iﬁéﬁm B éi}
"“%3;4’:‘.?“ ©

Scalable Stream Processing - Spark Streaming and Beam

Amir H. Payberah
payberah@kth.se
2022-09-27




The Course Web Page

https://id2221kth.github.io


https://id2221kth.github.io

The Questions-Answers Page

https://tinyurl.com/bdenpwch


https://tinyurl.com/bdenpwc5

Where Are We?

Data Processing

Pregel, GraphLab, PowerGraph Spark SQL Milib
GraphX, X-Streem, Chaos Tensorflow

MapReduce, Dryad Storm, SEEP, Naiad, Spark Streaming, Flink,
FlumeJava, Spark h Millwheel, Google Dataflow ‘

Data Storage

Dynamo, BigTable,
GFS, Flat FS Cassandra

Resource Management

Mesos, YARN




Spark Streaming



Spark Streaming

» Run a streaming computation as a series of very small, deterministic batch jobs.

e Chops up the live stream into batches of X seconds.

Treats each batch as RDDs and processes them using RDD operations.

Discretized Stream Processing (DStream)

input data batches of batches of
stream Spark input data Spark processed data

Streaming |1 Engine |1




DStream (1/2)

» DStream: sequence of RDDs representing a stream of data.

input data batches of batches of
stream Spark input data Spark processed data
|:> Streaming |1 |:> Engine |:||:||:>

RDD @time1 RDD@time2 RDD@time3 RDD @ time4

~| detafom || datafrom | _| datafrom | o
time 1to 2 time2to3 time3to4

DStream = data from
time 0 to 1




DStream (2/2)

» Any operation applied on a DStream translates to operations on the underlying RDDs.

lines — | tfinesfrom |__| linesfrom | _ | linesfrom | _ | linesfrom | .
DStream timeOto 1 time 1to 2 time 2 to 3 time3to4
flatMap
operation
N A 4 A 4 A 4
words _ | wordsfrom | _| wordsfrom | _ | wordsfrom |_ | wordsfrom |_ >
DStream time O to 1 time 1to 2 time 2 to 3 time3to 4




StreamingContext

» StreamingContext is the main entry point of all Spark Streaming functionality.

val conf = new SparkConf () .setAppName (appName) .setMaster (master)
val ssc = new StreamingContext(conf, Seconds(1))

» The second parameter, Seconds (1), represents the time interval at which streaming
data will be divided into batches.




Input Operations

» Socket connection
o Creates a DStream from text data received over a TCP socket connection.

ssc.socketTextStream("localhost", 9999)

» File stream
* Reads data from files.

streamingContext.fileStream[KeyClass, ValueClass, InputFormatClass] (dataDirectory)

streamingContext.textFileStream(dataDirectory)

» Connectors with external sources, e.g., Twitter, Kafka, Flume, Kinesis, ...




Transformations (1/2)

» Transformations on DStreams are still lazy!

» DStreams support many of the transformations available on normal Spark RDDs.

» Computation is kicked off explicitly by a call to the start () method.




Transformations (2/2)

» map: a new DStream by passing each element of the source DStream through a given
function.

» reduce: a new DStream of single-element RDDs by aggregating the elements in
each RDD using a given function.

» reduceByKey: a new DStream of (K, V) pairs where the values for each key are
aggregated using the given reduce function.




Example - Word Count (1/6)

» First we create a StreamingContex

import org.apache.spark._
import org.apache.spark.streaming._

// Create a local StreamingContext with two working threads and batch interval of 1 second.
val conf = new SparkConf ().setMaster("local[2]").setAppName ("NetworkWordCount")
val ssc = new StreamingContext(conf, Seconds(1))




Example - Word Count (2/6)

» Create a DStream that represents streaming data from a TCP source.

» Specified as hostname (e.g., localhost) and port (e.g., 9999).

val lines = ssc.socketTextStream("localhost", 9999)




Example - Word Count (3/6)

» Use flatMap on the stream to split the records text to words.

» |t creates a new DStream.

val words = lines.flatMap(_.split(" "))

lines _ | lines from _| linesfrom | _ | linesfrom
DStream timeOto 1 time 1to 2 time 2to 3

lines from
time3to4 >

flatMap

operation
words  _ | wordsfrom |__| wordsfrom | _ | wordsfrom |_ | wordsfrom >
DStream time0to 1 time 1to 2 time2to3 time 3to 4




Example - Word Count (4/6)

» Map the words DStream to a DStream of (word, 1).
» Get the frequency of words in each batch of data.

» Finally, print the result.

val pairs = words.map(word => (word, 1))

val wordCounts = pairs.reduceByKey(_ + _)

wordCounts.print ()




Example - Word Count (5/6)

> Start the computation and wait for it to terminate.

// Start the computation
ssc.start ()

// Wait for the computation to terminate
ssc.awaitTermination()




Example - Word Count (6/6)

val conf = new SparkConf () .setMaster("local[2]").setAppName ("NetworkWordCount")
val ssc = new StreamingContext(conf, Seconds(1))

val lines = ssc.socketTextStream("localhost", 9999)
val words = lines.flatMap(_.split(" "))

val pairs = words.map(word => (word, 1))

val wordCounts = pairs.reduceByKey(_ + _)
wordCounts.print ()

ssc.start ()
ssc.awaitTermination()

lines lines from lines from lines from lines from
DStream timeO0to 1 time 1t0 2 time 2 to 3 time3to4
flatMap
operation
words words from

DStream

time 0to 1 time 1to 2 time2to3 time3to4

words from | | words from | ‘ words from |




Window Operations (1/2)

» Spark provides a set of transformations that apply to a over a sliding window of data.
» A window is defined by two parameters: window length and slide interval.

» A tumbling window effect can be achieved by making slide interval = window length

time 1 time 2 time 3 time 4 time 5
original
DStream D U [ U D D ]
window-based
operation

windowed
DStream

window window window

at time 1 attime 3 attime 5




Window Operations (2/2)

» reduceByWindow(func, windowLength, slideInterval)

e Returns a new single-element DStream, created by aggregating elements in the stream
over a sliding interval using func.

» reduceByKeyAndWindow(func, windowLength, slideInterval)
¢ Called on a DStream of (K, V) pairs.
¢ Returns a new DStream of (K, V) pairs where the values for each key are aggregated
using function func over batches in a sliding window.




Example - Word Count with Window

val conf = new SparkConf () .setMaster("local[2]").setAppName ("NetworkWordCount")
val ssc = new StreamingContext(conf, Seconds(1))

val lines = ssc.socketTextStream("localhost", 9999)

val words = lines.flatMap(_.split(" "))

val pairs = words.map(word => (word, 1))

val windowedWordCounts = pairs.reduceByKeyAndWindow(_ + _, Seconds(30), Seconds(10))
windowedWordCounts.print ()

ssc.start()
ssc.awaitTermination()

time 1 time 2 time 3 time 4 time 5
original
DStream

window-based
operation

windowed
DStream

window window window

at time 1 attime 3 attime 5




What about States?

» Accumulate and aggregate the results from the start of the streaming job.

» Need to check the previous state of the RDD in order to do something with the
current RDD.

» Spark supports stateful streams.




Checkpointing

» It is mandatory that you provide a checkpointing directory for stateful streams.

val ssc = new StreamingContext(conf, Seconds(1))
ssc.checkpoint ("path/to/persistent/storage")




Stateful Stream Operations

» mapWithState
* It is executed only on set of keys that are available in the last micro batch.

def mapWithState[StateType, MappedTypel (spec: StateSpec[K, V, StateType, MappedTypel) :
DStream[MappedType]

StateSpec.function(updateFunc)
val updateFunc = (batch: Time, key: String, value: Option[Int], state: State[Int])

» Define the update function (partial updates) in StateSpec.




Example - Stateful Word Count (1/4)

val ssc = new StreamingContext(conf, Seconds(1))
ssc.checkpoint (".")

val lines = ssc.socketTextStream(IP, Port)
val words = lines.flatMap(_.split(" "))

val pairs = words.map(word => (word, 1))

val stateWordCount = pairs.mapWithState(StateSpec.function(updateFunc))

val updateFunc = (key: String, value: Option[Int], state: State[Int]) => {
val newCount = value.getOrElse(0)
val oldCount = state.getOption.getOrElse(0)
val sum = newCount + oldCount
state.update (sum)
(key, sum)




Example - Stateful Word Count (2/4)

>

The first micro batch contains a message a.

» updateFunc = (key: String, value: Option[Int], state: Statel[Int]) => (key, sum)

v

Input: key = a, value = Some(1), state = 0

v

Output: key = a, sum = 1




Example - Stateful Word Count (3/4)

>

The second micro batch contains messages a and b.

» updateFunc = (key: String, value: Option[Int], state: State[Int]) => (key, sum)
» Input: key = a, value = Some(1), state = 1

» Input: key = b, value = Some(1), state = 0

» Output: key = a, sum = 2

» Output: key = b, sum = 1




Example - Stateful Word Count (4/4)

>

» updateFunc = (key: String, value: Option[Int], state: Statel[Int]) => (key, sum)

>

The third micro batch contains a message b.

Input: key = b, value = Some(1), state = 1

v

Output: key = b, sum = 2




Structured Streaming



Structured Streaming

» Treating a live data stream as a table that is being continuously appended.

Data stream Unbounded Table

new datain the
data stream
new rows appended
to a unbounded table

Data stream as an unbounded table




Programming Model (1/2)

» Defines a query on the input table, as a static table.
e Spark automatically converts this batch-like query to a streaming execution plan.

» Specify triggers to control when to update the results.

e Each time a trigger fires, Spark checks for new data (new row in the input table), and
incrementally updates the result.




Programming Model (2/2)

Input
Table

User
Query

Result
Table

User's batch-like
queryon inputtable

Spark SQL
Planner

Triggers
System 1 2 3 N
Time T T —>
Input dataup dataup dataup
Table tot=1 tot=2 tot=3
Incremental
Query
Result resultup resultup result up
Table tot=1 tot=2 tot=3
Update Mode
rows rows
updated updated
att=2 att=3

Incremental execution on streaming data




Output Modes

» Three output modes:

1. Append: only the new rows appended to the result table since the last trigger will
be written to the external storage.

2. Complete: the entire updated result table will be written to external storage.

3. Update: only the rows that were updated in the result table since the last trigger will
be changed in the external storage.




Five Steps to Define a Streaming Query (1/5)

» Define input sources.

» Use spark.readStream to create a DataStreamReader.

val spark = SparkSession.builder.master("local[2]").appName ("appname").getOrCreate()

val lines = spark.readStream.format("socket")
.option("host", "localhost")
.option("port", 9999)
.load ()




Five Steps to Define a Streaming Query (2/5)

» Transform data.

» E.g., below counts is a streaming DataFrame that represents the running word counts.

import org.apache.spark.sql.functions._

val words = lines.select(split(col("value"), "\\s").as("word"))

val counts = words.groupBy("word") .count ()




Five Steps to Define a Streaming Query (3/5)

» Define output sink and output mode.

» Use DataFrame.writeStream to define how to write the processed output data.

val writer = counts.writeStream.format("console").outputMode("complete")




Five Steps to Define a Streaming Query (4/5)

» Specify processing details.

\\ word count details
import org.apache.spark.sql.streaming._

val checkpointDir = "..."

val writer2 = writer
.trigger (Trigger.ProcessingTime("1 second"))
.option("checkpointLocation", checkpointDir)




Five Steps to Define a Streaming Query (5/5)

» Start the query.

» streamingQuery represents an active query and can be used to manage the query.

val streamingQuery = writer2.start()




Basic Operations (1/2)

» Most of operations on DataFrame/Dataset are supported for streaming.

case class Call(action: String, time: Timestamp, id: Int)

val df: DataFrame = spark.readStream.json("s3://logs")
val ds: Dataset[Call] = df.as[Call]

» Selection and projection

df .select("action") .where("id > 10") // using untyped APIs
ds.filter(_.id > 10) .map(_.action) // using typed APIs




Basic Operations (2/2)

> Aggregation

df .groupBy("action") // using untyped API
ds.groupByKey(_.action) // using typed API

» SQL commands

df . createOrReplaceTempView("dfView")
spark.sql("select count(*) from dfView") // returns another streaming DF




Google Dataflow and Beam



MillWheel Dataflow

> MillWheel is a framework for building low-latency data-processing applications.

» A dataflow graph of transformations (computations).

» Stream: unbounded data of (key, value, timestamp) records.
e Timestamp: event-time

Model

Calculator
N
Web = Window
Search Queries Counter

tjom[£

‘.
~Nits Spike/Dip =
3 Detector Anomalies Anomaly
Notifications




Key Extraction Function and Computations

>

Stream of (key, value, timestamp) records.

v

Key extraction function: specified by the stream consumer to assign keys to records.

» Computation can only access state for the specific key.

v

Multiple computations can extract different keys from the same stream.

Computation A

Key Extractor:
Search Query

| Key A || Key A || Key A |
Computation B

Key Extractor: "bf8el",
Cookie ID

"a79bc2" Wall Time

Computation

"britney",
"carly"

Stream:
Queries

Key B | | Key B |




Persistent State

>

Keep the states of the computations

v

Managed on per-key basis

v

Stored n Blgta ble or Spa nner ("britney”, [bytes], 10:59:10

("britney", [bytes], 10:59:11)
("britney", [bytes],
("carly", [bytes], 10:59:10)

» Common use: aggregation, joins, ...

Window Counter Model
Calculator

britney: (10:59:10, 2)
(10:59:11, 1)

[ early: (105910, 1)] [ eary o |




What is Google Cloud Dataflow?




Google Cloud Dataflow (1/2)

» Google managed service for unified batch and stream data processing.

Cloud Dataflow

MapReduce

Big Table T MillWheel

2002 2004 2006 2008 2010 2012 2013




Google Cloud Dataflow (2/2)

» Open source Cloud Dataflow SDK

v

Express your data processing pipeline using FlumeJava.

v

If you run it in batch mode, it executed on the MapReduce framework.

v

If you run it in streaming mode, it is executed on the MillWheel framework.




Windowing and Triggering

» Windowing determines where in event time data are grouped together for processing.

> Triggering determines when in processing time the results of groupings are emitted
as panes.




Example (1/3)

» Batch processing

12:08  12:09
+
@
L]
=
©

Processing Time
12:07
:
®

%
®

®

12001 1202 12003 12004 12105 12:06 12:07 12:08
Event Time

Actual watermark: ~ ======eea- >

Ideal watermark:




Example (2/3)

Trigger at period (time-based triggers)
Trigger at count (data-driven triggers)

2 a % 5 +
3 &
3 1 B &
, 5 ® s ot 12
g8 1 £ =
g g
5 @ ® P! ® ®
7 & 7 11
B 5o 5 4
Es @ Pel @
E 12 = &
©, © ®, o =

'
12:01 12:02 12:03 12:04 12:05 12:06 12:07 12:08

Event Time

' 4 ' L L L '
t t t + t u t
12:01 12:02 12:03 12:04 12:05 12:06 12:07 12:08

Event Time




Example (3/3)

» Fixed window, trigger at period (micro-batch)

» Fixed window, trigger at watermark (streaming)

E o | 12 -\ §' 12,.13
- — +
z @l 2 & :
EaTTTTTT 2 | 3 8 STGS S
e . [SHRN e I oL amme
PE| . ) @.. w s 2 3
g i 14" ® 3 - 2 a7 ne
. g 5 @@
GIE-] BN 22 3
S e =3 o @
9

s L
12:01 12:02 12:03 1204 12:05 12:06 12:07 12:08

Event Time

12:01 12:02 1203 12:04 1205 1206 12:07 12:0¢

Event Time

Actual watermark: =~ ========== 4
Ideal watermark:

Actual watermark: = ====em-ae >

Ideal watermark:




Where is Apache Beam?




From Google Cloud Dataflow to Apache Beam

» In 2016, Google Cloud Dataflow team announced its intention to donate the pro-
gramming model and SDKs to the Apache Software Foundation.

» That resulted in the incubating project Apache Beam.




Programming Components

>

Pipelines

PCollections

v

Transforms

v

v

[/O sources and sinks




Pipelines

> A pipeline represents a data processing job.

» Directed graph of operating on data.

» A pipeline consists of two parts:

e Data (PCollection)
e Transforms applied to that data




PCollections (1/2)

» A parallel collection of records
» Immutable
» Must specify bounded or unbounded

.

Output




PCollections (2/2)

// Create a Java Collection, in this case a List of Strings.
static final List<String> LINES = Arrays.asList("line 1", "line 2", "line 3");

PipelineOptions options = PipelineOptionsFactory.create();
Pipeline p = Pipeline.create(options);

// Create the PCollection
p.apply(Create.of (LINES)) .setCoder (StringUtf8Coder.of ())




Transformations

» A processing operation that transforms data

» Each transform accepts one (or multiple) PCollections as input, performs an op-
eration, and produces one (or multiple) new PCollections as output.

» Core transforms: ParDo, GroupByKey, Combine, Flatten




Example: HashTag Autocompletion (1/3)

#SuperBo Q

#SuperBowl

#SuperBowlXLIX

#superbowlcommercials

#SuperBowlSunday




{Go Hawks #Seahawks!, #Seattle works museum pass. Free!
Go #PatriotsNation! Having fun at #seaside, .. }

{seahawks->5M, seattle->2M, patriots->9M, ...}

{d->(deflategate, 10M), d->(denver, 2M), ..,

ExpandPrefixes
P sea->(seahawks, 5M), sea->(seaside, 2M), ...}

{d->[deflategate, desafiodatransa, djokovic],

Top(3) de->[deflategate, desafiodatransa, dead5@],...}




Example: HashTag Autocompletion (3/3)

Pipeline p = Pipeline.create();
p.begin()

.apply(TextIO.Read.from(“gs://.."))

.apply(ParDo.of (new O»n

.apply(Count.perElement())

ExpandPrefixes .apply(ParDo.of (new ExpandPrefixes())
Top(3) .apply(Top.largestPerKey(3))

.apply(TextIO.Write.to(“gs://..”));

—




Summary




Summary

» Spark
e Mini-batch processing
e DStream: sequence of RDDs
e RDD and window operations
e Structured streaming

» Google cloud dataflow
e Pipeline
e PCollection
e Transforms




References

»

M. Zaharia et al., “Spark: The Definitive Guide”, O'Reilly Media, 2018 - Chapters
20-23.

M. Zaharia et al., “Discretized Streams: An Efficient and Fault-Tolerant Model for
Stream Processing on Large Clusters”, HotCloud'12.

v

» T. Akidau et al., “MillWheel: fault-tolerant stream processing at internet scale”,
VLDB 2013.
» T. Akidau et al., “The dataflow model: a practical approach to balancing correctness,

latency, and cost in massive-scale, unbounded, out-of-order data processing”, VLDB
2015.

v

The world beyond batch: Streaming 102
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-102




Questions?



	

