

An Introduction to Data Intensive Computing

Amir H. Payberah payberah@kth.se 2023-08-29

Course Information

- ▶ Provide students with a solid foundation for understanding large scale distributed systems used for storing and processing massive data.
- ► Cover a wide variety of advanced topics in data intensive computing platforms, i.e., the frameworks to store and process big data.

Intended Learning Outcomes (ILOs)

- ▶ ILO1: Understand the main concepts of data-intensive computation platforms.
- ► ILO2: Apply the grabbed knowledge to store and process massive data.
- ▶ ILO3: Analyze the technical merits of data-intensive computation platforms.

The Course Assessment

- ► Task1: the review questions.
- ► Task2: the lab assignments.
- ► Task3: the essay and the presentation.
- ► Task4: the project.
- ► Task5: the final exam.
- ► All the assignments should be done in groups of two/three students.

How Each ILO is Assessed?

	Task1	Task2	Task3	Task4	Task5
ILO1	X	X			X
ILO2		X		X	
ILO3			X		

Task1: The Review Questions

- ▶ Five set of review questions, one set for each week.
- ► The review questions are graded P/F.

Task2: The Lab Assignments

- ► Four lab assignments, each focuses on a specific topic.
- ► No deadline.

Task3: The Essay and The Presentation

- ► One module for each group: writing an essay and presenting it to their opponents (another group).
- Grading of this task has the following parts:
 - E: Essay (5 points)
 - P: Presentation (2 points)
 - Q: Reviewing essay and asking questions (2 points)
 - A: Answering questions (1 point)
- ► Eeach part is graded A-F.
- ► The final grade: A: 10, B: 9, C: 8, D: 7, E: 6, F: <5.

Task4: The Final Project

- ▶ One final project: source code and oral presentation.
- ▶ Proposed by students and confirmed by the teacher.
- ► It is graded A-F.

Task5: The Final Exam

- ► The final exam covers all the modules presented during the course
- ► It is graded A-F.

The Final Grade

- ► To pass the course: you must pass Task 1 and get at least E in Task 3, Task 4, and Task 5.
- ▶ The final grade of the course is computed as $0.3 \times Task3 + 0.3 \times Task4 + 0.4 \times Task5$.

"Why is an A or B better than a C or D? Aren't all letters equal in the eyes of God?"

The Course Material

- ► Mainly based on research papers.
- ▶ We also cover the following books.

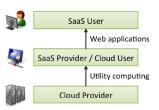
https://id2221kth.github.io

https://tinyurl.com/hk7hzpw5

The Course Overview

Cloud Computing and Big Data

- ► The main trends:
 - Computers not getting any faster
 - Internet connections getting faster
 - More people connected to the Internet
- ► Conclusion: move the computation and storage of big data to the cloud!



Cloud Computing

Cloud Computing Definition

- ► Cloud Computing refers to both:
 - 1. The applications delivered as services over the Internet
 - 2. The hardware and systems software in the datacenters that provide those services
- ► The services: called Software as a Service (SaaS)
- ► The datacenter hardware and software is called cloud

- ► The NIST definition:
 - Five characteristics
 - · Three service models
 - Four deployment models

National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

Cloud Characteristics

Cloud Characteristics

[http://aka.ms/532]

Cloud Characteristics - On-demand Self-Service

▶ A consumer can independently provision computing capabilities without human interaction with the service provider.

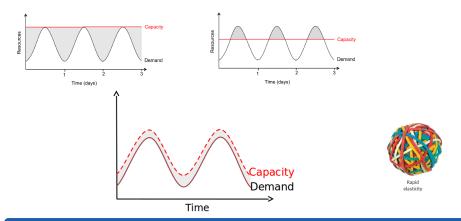
Cloud Characteristics - Ubiquitous Network Access

- ► Available over the network
- ► Accessed through mobile phones, laptops, ...

Ubiquitous network access

Cloud Characteristics - Resource Pooling

- ▶ Provider's computing resources are pooled to serve consumers
- ► Location transparent



Location transparent resource pooling

Cloud Characteristics - Rapid Elasticity

▶ Capabilities can be rapidly and elastically provisioned, in some cases automatically.

Cloud Characteristics - Measured Service

▶ Resource usage can be monitored, controlled, and reported providing transparency for both the provider and consumer.

Measured service with pay per use

Cloud Service Models

[http://aka.ms/532]

► Assume, you just moved to a city and you are looking for a place to live.

- ► What is your choice?
 - Build a new house?
 - Buy an empty house?
 - Live in a hotel?

- ► Let's build a new house!
- ➤ You can fully control everything you like your new house to have.
- ▶ But that is a hard work.

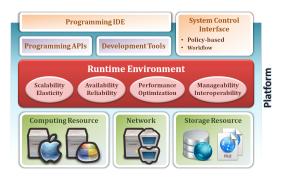
- ► What if you buy an empty house?
- ▶ You can customize some part of your house.
- ▶ But never change the original architecture.

- ► How about living in a hotel?
- ► Living in a hotel will be a good idea if the only thing you care is about enjoying your life.
- ► There is nothing you can do with the house except living in it.

Let's translate it to Cloud Computing

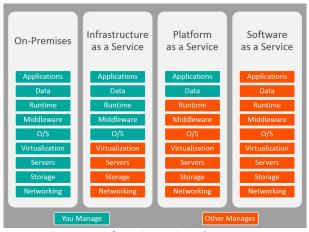
Service Models

- ► Infrastructure as a Service (laaS): similar to building a new house.
- ▶ Platform as a Service (PaaS): similar to buying an empty house.
- ► Software as a Service (SaaS): similar to living in a hotel.



- ▶ Vendor provides resources, e.g., processing, storage, network, ...
- ► Consumer is provided customized virtual machines.
- ► Example: Amazon Web Services (EC2 instances and S3 storage)

- ► Vendor provides hardware and development environment.
- ► Example: Google app engine



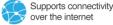
- ▶ Vendor provides applications accessed over the network.
- ► Example: Gmail, Github

laaS - PaaS - SaaS

[https://goo.gl/xMko1z]

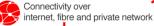
Deployment Models

Deployment Models



Publically Shared Virtualised Resources

Supports multiple customers



Virtualised Resources

Cluster of dedicated customers

[https://goo.gl/fWmcGK]

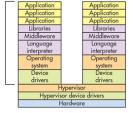
Public Cloud Infrastructure Vendors

- ► Amazon Web Services (AWS)
- ► Microsoft Azure
- ► Google Cloud Platform
- ► IBM Bluemix
- **...**

- ► Computing
- ► Storage
- Database
- ► Big data analytics
- · ...

Computing Services

- Virtual machines
- Container services
- Serverless compute



Container

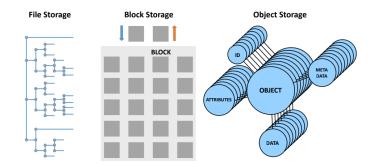
Serverless

VIRTUAL MACHINE

VIRTUAL MACHINES

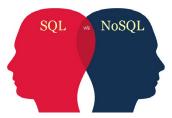
CONTAINER

Application		Application		
Libraries		Libraries		
Middleware		Middleware		
Language		Language		
interpreter		interpreter		
Container manager				
Operating system				
Device drivers				
Hardware				



CONTAINERS

SERVERLESS


- ► File storage
- ► Block storage
- ► Object storage

Database Services

- ► Relational Database Management Services (RDBMS)
- ► NoSQL databases
- ► In-Memory data services

Big Data Analytics

- ► Big Data Managed Cluster-as-a-Service
- ► Data warehouse
- ▶ Data streaming
- ► Data queuing

Big Data

What is Big Data?

[https://www.sue-anderson.com.au/index.php/2017/08/18/cursing-curious-work]

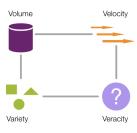
Big data is the data characterized to key attributes: volume, variety, velocity and value.

Big Data in Simple Words

DevOps Borat@DEVOPS_BORAT

Small Data is when is fit in RAM. Big Data is when is crash because is not fit in RAM.

2/6/13, 8:22 AM


The Four Dimensions of Big Data

▶ Volume: data size

► Velocity: data generation rate

► Variety: data heterogeneity

► This 4th V is for Vacillation: Veracity/Variability/Value

How Much Data?

THE INTERNET IN 2023 EVERY MINUTE

Created by: eDiscovery Today & LTMG

How To Store and Process Big Data?

- ► Traditional platforms fail to show the expected performance.
- ▶ Need new systems to store and process large-scale data

Scale Up vs. Scale Out (1/2)

- ► Scale up or scale vertically: adding resources to a single node in a system.
- ► Scale out or scale horizontally: adding more nodes to a system.

Scale Up vs. Scale Out (2/2)

- ► Scale up: more expensive than scaling out.
- ► Scale out: more challenging for fault tolerance and software development.

Big Data Stack

Data Processing						
Graph Data Pregel, GraphLab, PowerGraph GraphX, X-Streem, Chaos		Structured Data Spark SQL	Machine Learning Mllib Tensorflow			
Batch Data MapReduce, Dryad FlumeJava, Spark	Streaming Data Storm, SEEP, Naiad, Spark Streaming, Flink, Millwheel, Google Dataflow					
Data Storage						
Distributed File Systems GFS, Flat FS	NoSQL Databases Dynamo, BigTable, Cassandra		Distributed Messaging Systems Kafka			
Resource Management						
Mesos, YARN						

Resource Management

- ► Manage resources of a cluster
- ► Share them among the platforms
- ► Mesos, YARN, Borg, ...

Data Storage - Distributed File Systems

- ► Store and retrieve files on/from distributed disks
- ► GFS, HDFS, FlatFS, ...

Data Storage - NoSQL Databases

- ► BASE instead of ACID
- ▶ BigTable, Dynamo, Cassandra, ...

Data Storage - Messaging Systems

- ► Store streaming data
- ► Kafka, Flume, ActiveMQ, ...

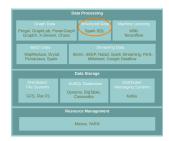
Data Processing - Batch Data

- ► Process data-at-rest
- ► Data-parallel processing model
- ► MapReduce, FlumeJava, Spark, ...

Data Processing - Streaming Data

- ► Process data-in-motion
- ► Storm, Flink, Spark Streaming, ...

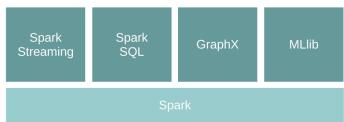
Data Processing - Linked Data (Graph)


- ► Graph-parallel processing model
- Vertex-centric and Edge-centric programming model
- ► Pregel, GraphLab, GraphX, ...

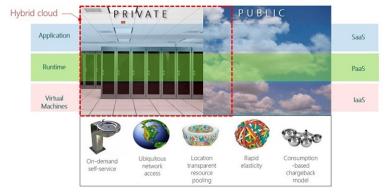
Data Processing - Structured Data

- ► Take advantage of schemas in data to process
- ► Hive, Spark SQL, ...

Data Processing - Machine Learning


- ▶ Data analysis, e.g., supervised and unsupervised learning
- ► Mahout, TensorFlow, MLlib, ...

Spark Processing Engine



Summary

[http://aka.ms/532]

Data Processing						
Graph Data Pregel, GraphLab, PowerGraph GraphX, X-Streem, Chaos		Structured Data Spark SQL	Machine Learning Mllib Tensorflow			
Batch Data MapReduce, Dryad FlumeJava, Spark	Streaming Data Storm, SEEP, Naiad, Spark Streaming, Flink, Millwheel, Google Dataflow					
Data Storage						
Distributed File Systems GFS, Flat FS	NoSQL Databases Dynamo, BigTable, Cassandra		Distributed Messaging Systems Kafka			
Resource Management						
Mesos, YARN						

- ▶ D. Sikeridis et al., A Comparative Taxonomy and Survey of Public Cloud Infrastructure Vendors, arXiv preprint arXiv:1710.01476, 2017.
- ▶ A. Fox et al., Above the clouds: A berkeley view of cloud computing, UCB/EECS 28.13 (2009): 2009.
- ▶ P. Mell et al., The NIST definition of cloud computing, 2011.

Questions?