that table are then recorded as ordered, atomic commits in the
DeltaLog.

I Each commit is written out as a JSON file, starting with 000000.json.

I Additional changes to the table generate subsequent JSON files in ascending numer-
ical order, e.g., 000001.json, 000002.json, and so on.
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The Transaction Log Structure (2/2)

I Assume you add some records to a table from data files 1.parquet and 2.parquet.

I That transaction would automatically be added to the DeltaLog, saved to disk as
commit 000000.json.

I Then, assume remove those files and add 3.parquet instead.

I Those actions would be recorded as the next commit in the DeltaLog, as
000001.json.
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Actions and Commits

I Each log record object (e.g., 000003.json) contains a commit, i.e., an array of
actions recoreded as atomic, ordered units.

I Change metadata: name, schema, partitioning, etc.

I Add/remove file: adds/removes a file

I Protocol evolution: upgrades the version of the transaction protocol

I Set transaction: records an idempotent transaction id

I Commit info: information around commit for auditing
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Delta Lake Transaction Example

I Query: delete all events data about customer no. 17

I Clients now always read a consistent table version!

• If a client reads v2 of log, it sees file1, file2, file3 (no delete)
• If a client reads v3 of log, it sees file1b, file2, file3b (all deleted)

32 / 65



Delta Lake Transaction Example

I Query: delete all events data about customer no. 17

I Clients now always read a consistent table version!

• If a client reads v2 of log, it sees file1, file2, file3 (no delete)
• If a client reads v3 of log, it sees file1b, file2, file3b (all deleted)

32 / 65



Delta Lake Transaction Example

I Query: delete all events data about customer no. 17

I Clients now always read a consistent table version!
• If a client reads v2 of log, it sees file1, file2, file3 (no delete)

• If a client reads v3 of log, it sees file1b, file2, file3b (all deleted)

32 / 65



Delta Lake Transaction Example

I Query: delete all events data about customer no. 17

I Clients now always read a consistent table version!
• If a client reads v2 of log, it sees file1, file2, file3 (no delete)
• If a client reads v3 of log, it sees file1b, file2, file3b (all deleted)

32 / 65



Quickly Recomputing State With Checkpoint Files

I Delta Lake automatically generates checkpoint files every 10 commits in the same
delta log subdirectory.

I The checkpoint files save the entire state of the table at a point in time.

I They are in native Parquet format that is quick and easy for Spark to read.
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Dealing With Multiple Concurrent Reads and Writes

I With petabytes of data, there is a high likelihood that users will be working on
different parts of the data altogether.

I It allows them to complete non-conflicting transactions simultaneously.

I But, what if there is a conflict?

I Optimistic concurrency control
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Optimistic Concurrency Control (1/3)

I It ensures that the resulting state of the table after multiple concurrent writes is the
same as if those writes had occurred serially, in isolation from one another.

I The process proceeds like this:

1. Record the starting table version.
2. Record reads/writes.
3. Attempt a commit.
4. If someone else wins, check whether anything you read has changed.
5. Repeat.

35 / 65



Optimistic Concurrency Control (1/3)

I It ensures that the resulting state of the table after multiple concurrent writes is the
same as if those writes had occurred serially, in isolation from one another.

I The process proceeds like this:

1. Record the starting table version.
2. Record reads/writes.
3. Attempt a commit.
4. If someone else wins, check whether anything you read has changed.
5. Repeat.

35 / 65



Optimistic Concurrency Control (1/3)

I It ensures that the resulting state of the table after multiple concurrent writes is the
same as if those writes had occurred serially, in isolation from one another.

I The process proceeds like this:

1. Record the starting table version.

2. Record reads/writes.
3. Attempt a commit.
4. If someone else wins, check whether anything you read has changed.
5. Repeat.

35 / 65



Optimistic Concurrency Control (1/3)

I It ensures that the resulting state of the table after multiple concurrent writes is the
same as if those writes had occurred serially, in isolation from one another.

I The process proceeds like this:

1. Record the starting table version.
2. Record reads/writes.

3. Attempt a commit.
4. If someone else wins, check whether anything you read has changed.
5. Repeat.

35 / 65



Optimistic Concurrency Control (1/3)

I It ensures that the resulting state of the table after multiple concurrent writes is the
same as if those writes had occurred serially, in isolation from one another.

I The process proceeds like this:

1. Record the starting table version.
2. Record reads/writes.
3. Attempt a commit.

4. If someone else wins, check whether anything you read has changed.
5. Repeat.

35 / 65



Optimistic Concurrency Control (1/3)

I It ensures that the resulting state of the table after multiple concurrent writes is the
same as if those writes had occurred serially, in isolation from one another.

I The process proceeds like this:

1. Record the starting table version.
2. Record reads/writes.
3. Attempt a commit.
4. If someone else wins, check whether anything you read has changed.

5. Repeat.

35 / 65



Optimistic Concurrency Control (1/3)

I It ensures that the resulting state of the table after multiple concurrent writes is the
same as if those writes had occurred serially, in isolation from one another.

I The process proceeds like this:

1. Record the starting table version.
2. Record reads/writes.
3. Attempt a commit.
4. If someone else wins, check whether anything you read has changed.
5. Repeat.

35 / 65



Optimistic Concurrency Control (2/3)

I Two users read from the same table, then each attempts to add some data to it.

I Here, we run into a conflict because only one commit can come next and be recorded
as 000001.json.

I Mutual exclusion: only one user can successfully make commit 000001.json (user
1’s commit is accepted, while user 2’s is rejected).

I However, Delta Lake does not throw an error for user 2 and handles this conflict
optimistically.
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Optimistic Concurrency Control (3/3)

I Delta Lakes checks to see whether any new commits have been made to the table,
and updates the table silently to reflect those changes.

I Then, it retries user 2’s commit on the newly updated table (without any data
processing), successfully committing 000002.json.

I In the vast majority of cases, this reconciliation happens silently and successfully.

I However, in the event that there is an irreconcilable problem, it throws an error.

• For example, if user 1 deleted a file that user 2 also deleted.
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Use Cases - Time Travel

I Every table is the result of the sum of all of the commits recorded in the Delta Lake
DeltaLog.

I The DeltaLog provides a step-by-step instruction guide, detailing exactly how to get
from the table’s original state to its current state.

I Thus, we can recreate the state of a table at any point in time.

• Starting with an original table, and processing only commits made prior to that point.

I This ability is known as time travel or data versioning.
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Use Cases - Data Lineage and Debugging

I The Delta Lake DeltaLog offers users a verifiable data lineage.

I It is is useful for governance, audit and compliance purposes.

I It can also be used to trace the origin of an inadvertent change or a bug in a pipeline
back to the exact action that caused it.
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Schema Enforcement and Evolution

I Data is always evolving and accumulating.

I As business problems and requirements evolve over time, so too does the structure
of data.

I With Delta Lake, as the data changes, incorporating new dimensions is easy.

I Schema enforcement: prevents users from accidentally polluting their tables with
mistakes or garbage data.

I Schema evolution: enables automatic addition of columns when desired.
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Understanding Table Schemas

I Spark DataFrames contain the schema.

I With Delta Lake, the table’s schema is saved in JSON format inside the DeltaLog.
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Schema Enforcement

I Schema enforcement (a.k.a schema validation) occurs on write.

I If the schema is not compatible, Delta Lake cancels the transaction, i.e., no data is
written.

I As well, Delta Lake raises an exception to let the user know about the mismatch.
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Schema Enforcement Rules (1/3)

I Rule 1: cannot contain any additional columns that are not present in the target
table’s schema.

I However, it is OK if the incoming data does not contain every column in the table.

• Those columns will simply be assigned null values.
• It will fail if those columns are not nullable.
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Schema Enforcement Rules (2/3)

I Rule 2: cannot have column data types that differ from the column data types in
the target table.

I E.g., target table’s column contains StringType data, but corresponding source col-
umn contains IntegerType data.

I The schema enforcement will raise an exception and prevent the write operation from
taking place.
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Schema Enforcement Rules (3/3)

I Rule 3: Can not contain column names that differ only by case.

I E.g., cannot have columns such as Foo and foo defined in the same table.

I Spark can be used in case sensitive or insensitive (default) mode.

I Parquet is case sensitive when storing and returning column information.

I Delta Lake is case-preserving, but insensitive when storing the schema.
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Schema Evolution (1/3)

I Schema evolution allows users to change a table’s current schema to accommodate
data that is changing over time.

I Most commonly used operations for append and overwrite.

I Use .option(’mergeSchema’, ’true’) to your .write or .writeStream Spark
command.

I Also can use spark.databricks.delta.schema.autoMerge = True to Spark
configuration.

I Use with caution, as schema enforcement will no longer warn you about unintended
schema mismatches.
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Schema Evolution (2/3)

I With .option(’mergeSchema’, ’true’)

I Read-compatible schema changes.

I During table appends or overwrites.

I The following types of schema changes are eligible:
• Adding new columns (this is the most common scenario).
• Changing of data types from non-nullable to nullable.
• Upcasts from ByteType → ShortType → IntegerType.
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Schema Evolution (3/3)

I With .option(’overwriteSchema’, ’true’)

I Non-read-compatible schema changes.

I Typically when overwriting.

I The following types of schema changes are eligible:
• Dropping a column.
• Changing an existing column’s data type (in place).
• Renaming column names that differ only by case (e.g., Foo and foo).
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Delta Lake and Spark
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Loading Data into a Delta Lake Table (1/2)

I All you need to migrate any of the structured data formats (e.g., Parquet) to Delta
Lake is to use format(‘‘delta’’).

// Configure source data and Delta Lake path

val sourcePath = "loan-risks.snappy.parquet"

val deltaPath = "loans_delta"

// Create the Delta table with the same loans data

spark.read.format("parquet").load(sourcePath).write.format("delta").save(deltaPath)

// Create a view on the data called loans_delta

spark.read.format("delta").load(deltaPath).createOrReplaceTempView("loans_delta")
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Loading Data into a Delta Lake Table (2/2)

// Read and explore the data

spark.sql("SELECT count(*) FROM loans_delta").show()

+--------+

|count(1)|

+--------+

| 14705|

+--------+

// First 3 rows of loans table

spark.sql("SELECT * FROM loans_delta LIMIT 3").show()

+-------+-----------+---------+----------+

|loan_id|funded_amnt|paid_amnt|addr_state|

+-------+-----------+---------+----------+

| 0| 1000| 182.22| CA|

| 1| 1000| 361.19| WA|

| 2| 1000| 176.26| TX|

+-------+-----------+---------+----------+
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Loading Data Streams into a Delta Lake Table

I You can modify your existing Structured Streaming jobs to write to and read from
a Delta Lake table by setting the format to ‘‘delta’’.

import org.apache.spark.sql.streaming._

// Streaming DataFrame with new loans data

val newLoanStreamDF = ...

// Directory for streaming checkpoints

val checkpointDir = ...

val streamingQuery = newLoanStreamDF.writeStream

.format("delta")

.option("checkpointLocation", checkpointDir)

.trigger(Trigger.ProcessingTime("10 seconds"))

.start(deltaPath)
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Schema Enforcement

I All writes to a Delta Lake table can verify whether the data being written has a
schema compatible with that of the table.

I If it is not compatible, Spark will throw an error before any data is written and
committed to the table.

val loanUpdates = Seq(

(1111111L, 1000, 1000.0, "TX", false),

(2222222L, 2000, 0.0, "CA", true))

.toDF("loan_id", "funded_amnt", "paid_amnt", "addr_state", "closed")

loanUpdates.write.format("delta").mode("append").save(deltaPath)

// The exception message:

// This write will fail with the following error message:

// org.apache.spark.sql.AnalysisException: A schema mismatch detected when writing

// to the Delta table (Table ID: 48bfa949-5a09-49ce-96cb-34090ab7d695).
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Schema Evolution

I A new column can be explicitly added by setting the option mergeSchema to true.

loanUpdates.write.format("delta").mode("append")

.option("mergeSchema", "true")

.save(deltaPath)
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Transforming Existing Data - Updating Data (1/2)

I Delta Lake supports UPDATE, DELETE, and MERGE commands

I They ensure ACID guarantees.

I Assume we want to change all addr state = ’OR’ to addr state = ’WA’ in a
table.

I If the table is a Parquet table, then to do such an update we would need to:

1. Copy all of the rows that are not affected into a new table.
2. Copy all of the rows that are affected into a DataFrame, then perform the data modi-

fication.
3. Insert the previously noted DataFrame’s rows into the new table.
4. Remove the old table and rename the new table to the old table name.

56 / 65



Transforming Existing Data - Updating Data (1/2)

I Delta Lake supports UPDATE, DELETE, and MERGE commands

I They ensure ACID guarantees.

I Assume we want to change all addr state = ’OR’ to addr state = ’WA’ in a
table.

I If the table is a Parquet table, then to do such an update we would need to:

1. Copy all of the rows that are not affected into a new table.
2. Copy all of the rows that are affected into a DataFrame, then perform the data modi-

fication.
3. Insert the previously noted DataFrame’s rows into the new table.
4. Remove the old table and rename the new table to the old table name.

56 / 65



Transforming Existing Data - Updating Data (1/2)

I Delta Lake supports UPDATE, DELETE, and MERGE commands

I They ensure ACID guarantees.

I Assume we want to change all addr state = ’OR’ to addr state = ’WA’ in a
table.

I If the table is a Parquet table, then to do such an update we would need to:

1. Copy all of the rows that are not affected into a new table.
2. Copy all of the rows that are affected into a DataFrame, then perform the data modi-

fication.
3. Insert the previously noted DataFrame’s rows into the new table.
4. Remove the old table and rename the new table to the old table name.

56 / 65



Transforming Existing Data - Updating Data (1/2)

I Delta Lake supports UPDATE, DELETE, and MERGE commands

I They ensure ACID guarantees.

I Assume we want to change all addr state = ’OR’ to addr state = ’WA’ in a
table.

I If the table is a Parquet table, then to do such an update we would need to:

1. Copy all of the rows that are not affected into a new table.
2. Copy all of the rows that are affected into a DataFrame, then perform the data modi-

fication.
3. Insert the previously noted DataFrame’s rows into the new table.
4. Remove the old table and rename the new table to the old table name.

56 / 65



Transforming Existing Data - Updating Data (1/2)

I Delta Lake supports UPDATE, DELETE, and MERGE commands

I They ensure ACID guarantees.

I Assume we want to change all addr state = ’OR’ to addr state = ’WA’ in a
table.

I If the table is a Parquet table, then to do such an update we would need to:

1. Copy all of the rows that are not affected into a new table.

2. Copy all of the rows that are affected into a DataFrame, then perform the data modi-
fication.

3. Insert the previously noted DataFrame’s rows into the new table.
4. Remove the old table and rename the new table to the old table name.

56 / 65



Transforming Existing Data - Updating Data (1/2)

I Delta Lake supports UPDATE, DELETE, and MERGE commands

I They ensure ACID guarantees.

I Assume we want to change all addr state = ’OR’ to addr state = ’WA’ in a
table.

I If the table is a Parquet table, then to do such an update we would need to:

1. Copy all of the rows that are not affected into a new table.
2. Copy all of the rows that are affected into a DataFrame, then perform the data modi-

fication.

3. Insert the previously noted DataFrame’s rows into the new table.
4. Remove the old table and rename the new table to the old table name.

56 / 65



Transforming Existing Data - Updating Data (1/2)

I Delta Lake supports UPDATE, DELETE, and MERGE commands

I They ensure ACID guarantees.

I Assume we want to change all addr state = ’OR’ to addr state = ’WA’ in a
table.

I If the table is a Parquet table, then to do such an update we would need to:

1. Copy all of the rows that are not affected into a new table.
2. Copy all of the rows that are affected into a DataFrame, then perform the data modi-

fication.
3. Insert the previously noted DataFrame’s rows into the new table.

4. Remove the old table and rename the new table to the old table name.

56 / 65



Transforming Existing Data - Updating Data (1/2)

I Delta Lake supports UPDATE, DELETE, and MERGE commands

I They ensure ACID guarantees.

I Assume we want to change all addr state = ’OR’ to addr state = ’WA’ in a
table.

I If the table is a Parquet table, then to do such an update we would need to:

1. Copy all of the rows that are not affected into a new table.
2. Copy all of the rows that are affected into a DataFrame, then perform the data modi-

fication.
3. Insert the previously noted DataFrame’s rows into the new table.
4. Remove the old table and rename the new table to the old table name.

56 / 65



Transforming Existing Data - Updating Data (2/2)

I In Spark 3.0 and Delta Lake, you can simply run the update command instead.

import io.delta.tables.DeltaTable

import org.apache.spark.sql.functions._

val deltaTable = DeltaTable.forPath(spark, deltaPath)

deltaTable.update(

col("addr_state") === "OR",

Map("addr_state" -> lit("WA")))
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Transforming Existing Data - Deleting Data

I With data protection policies like the EU’s General Data Protection Regulation
(GDPR) coming into force, it is more important now than ever to be able to delete
user data from all tables.

val deltaTable = DeltaTable.forPath(spark, deltaPath)

deltaTable.delete("funded_amnt >= paid_amnt")
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Transforming Existing Data - Upserting Data to a Table

I Replicating row changes made in an table to another table.

I Assume, we have another table of new loan information, some of which are new loans
and others of which are updates to existing loans.

I Also, assume this changes table has the same schema as the loan delta table.

deltaTable.alias("t")

.merge(loanUpdates.alias("s"), "t.loan_id = s.loan_id")

.whenMatched.updateAll()

.whenNotMatched.insertAll()

.execute()
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Auditing Data Changes with Operation History

I All of the changes are recorded as commits in the table’s DeltaLog.

I Every operation is automatically versioned.

I You can query the table’s operation history.

deltaTable

.history(3)

.select("version", "timestamp", "operation", "operationParameters")

.show(false)
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Querying Previous Snapshots of a Table with Time Travel

I You can query previous versioned snapshots of a table by using the DataFrameReader
options versionAsOf and timestampAsOf.

spark.read.format("delta")

.option("timestampAsOf", "2020-01-01") // timestamp after table creation

.load(deltaPath)

spark.read.format("delta")

.option("versionAsOf", "4")

.load(deltaPath)
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Summary
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