
Scalable Stream Processing - Spark Streaming and Beam

Amir H. Payberah
payberah@kth.se

2022-09-27



The Course Web Page

https://id2221kth.github.io

1 / 64

https://id2221kth.github.io


The Questions-Answers Page

https://tinyurl.com/bdenpwc5

2 / 64

https://tinyurl.com/bdenpwc5


Where Are We?

3 / 64



Spark Streaming

4 / 64



Spark Streaming

I Run a streaming computation as a series of very small, deterministic batch jobs.

• Chops up the live stream into batches of X seconds.

• Treats each batch as RDDs and processes them using RDD operations.

• Discretized Stream Processing (DStream)

5 / 64



DStream (1/2)

I DStream: sequence of RDDs representing a stream of data.

6 / 64



DStream (2/2)

I Any operation applied on a DStream translates to operations on the underlying RDDs.

7 / 64



StreamingContext

I StreamingContext is the main entry point of all Spark Streaming functionality.

val conf = new SparkConf().setAppName(appName).setMaster(master)

val ssc = new StreamingContext(conf, Seconds(1))

I The second parameter, Seconds(1), represents the time interval at which streaming
data will be divided into batches.

8 / 64



Input Operations

I Socket connection
• Creates a DStream from text data received over a TCP socket connection.

ssc.socketTextStream("localhost", 9999)

I File stream
• Reads data from files.

streamingContext.fileStream[KeyClass, ValueClass, InputFormatClass](dataDirectory)

streamingContext.textFileStream(dataDirectory)

I Connectors with external sources, e.g., Twitter, Kafka, Flume, Kinesis, ...

9 / 64



Transformations (1/2)

I Transformations on DStreams are still lazy!

I DStreams support many of the transformations available on normal Spark RDDs.

I Computation is kicked off explicitly by a call to the start() method.

10 / 64



Transformations (2/2)

I map: a new DStream by passing each element of the source DStream through a given
function.

I reduce: a new DStream of single-element RDDs by aggregating the elements in
each RDD using a given function.

I reduceByKey: a new DStream of (K, V) pairs where the values for each key are
aggregated using the given reduce function.

11 / 64



Example - Word Count (1/6)

I First we create a StreamingContex

import org.apache.spark._

import org.apache.spark.streaming._

// Create a local StreamingContext with two working threads and batch interval of 1 second.

val conf = new SparkConf().setMaster("local[2]").setAppName("NetworkWordCount")

val ssc = new StreamingContext(conf, Seconds(1))

12 / 64



Example - Word Count (2/6)

I Create a DStream that represents streaming data from a TCP source.

I Specified as hostname (e.g., localhost) and port (e.g., 9999).

val lines = ssc.socketTextStream("localhost", 9999)

13 / 64



Example - Word Count (3/6)

I Use flatMap on the stream to split the records text to words.

I It creates a new DStream.

val words = lines.flatMap(_.split(" "))

14 / 64



Example - Word Count (4/6)

I Map the words DStream to a DStream of (word, 1).

I Get the frequency of words in each batch of data.

I Finally, print the result.

val pairs = words.map(word => (word, 1))

val wordCounts = pairs.reduceByKey(_ + _)

wordCounts.print()

15 / 64



Example - Word Count (5/6)

I Start the computation and wait for it to terminate.

// Start the computation

ssc.start()

// Wait for the computation to terminate

ssc.awaitTermination()

16 / 64



Example - Word Count (6/6)

val conf = new SparkConf().setMaster("local[2]").setAppName("NetworkWordCount")

val ssc = new StreamingContext(conf, Seconds(1))

val lines = ssc.socketTextStream("localhost", 9999)

val words = lines.flatMap(_.split(" "))

val pairs = words.map(word => (word, 1))

val wordCounts = pairs.reduceByKey(_ + _)

wordCounts.print()

ssc.start()

ssc.awaitTermination()

17 / 64



Window Operations (1/2)

I Spark provides a set of transformations that apply to a over a sliding window of data.

I A window is defined by two parameters: window length and slide interval.

I A tumbling window effect can be achieved by making slide interval = window length

18 / 64



Window Operations (2/2)

I reduceByWindow(func, windowLength, slideInterval)
• Returns a new single-element DStream, created by aggregating elements in the stream

over a sliding interval using func.

I reduceByKeyAndWindow(func, windowLength, slideInterval)
• Called on a DStream of (K, V) pairs.
• Returns a new DStream of (K, V) pairs where the values for each key are aggregated

using function func over batches in a sliding window.

19 / 64



Example - Word Count with Window

val conf = new SparkConf().setMaster("local[2]").setAppName("NetworkWordCount")

val ssc = new StreamingContext(conf, Seconds(1))

val lines = ssc.socketTextStream("localhost", 9999)

val words = lines.flatMap(_.split(" "))

val pairs = words.map(word => (word, 1))

val windowedWordCounts = pairs.reduceByKeyAndWindow(_ + _, Seconds(30), Seconds(10))

windowedWordCounts.print()

ssc.start()

ssc.awaitTermination()

20 / 64



What about States?

I Accumulate and aggregate the results from the start of the streaming job.

I Need to check the previous state of the RDD in order to do something with the
current RDD.

I Spark supports stateful streams.

21 / 64



Checkpointing

I It is mandatory that you provide a checkpointing directory for stateful streams.

val ssc = new StreamingContext(conf, Seconds(1))

ssc.checkpoint("path/to/persistent/storage")

22 / 64



Stateful Stream Operations

I mapWithState
• It is executed only on set of keys that are available in the last micro batch.

def mapWithState[StateType, MappedType](spec: StateSpec[K, V, StateType, MappedType]):

DStream[MappedType]

StateSpec.function(updateFunc)

val updateFunc = (batch: Time, key: String, value: Option[Int], state: State[Int])

I Define the update function (partial updates) in StateSpec.

23 / 64



Example - Stateful Word Count (1/4)

val ssc = new StreamingContext(conf, Seconds(1))

ssc.checkpoint(".")

val lines = ssc.socketTextStream(IP, Port)

val words = lines.flatMap(_.split(" "))

val pairs = words.map(word => (word, 1))

val stateWordCount = pairs.mapWithState(StateSpec.function(updateFunc))

val updateFunc = (key: String, value: Option[Int], state: State[Int]) => {

val newCount = value.getOrElse(0)

val oldCount = state.getOption.getOrElse(0)

val sum = newCount + oldCount

state.update(sum)

(key, sum)

}

24 / 64



Example - Stateful Word Count (2/4)

I The first micro batch contains a message a.

I updateFunc = (key: String, value: Option[Int], state: State[Int]) => (key, sum)

I Input: key = a, value = Some(1), state = 0

I Output: key = a, sum = 1

25 / 64



Example - Stateful Word Count (3/4)

I The second micro batch contains messages a and b.

I updateFunc = (key: String, value: Option[Int], state: State[Int]) => (key, sum)

I Input: key = a, value = Some(1), state = 1

I Input: key = b, value = Some(1), state = 0

I Output: key = a, sum = 2

I Output: key = b, sum = 1

26 / 64



Example - Stateful Word Count (4/4)

I The third micro batch contains a message b.

I updateFunc = (key: String, value: Option[Int], state: State[Int]) => (key, sum)

I Input: key = b, value = Some(1), state = 1

I Output: key = b, sum = 2

27 / 64



Structured Streaming

28 / 64



Structured Streaming

I Treating a live data stream as a table that is being continuously appended.

29 / 64



Programming Model (1/2)

I Defines a query on the input table, as a static table.
• Spark automatically converts this batch-like query to a streaming execution plan.

I Specify triggers to control when to update the results.
• Each time a trigger fires, Spark checks for new data (new row in the input table), and

incrementally updates the result.

30 / 64



Programming Model (2/2)

31 / 64



Output Modes

I Three output modes:

1. Append: only the new rows appended to the result table since the last trigger will
be written to the external storage.

2. Complete: the entire updated result table will be written to external storage.

3. Update: only the rows that were updated in the result table since the last trigger will
be changed in the external storage.

32 / 64



Five Steps to Define a Streaming Query (1/5)

I Define input sources.

I Use spark.readStream to create a DataStreamReader.

val spark = SparkSession.builder.master("local[2]").appName("appname").getOrCreate()

val lines = spark.readStream.format("socket")

.option("host", "localhost")

.option("port", 9999)

.load()

33 / 64



Five Steps to Define a Streaming Query (2/5)

I Transform data.

I E.g., below counts is a streaming DataFrame that represents the running word counts.

import org.apache.spark.sql.functions._

val words = lines.select(split(col("value"), "\\s").as("word"))

val counts = words.groupBy("word").count()

34 / 64



Five Steps to Define a Streaming Query (3/5)

I Define output sink and output mode.

I Use DataFrame.writeStream to define how to write the processed output data.

val writer = counts.writeStream.format("console").outputMode("complete")

35 / 64



Five Steps to Define a Streaming Query (4/5)

I Specify processing details.

\\ word count details

import org.apache.spark.sql.streaming._

val checkpointDir = "..."

val writer2 = writer

.trigger(Trigger.ProcessingTime("1 second"))

.option("checkpointLocation", checkpointDir)

36 / 64



Five Steps to Define a Streaming Query (5/5)

I Start the query.

I streamingQuery represents an active query and can be used to manage the query.

val streamingQuery = writer2.start()

37 / 64



Basic Operations (1/2)

I Most of operations on DataFrame/Dataset are supported for streaming.

case class Call(action: String, time: Timestamp, id: Int)

val df: DataFrame = spark.readStream.json("s3://logs")

val ds: Dataset[Call] = df.as[Call]

I Selection and projection

df.select("action").where("id > 10") // using untyped APIs

ds.filter(_.id > 10).map(_.action) // using typed APIs

38 / 64



Basic Operations (2/2)

I Aggregation

df.groupBy("action") // using untyped API

ds.groupByKey(_.action) // using typed API

I SQL commands

df.createOrReplaceTempView("dfView")

spark.sql("select count(*) from dfView") // returns another streaming DF

39 / 64



Google Dataflow and Beam

40 / 64



MillWheel Dataflow

I MillWheel is a framework for building low-latency data-processing applications.

I A dataflow graph of transformations (computations).

I Stream: unbounded data of (key, value, timestamp) records.
• Timestamp: event-time

41 / 64



Key Extraction Function and Computations

I Stream of (key, value, timestamp) records.

I Key extraction function: specified by the stream consumer to assign keys to records.

I Computation can only access state for the specific key.

I Multiple computations can extract different keys from the same stream.

42 / 64



Persistent State

I Keep the states of the computations

I Managed on per-key basis

I Stored in Bigtable or Spanner

I Common use: aggregation, joins, ...

43 / 64



What is Google Cloud Dataflow?

44 / 64



Google Cloud Dataflow (1/2)

I Google managed service for unified batch and stream data processing.

45 / 64



Google Cloud Dataflow (2/2)

I Open source Cloud Dataflow SDK

I Express your data processing pipeline using FlumeJava.

I If you run it in batch mode, it executed on the MapReduce framework.

I If you run it in streaming mode, it is executed on the MillWheel framework.

46 / 64



Windowing and Triggering

I Windowing determines where in event time data are grouped together for processing.

I Triggering determines when in processing time the results of groupings are emitted
as panes.

47 / 64



Example (1/3)

I Batch processing

48 / 64



Example (2/3)

I Trigger at period (time-based triggers)

I Trigger at count (data-driven triggers)

49 / 64



Example (3/3)

I Fixed window, trigger at period (micro-batch)

I Fixed window, trigger at watermark (streaming)

50 / 64



Where is Apache Beam?

51 / 64



From Google Cloud Dataflow to Apache Beam

I In 2016, Google Cloud Dataflow team announced its intention to donate the pro-
gramming model and SDKs to the Apache Software Foundation.

I That resulted in the incubating project Apache Beam.

52 / 64



Programming Components

I Pipelines

I PCollections

I Transforms

I I/O sources and sinks

53 / 64



Pipelines

I A pipeline represents a data processing job.

I Directed graph of operating on data.

I A pipeline consists of two parts:
• Data (PCollection)
• Transforms applied to that data

54 / 64



PCollections (1/2)

I A parallel collection of records

I Immutable

I Must specify bounded or unbounded

55 / 64



PCollections (2/2)

// Create a Java Collection, in this case a List of Strings.

static final List<String> LINES = Arrays.asList("line 1", "line 2", "line 3");

PipelineOptions options = PipelineOptionsFactory.create();

Pipeline p = Pipeline.create(options);

// Create the PCollection

p.apply(Create.of(LINES)).setCoder(StringUtf8Coder.of())

56 / 64



Transformations

I A processing operation that transforms data

I Each transform accepts one (or multiple) PCollections as input, performs an op-
eration, and produces one (or multiple) new PCollections as output.

I Core transforms: ParDo, GroupByKey, Combine, Flatten

57 / 64



Example: HashTag Autocompletion (1/3)

58 / 64



Example: HashTag Autocompletion (2/3)

59 / 64



Example: HashTag Autocompletion (3/3)

60 / 64



Summary

61 / 64



Summary

I Spark
• Mini-batch processing
• DStream: sequence of RDDs
• RDD and window operations
• Structured streaming

I Google cloud dataflow
• Pipeline
• PCollection
• Transforms

62 / 64



References

I M. Zaharia et al., “Spark: The Definitive Guide”, O’Reilly Media, 2018 - Chapters
20-23.

I M. Zaharia et al., “Discretized Streams: An Efficient and Fault-Tolerant Model for
Stream Processing on Large Clusters”, HotCloud’12.

I T. Akidau et al., “MillWheel: fault-tolerant stream processing at internet scale”,
VLDB 2013.

I T. Akidau et al., “The dataflow model: a practical approach to balancing correctness,
latency, and cost in massive-scale, unbounded, out-of-order data processing”, VLDB
2015.

I The world beyond batch: Streaming 102
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-102

63 / 64



Questions?

64 / 64


	

