& verenscar 55
38 OCH KONST 235
S%%m@g?gg

Large Scale File Systems

Amir H. Payberah
payberah@kth.se
2023-09-01

The Course Web Page

https://id2221kth.github.io

https://id2221kth.github.io

The Questions-Answers Page

https://tinyurl. com/hk7hzpwb

https://tinyurl.com/hk7hzpw5

Where Are We?

Data Processing

Pregel, GraphLab, PowerGraph Spark SQL Milib
GraphX, X-Streem, Chaos Tensorflow

MapReduce, Dryad Storm, SEEP, Naiad, Spark Streaming, Flink,
FlumeJava, Spark Millwheel, Google Dataflow

Data Storage

Dynamo, BigTable,
Cassandra

Resource Management

Mesos, YARN

File System

What is a File System?

! R

l Data | Thesis I Notes.bdl | Tools

R vy oy
One.txt\l Two.txq Formaq Statsw old

What is a File System?

» Controls how data is stored in and retrieved from storage device.

inode

File Info

Direct
Blocks

Indirect Blocks

Double Indirect

Triple Indirect

Distributed File Systems

» When data outgrows the storage capacity of a single machine: partition it across a
number of separate machines.

» Distributed file systems: manage the storage across a network of machines.

Google File System (GFS)

Motivation and Assumptions

» Huge files (multi-GB)

Most files are modified by appending to the end
¢ Random writes (and overwrites) are practically non-existent

v

v

Optimise for streaming access

v

Node failures happen frequently

ts

aDDendsE erte crce must

réquiremen

&n exatm [ng
(D :Sstorede Ly :

Optimised for Streaming

» Write once, read many.

Successive
Read Append
Write

Files and Chunks

» Files are split into chunks.

» Chunk: single unit of storage.
e Immutable and globally unique chunk handle
e Transparent to user
e Each chunk is stored as a plain Linux file

\ 00000

00000

» 00000

00000
000

GFS Architecture

GFS Master

Application File namespace [foolbar

(chunk handle, chunk locations)

—> ctrl flow

(file name, chunk index) e —) data flow

GFS Client

(chunk handle, byte range)

GFS Chunkserver GFS Chunkserver

pr— Linux file system Linux file system

» Main components:
e GFS master
o GFS chunkserver
o GFS client

Big Picture - Storing and Retrieving Files (1/4)

Local

Node D

/logs/ / b
031512.1og

/logs/
042313.1og

Big Picture - Storing and Retrieving Files (2/4)

Metadata Bl: Master

/10gs/031512.10og: B1,B2,B3 pg.
/logs/042313.1og: B4,B5 B5:

Big Picture - Storing and Retrieving Files (3/4)

Metadata

/logs/031512.1og: B1,B2,B3
/logs/042313.1og: B4,B5

Master

/

L

/logs/042313.log?

B4,B5

Big Picture - Storing and Retrieving Files (4/4)

Metadata

/logs/031512.10g: B1,B2,B3
/logs/042313.1log: B4,B5

Bl:
B2:
B3:
B4:
IB5H

Master

Node A

/logs/042313.log?

System Architecture Details

GFS Architecture

GFS Master

Application File namespace [foolbar

(chunk handle, chunk locations)

— ctrl flow

(file name, chunk index) e —) data flow

GFS Client

(chunk handle, byte range)
GFS Chunkserver GFS Chunkserver
o000

pr— Linux file system Linux file system

GFS Master

» Responsible for all system-wide activities

» Maintains all file system metadata

e Namespaces, ACLs, mappings from files to chunks, and current locations of chunks
e All kept in memory, namespaces and file-to-chunk mappings are also stored
persistently in operation log

» Periodically communicates with each chunkserver

* Determines chunk locations GFS Master
* Assesses state of the overall system File namespace [foolbar

GFS Chunkserver

>

Manages chunks

Tells master what chunks it has

v

Stores chunks as files

v

GFS Chunkserver

v

Maintains data consistency of chunks . .
Linux file system

GFS Client

>

Issues control requests to master server.

v

Issues data requests directly to chunkservers.

Caches metadata.

v

GFS Master

File namespace [foo/bar

Application

» Does not cache data.

(chunk handle, chunk locations)

—> ctriflow

__> data flow

GFS Client

(file name, chunk index)

(chunk hande, byte range)

GFS Chunkserver GFS Chunkserver

Linux file system Linux file system

chunk data

Data Flow and Control Flow

» Data flow is decoupled from control flow
» Clients interact with the master for metadata operations (control flow)

» Clients interact directly with chunkservers for all files operations (data flow)

GFS Master

Application File namespace [foo/bar

(chunk handle, chunk locations)

GFS Client na— —> ctrlflow

(file name, chunk index) -—» data flow

(chunk handie, byte range)
GFS Chunkserver GFS Chunkserver

Linux file system Linux file system
chunk data

Why Large Chunks?

Why Large Chunks?

» 64MB or 128MB (much larger than most file systems)

» Advantages

* Reduces the size of the metadata stored in master
* Reduces clients’ need to interact with master

» Disadvantages
e Wasted space due to internal fragmentation

System Interactions

The System Interface

» Not POSIX-compliant, but supports typical file system operations

e create, delete, open, close, read, and write

» snapshot: creates a copy of a file or a directory tree at low cost

» append: allow multiple clients to append data to the same file concurrently

Read Operation (1/2)

» 1. Application originates the read request.
» 2. GFS client translates request and sends it to the master.

» 3. The master responds with chunk handle and replica locations.

Application
®
@
(file name, byte range) (file name,
chunk index)
) Master
GFS Client
(chunk handle,
replica locations)

D)
3

Read Operation (2/2)

» 4. The client picks a location and sends the request.

» 5. The chunkserver sends requested data to the client.

» 6. The client forwards the data to the application.

Application

6)| (data from file)

GFS Client |

O]
(chunk handle,
byte range)

(data from file)
()

Chunk Server

|

Chunk Server

Chunk Server

Update Order (1/2)

» Update (mutation): an operation that changes the content or metadata of a chunk.

» For consistency, updates to each chunk must be ordered in the same way at the
different chunk replicas.

» Consistency means that replicas will end up with the same version of the data and
not diverge.

Update Order (2/2)

>

For this reason, for each chunk, one replica is designated as the primary.

v

The other replicas are designated as secondaries.

v

Primary defines the update order.

All secondaries follow this order.

v

Primary Leases (1/2)

> For correctness there needs to be one single primary for each chunk.

» At any time, at most one server is primary for each chunk.

> Master selects a chunkserver and grants it lease for a chunk.

Primary Leases (2/2)

» The chunkserver holds the lease for a period T after it gets it, and behaves as primary
during this period.

» If master does not hear from primary chunkserver for a period, it gives the lease to
someone else.

Write Operation (1/3)

» 1. Application originates the request.
» 2. The GFS client translates request and sends it to the master.

» 3. The master responds with chunk handle and replica locations.

Application
G =
Z @
(file name, data) (file name,
chunk index)
) > Master
GFS Client
(chunk handle,
secondary replica

locations)

» 4. The client pushes write data to all locations.

internal buffers.

Write Operation (2/3)

Application

GFS Client

(Data)

Data is stored in chunkserver's

Primary

Chunk
; Buffer

(Data)

(Data)

Secondary
Chunk
. Buffer

(®

Secondary
Chunk

Write Operation (3/3)

» 5. The client sends write command to the primary.

> 6. The primary determines serial order for data instances in its buffer and writes the
instances in that order to the chunk.

» 7. The primary sends the serial order to the secondaries and tells them to perform
the write.

(write command,
serial order)

——— e ———
Primary &) 1 @
————=—————¥Chunk
e

Secondary
Chunk

(Write
command)

©)

Application

GFS Client

Secondary
Chunk
D1 | D2| D3| D4

Write Consistency

» Primary enforces one update order across all replicas for concurrent writes.
> It also waits until a write finishes at the other replicas before it replies.

» Therefore:

e We will have identical replicas.

e But, file region may end up containing mingled fragments from different clients: e.g.,
writes to different chunks may be ordered differently by their different primary
chunkservers

e Thus, writes are consistent but undefined state in GFS.

Append Operation (1/2)

>

1. Application originates record append request.

v

2. The client translates request and sends it to the master.

v

3. The master responds with chunk handle and replica locations.

v

4. The client pushes write data to all locations.

Append Operation (2/2)

» 5. The primary checks if record fits in specified chunk.

> 6. If record does not fit, then the primary:
e Pads the chunk,
* Tells secondaries to do the same,
e And informs the client.
e The client then retries the append with the next chunk.

> 7. If record fits, then the primary:
* Appends the record,
» Tells secondaries to do the same,
» Receives responses from secondaries,
* And sends final response to the client

Delete Operation

>

Metadata operation.

v

Renames file to special name.

v

After certain time, deletes the actual chunks.

v

Supports undelete for limited time.

v

Actual lazy garbage collection.

The Master Operations

A Single Master

» The master has a global knowledge of the whole system

» |t simplifies the design

» The master is (hopefully) never the bottleneck

¢ Clients never read and write file data through the master
Client only requests from master which chunkservers to talk to
Further reads of the same chunk do not involve the master

The Master Operations

>

Namespace management and locking

v

Replica placement

v

Creating, re-replicating and re-balancing replicas

v

Garbage collection

v

Stale replica detection

Namespace Management and Locking (1/2)

>

Represents its namespace as a lookup table mapping pathnames to metadata.

v

Each master operation acquires a set of locks before it runs.

v

Read lock on internal nodes, and read/write lock on the leaf.

v

Example: creating multiple files (f1 and £2) in the same directory (/home/user/).

» Each operation acquires a read lock on the directory name /home/user/
e Each operation acquires a write lock on the file name f1 and £2

Namespace Management and Locking (2/2)

» Read lock on directory (e.g., /home/user/) prevents its deletion, renaming or snap-
shot

» Allows concurrent mutations in the same directory

Replica Placement

» Maximize data reliability, availability and bandwidth utilization.

» Replicas spread across machines and racks, for example:
 1st replica on the local rack.
» 2nd replica on the local rack but different machine.
 3rd replica on a different rack.

Test.txt file = chunk #1 (c1) + chunk #2 (c2)

» The master determines replica placement.

Master

Chunkserver| | Chunkserver | | ChunkServer Chunkserver | |Chunkserver

Rack 1 Rack n

Creation, Re-replication and Re-balancing

» Creation

e Place new replicas on chunkservers with below-average disk usage.
e Limit number of recent creations on each chunkserver.

> Re-replication
e When number of available replicas falls below a user-specified goal.

» Rebalancing

e Periodically, for better disk utilization and load balancing.
» Distribution of replicas is analyzed.

Garbage Collection

>

File deletion logged by master.

v

File renamed to a hidden name with deletion timestamp.

v

Master regularly removes hidden files older than 3 days (configurable).

v

Until then, hidden files can be read and undeleted.

v

When a hidden file is removed, its in-memory metadata is erased.

Stale Replica Detection

>

Chunk replicas may become stale: if a chunkserver fails and misses mutations to the
chunk while it is down.

v

Need to distinguish between up-to-date and stale replicas.

Chunk version number:

v

 Increased when master grants new lease on the chunk.
* Not increased if replica is unavailable.

v

Stale replicas deleted by master in regular garbage collection.

Fault Tolerance

Fault Tolerance for Chunks

» Chunks replication (re-replication and re-balancing)

» Data integrity
e Checksum for each chunk divided into 64KB blocks.
e Checksum is checked every time an application reads the data.

Fault Tolerance for Chunkserver

» All chunks are versioned.

» Version number updated when a new lease is granted.

» Chunks with old versions are not served and are deleted.

Fault Tolerance for Master

» Master state replicated for reliability on multiple machines.

» When master fails:

|t can restart almost instantly.
e A new master process is started elsewhere.

» Shadow (not mirror) master provides only read-only access to file system when pri-
mary master is down.

GFS and HDFS

GFS vs. HDFS

| GFS HDFS
Master Namenode
Chunkserver DataNode
Operation Log Journal, Edit Log
Chunk Block
Random file writes possible Only append is possible
Multiple write/reader model | Single write/multiple reader model
Default chunk size: 64MB Default chunk size: 128MB

HDFS Example (1/2)

Create a new directory /kth on HDFS
hdfs dfs -mkdir /kth

Create a file, call it big, on your local filesystem and
upload it to HDFS under /kth
hdfs dfs -put big /kth

View the content of /kth directory
hdfs dfs -1s /kth

Determine the size of big on HDFS
hdfs dfs -du -h /kth/big

Print the first 5 lines to screen from big on HDFS
hdfs dfs -cat /kth/big | head -n 5

HDFS Example (2/2)

Copy big to /big_hdfscopy on HDFS
hdfs dfs -cp /kth/big /kth/big_hdfscopy

Copy big back to local filesystem and name it big_localcopy
hdfs dfs -get /kth/big big_localcopy

Check the entire HDFS filesystem for problems
hdfs fsck /

Delete big from HDFS
hdfs dfs -rm /kth/big

Delete /kth directory from HDFS
hdfs dfs -rm -r /kth

Summary

Summary

>

Google File System (GFS)

Files and chunks

v

v

GFS architecture: master, chunk servers, client

v

GFS interactions: read and update (write and update record)

v

Master operations: metadata management, replica placement and garbage collection

References

» S. Ghemawat et al., The Google file system, Vol. 37. No. 5. ACM, 2003.

Questions?

