
Cloud Data Lakes

Amir H. Payberah
payberah@kth.se

2022-10-05

The Course Web Page

https://id2221kth.github.io

1 / 54

https://id2221kth.github.io

The Questions-Answers Page

https://tinyurl.com/bdenpwc5

2 / 54

https://tinyurl.com/bdenpwc5

Where Are We?

3 / 54

What Are The Challenges?

4 / 54

The Biggest Challenges With Data Today

I Data quality

I Staleness

I Data volume

I Scale

5 / 54

Fivetran Data Analyst Survey

I 60% reported data quality as top challenge.

I 86% of analysts had to use stale data,
with 41% using data that is > 2 months old.

I 90% regularly had unreliable data sources over
the last 12 months

6 / 54

Getting high-quality, timely data is hard!

7 / 54

The Evolution of Data Management

8 / 54

Data Warehouses (1980s)

I ETL (Extract, Transform, Load) data directly
from operational database systems.

I Purpose-built for SQL analytics and BI:
schemas, indexes, caching, etc.

I Powerful management features such as
ACID transactions and time travel

9 / 54

Data Warehouses - Problems (2010s)

I Could not support rapidly growing unstructured and
semi-structured data: time series, logs, images,
documents, etc.

I High cost to store large datasets.

I No support for data science and ML.

10 / 54

Data Lakes (2010s)

I Low-cost storage to hold all raw data,
e.g., Amazon S3, and HDFS.

I ETL jobs then load specific data into warehouses,
possibly for further ELT.

I Directly readable in ML libraries (e.g., TensorFlow and
PyTorch) due to open file format.

11 / 54

Data Lakes - Problems (Todays)

I Cheap to store all the data, but system architecture is
much more complex!

I Data reliability suffers:
• Multiple storage systems with different semantics,

SQL dialects, etc.
• Extra ETL steps that can go wrong.

I Timeliness suffers and high cost:
• Extra ETL steps before data is available in data warehouses.
• Continuous ETL, duplicated storage

12 / 54

Data Lake vs. Data Warehouse

I Data Lake stores all data irrespective of the source and its structure whereas Data
Warehouse stores data in quantitative metrics with their attributes.

I Data Lake defines the schema after data is stored whereas Data Warehouse defines
the schema before data is stored.

I Data Lake uses the ELT process while the Data Warehouse uses ETL process.

13 / 54

Lakehouse

14 / 54

Lakehouse Vision

I Lakehouse systems combine the benefits of Data Warehouses and Data Lakes while
simplifying enterprise data architectures.

15 / 54

Lakehouse Systems

I Implement Data Warehouse management and
performance features on top of directly-accessible
data in open formats.

16 / 54

Key Technologies Enabling Lakehouse

I Metadata layers for Data Lakes

I New query engine designs

I Declarative access for data science and ML

17 / 54

Metadata Layers for Data Lakes

I Add transactions, versioning, and more ...

I Track which files are part of a table version to offer rich
management features like transactions.

I Implemented in multiple systems, such as Delta Lake.

18 / 54

New Query Engine Designs

I Great SQL performance on Data Lake storage systems and file formats.

I Directly-accessible file storage optimizations can enable high SQL performance:
• Caching hot data in RAM/SSD
• Data layout within files to cluster co-accessed data
• Auxiliary data structures like statistics and indexes

19 / 54

Declarative Access for Data Science and ML

I New declarative interfaces for I/O enable further optimization.

I Example: Spark DataFrame API compiles to relational algebra.

20 / 54

21 / 54

Delta Lake

I Delta Lake is an open source storage layer that brings reliability to Data Lakes.

I Provides ACID transactions.

I Provides scalable metadata handling.

I Provides time travel and versioning.

I Unifies streaming and batch data processing.

22 / 54

Delta Lake Table

I Delta Lake Table is a directory (e.g., mytable) that holds data objects and a log of
transaction operations.

23 / 54

DeltaLog

I DeltaLog is a transaction log that tracks all changes that users make to the table.

I Delta Lake uses the DeltaLog for many features including ACID transactions, scalable
metadata handling, time travel, etc.

24 / 54

DeltaLog Structure (1/2)

I When a user creates a Delta Lake Table, its DeltaLog is automatically created in the
delta log subdirectory.

I Any changes to that table are then recorded as ordered, atomic commits in the
DeltaLog.

I Each commit is written out as a JSON file, starting with 000000.json.

I Additional changes to the table generate subsequent JSON files in ascending numer-
ical order, e.g., 000001.json, 000002.json, and so on.

25 / 54

Deltalog Structure (2/2)

I Assume you add some records to a table from data files 1.parquet and 2.parquet.

I That transaction would automatically be added to the DeltaLog, saved to disk as
commit 000000.json.

I Then, assume remove those files and add 3.parquet instead.

I Those actions would be recorded as the next commit in the DeltaLog, as
000001.json.

26 / 54

Delta Lake Transaction Example

I Query: delete all events data about customer no. 17

I Clients now always read a consistent table version!
• If a client reads v2 of log, it sees file1, file2, file3 (no delete)
• If a client reads v3 of log, it sees file1b, file2, file3b (all deleted)

27 / 54

Actions and Commits

I Each log record object (e.g., 000003.json) contains a commit, i.e., an array of
actions recoreded as atomic, ordered units.

I Change metadata: name, schema, partitioning, etc.

I Add/remove file: adds/removes a file

I Protocol evolution: upgrades the version of the transaction protocol

I Set transaction: records an idempotent transaction id

I Commit info: information around commit for auditing

28 / 54

Quickly Recomputing State With Checkpoint Files

I Delta Lake automatically generates checkpoint files every 10 commits in the same
delta log subdirectory.

I The checkpoint files save the entire state of the table at a point in time.

I They are in native Parquet format that is quick and easy for Spark to read.

29 / 54

Dealing With Multiple Concurrent Reads and Writes

I With petabytes of data, there is a high likelihood that users will be working on
different parts of the data altogether.

I It allows them to complete non-conflicting transactions simultaneously.

I But, what if there is a conflict?

I Optimistic concurrency control

30 / 54

Optimistic Concurrency Control (1/2)

I It ensures that the resulting state of the table after multiple concurrent writes is the
same as if those writes had occurred serially, in isolation from one another.

I The process proceeds like this:

1. Record the starting table version.
2. Record reads/writes.
3. Attempt a commit.
4. If someone else wins, check whether anything you read has changed.
5. Repeat.

31 / 54

Optimistic Concurrency Control (2/2)

I Two users read from the same table, then each attempts to add some data to it.

I Here, we run into a conflict because only one commit can come next and be recorded
as 000001.json.

I Mutual exclusion: only one user can successfully make commit 000001.json (user
1’s commit is accepted, while user 2’s is rejected).

I However, Delta Lake does not throw an error for user 2 and handles this conflict
optimistically.

32 / 54

Use Cases - Time Travel

I Every table is the result of the sum of all of the commits recorded in the Delta Lake
DeltaLog.

I The DeltaLog provides a step-by-step instruction guide, detailing exactly how to get
from the table’s original state to its current state.

I Thus, we can recreate the state of a table at any point in time.
• Starting with an original table, and processing only commits made prior to that point.

I This ability is known as time travel or data versioning.

33 / 54

Use Cases - Data Lineage and Debugging

I The Delta Lake DeltaLog offers users a verifiable data lineage.

I It is is useful for governance, audit and compliance purposes.

I It can also be used to trace the origin of an inadvertent change or a bug in a pipeline
back to the exact action that caused it.

34 / 54

Schema Enforcement and Evolution

35 / 54

Schema Enforcement and Evolution

I Data is always evolving and accumulating.

I So, structure of data evolves over time.

I With Delta Lake, as the data changes, incorporating new dimensions is easy.

I Schema enforcement: prevents users from accidentally polluting their tables with
mistakes or garbage data.

I Schema evolution: enables automatic addition of columns when desired.

36 / 54

Understanding Table Schemas

I Spark DataFrames contain the schema.

I With Delta Lake, the table’s schema is saved in JSON format inside the DeltaLog.

37 / 54

Schema Enforcement

I Schema enforcement (a.k.a schema validation) occurs on write.

I If the schema is not compatible, Delta Lake cancels the transaction, i.e., no data is
written.

I As well, Delta Lake raises an exception to let the user know about the mismatch.

38 / 54

Schema Enforcement Rules

I Rule 1: cannot contain any additional columns that are not present in the target
table’s schema.

I Rule 2: cannot have column data types that differ from the column data types in
the target table.

I Rule 3: Can not contain column names that differ only by case.

39 / 54

Schema Evolution

I Schema evolution allows users to change a table’s current schema to accommodate
data that is changing over time.

I Most commonly used operations for append and overwrite.

40 / 54

Delta Lake and Spark

41 / 54

Loading Data into a Delta Lake Table (1/2)

I All you need to migrate any of the structured data formats (e.g., Parquet) to Delta
Lake is to use format("delta").

// Configure source data and Delta Lake path

val sourcePath = "loan-risks.snappy.parquet"

val deltaPath = "loans_delta"

// Create the Delta table with the same loans data

spark.read.format("parquet").load(sourcePath).write.format("delta").save(deltaPath)

// Create a view on the data called loans_delta

spark.read.format("delta").load(deltaPath).createOrReplaceTempView("loans_delta")

42 / 54

Loading Data into a Delta Lake Table (2/2)

// Read and explore the data

spark.sql("SELECT count(*) FROM loans_delta").show()

+--------+

|count(1)|

+--------+

| 14705|

+--------+

// First 3 rows of loans table

spark.sql("SELECT * FROM loans_delta LIMIT 3").show()

+-------+-----------+---------+----------+

|loan_id|funded_amnt|paid_amnt|addr_state|

+-------+-----------+---------+----------+

| 0| 1000| 182.22| CA|

| 1| 1000| 361.19| WA|

| 2| 1000| 176.26| TX|

+-------+-----------+---------+----------+

43 / 54

Loading Data Streams into a Delta Lake Table

I You can modify your existing Structured Streaming jobs to write to and read from
a Delta Lake table by setting the format to "delta".

import org.apache.spark.sql.streaming._

// Streaming DataFrame with new loans data

val newLoanStreamDF = ...

// Directory for streaming checkpoints

val checkpointDir = ...

val streamingQuery = newLoanStreamDF.writeStream

.format("delta")

.option("checkpointLocation", checkpointDir)

.trigger(Trigger.ProcessingTime("10 seconds"))

.start(deltaPath)

44 / 54

Schema Enforcement

I All writes to a Delta Lake table can verify whether the data being written has a
schema compatible with that of the table.

I If it is not compatible, Spark will throw an error before any data is written and
committed to the table.

val loanUpdates = Seq(

(1111111L, 1000, 1000.0, "TX", false),

(2222222L, 2000, 0.0, "CA", true))

.toDF("loan_id", "funded_amnt", "paid_amnt", "addr_state", "closed")

loanUpdates.write.format("delta").mode("append").save(deltaPath)

// The exception message:

// This write will fail with the following error message:

// org.apache.spark.sql.AnalysisException: A schema mismatch detected when writing

// to the Delta table (Table ID: 48bfa949-5a09-49ce-96cb-34090ab7d695).

45 / 54

Schema Evolution

I A new column can be explicitly added by setting the option mergeSchema to true.

loanUpdates.write.format("delta").mode("append")

.option("mergeSchema", "true")

.save(deltaPath)

46 / 54

Transforming Existing Data - Updating Data

I Delta Lake supports UPDATE, DELETE, and MERGE commands

I They ensure ACID guarantees.

I Assume we want to change all addr state = ’OR’ to addr state = ’WA’ in a
table.

import io.delta.tables.DeltaTable

import org.apache.spark.sql.functions._

val deltaTable = DeltaTable.forPath(spark, deltaPath)

deltaTable.update(

col("addr_state") === "OR",

Map("addr_state" -> lit("WA")))

47 / 54

Transforming Existing Data - Deleting Data

I Deleting user data from all tables.

val deltaTable = DeltaTable.forPath(spark, deltaPath)

deltaTable.delete("funded_amnt >= paid_amnt")

48 / 54

Auditing Data Changes with Operation History

I All of the changes are recorded as commits in the table’s DeltaLog.

I Every operation is automatically versioned.

I You can query the table’s operation history.

deltaTable

.history(3)

.select("version", "timestamp", "operation", "operationParameters")

.show(false)

49 / 54

Querying Previous Snapshots of a Table with Time Travel

I You can query previous versioned snapshots of a table by using the DataFrameReader
options versionAsOf and timestampAsOf.

spark.read.format("delta")

.option("timestampAsOf", "2020-01-01") // timestamp after table creation

.load(deltaPath)

spark.read.format("delta")

.option("versionAsOf", "4")

.load(deltaPath)

50 / 54

Summary

51 / 54

Summary

52 / 54

References

I J. S. Damji et al., “Learning Spark - Lightning-Fast Data Analytics”, O’Reilly Media,
2020 - Chapters 9

I M. Armbrust et al., “Lakehouse: A New Generation of Open Platforms that Unify
Data Warehousing and Advanced Analytics”, CIDR 2021

I M. Armbrust et al., “Delta Lake: High-Performance ACID Table Storage over Cloud
Object Stores”, VLBD 2020

53 / 54

Questions?

Acknowledgements
Some content and images are derived from Jules S. Damji, Andreas Neumann,

Burak Yavuz, and Denny Lee slides from Databricks.

54 / 54

