
NoSQL Databases

Amir H. Payberah
payberah@kth.se

2023-09-05

The Course Web Page

https://id2221kth.github.io

1 / 72

https://id2221kth.github.io

The Questions-Answers Page

https://tinyurl.com/hk7hzpw5

2 / 72

https://tinyurl.com/hk7hzpw5

Where Are We?

3 / 72

Database and Database Management System

I Database: an organized collection of data.

I Database Management System (DBMS): a software to capture and analyze data.

4 / 72

SQL vs. NoSQL Databases

5 / 72

Relational SQL Databases

I The dominant technology for storing structured data in web and business applications.

I SQL is good
• Rich language and toolset
• Easy to use and integrate
• Many vendors

I They promise: ACID

6 / 72

ACID Properties

I Atomicity
• All included statements in a transaction are either executed or the whole transaction is

aborted without affecting the database.

I Consistency
• A database is in a consistent state before and after a transaction.

I Isolation
• Transactions can not see uncommitted changes in the database.

I Durability
• Changes are written to a disk before a database commits a transaction so that committed

data cannot be lost through a power failure.

7 / 72

ACID Properties

I Atomicity
• All included statements in a transaction are either executed or the whole transaction is

aborted without affecting the database.

I Consistency
• A database is in a consistent state before and after a transaction.

I Isolation
• Transactions can not see uncommitted changes in the database.

I Durability
• Changes are written to a disk before a database commits a transaction so that committed

data cannot be lost through a power failure.

7 / 72

ACID Properties

I Atomicity
• All included statements in a transaction are either executed or the whole transaction is

aborted without affecting the database.

I Consistency
• A database is in a consistent state before and after a transaction.

I Isolation
• Transactions can not see uncommitted changes in the database.

I Durability
• Changes are written to a disk before a database commits a transaction so that committed

data cannot be lost through a power failure.

7 / 72

ACID Properties

I Atomicity
• All included statements in a transaction are either executed or the whole transaction is

aborted without affecting the database.

I Consistency
• A database is in a consistent state before and after a transaction.

I Isolation
• Transactions can not see uncommitted changes in the database.

I Durability
• Changes are written to a disk before a database commits a transaction so that committed

data cannot be lost through a power failure.

7 / 72

SQL Databases Challenges

I Web-based applications caused spikes.
• Internet-scale data size
• High read-write rates
• Frequent schema changes

I RDBMS were not designed to be distributed.

8 / 72

SQL Databases Challenges

I Web-based applications caused spikes.
• Internet-scale data size
• High read-write rates
• Frequent schema changes

I RDBMS were not designed to be distributed.

8 / 72

NoSQL

I Avoids:
• Overhead of ACID properties
• Complexity of SQL query

I Provides:
• Scalablity
• Easy and frequent changes to DB
• Large data volumes

9 / 72

Availability vs. Consistency

10 / 72

Availability

I Replicating data to improve the availability of data.

I Data replication
• Storing data in more than one site or node

11 / 72

Availability

I Replicating data to improve the availability of data.

I Data replication
• Storing data in more than one site or node

11 / 72

Consistency

I Strong consistency
• After an update completes, any subsequent access will return the updated value.

I Eventual consistency
• Does not guarantee that subsequent accesses will return the updated value.
• Inconsistency window.
• If no new updates are made to the object, eventually all accesses will return the last

updated value.

12 / 72

Consistency

I Strong consistency
• After an update completes, any subsequent access will return the updated value.

I Eventual consistency
• Does not guarantee that subsequent accesses will return the updated value.
• Inconsistency window.
• If no new updates are made to the object, eventually all accesses will return the last

updated value.

12 / 72

Availability vs. Consistency

I The large-scale applications have to be reliable: consistency, availability, partition
tolerance

I Achieving ACID properties on large-scale applications is cahllenging.

I CAP theorem

13 / 72

Availability vs. Consistency

I The large-scale applications have to be reliable: consistency, availability, partition
tolerance

I Achieving ACID properties on large-scale applications is cahllenging.

I CAP theorem

13 / 72

Availability vs. Consistency

I The large-scale applications have to be reliable: consistency, availability, partition
tolerance

I Achieving ACID properties on large-scale applications is cahllenging.

I CAP theorem

13 / 72

CAP Theorem

I Consistency
• Consistent state of data after the execution of an operation.

I Availability
• Clients can always read and write data.

I Partition Tolerance
• Continue the operation in the presence of network partitions.

I You can choose only two!

14 / 72

CAP Theorem

I Consistency
• Consistent state of data after the execution of an operation.

I Availability
• Clients can always read and write data.

I Partition Tolerance
• Continue the operation in the presence of network partitions.

I You can choose only two!

14 / 72

CAP Theorem

I Consistency
• Consistent state of data after the execution of an operation.

I Availability
• Clients can always read and write data.

I Partition Tolerance
• Continue the operation in the presence of network partitions.

I You can choose only two!

14 / 72

CAP Theorem

I Consistency
• Consistent state of data after the execution of an operation.

I Availability
• Clients can always read and write data.

I Partition Tolerance
• Continue the operation in the presence of network partitions.

I You can choose only two!

14 / 72

NoSQL Data Models

15 / 72

NoSQL Data Models

[http://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques]

16 / 72

Key-Value Data Model

I Collection of key/value pairs.

I Ordered Key-Value: processing over key ranges.

I Dynamo, Scalaris, Voldemort, Riak, ...

17 / 72

Column-Oriented Data Model

I Similar to a key/value store, but the value can have multiple attributes (Columns).

I Column: a set of data values of a particular type.

I Store and process data by column instead of row.

I BigTable, Hbase, Cassandra, ...

18 / 72

Document Data Model

I Similar to a column-oriented store, but values can have complex documents.

I Flexible schema (XML, YAML, JSON, and BSON).

I CouchDB, MongoDB, ...

{

FirstName: "Bob",

Address: "5 Oak St.",

Hobby: "sailing"

}

{

FirstName: "Jonathan",

Address: "15 Wanamassa Point Road",

Children: [

{Name: "Michael", Age: 10},

{Name: "Jennifer", Age: 8},

]

}

19 / 72

Graph Data Model

I Uses graph structures with nodes, edges, and properties to represent and store data.

I Neo4J, InfoGrid, ...

[http://en.wikipedia.org/wiki/Graph database]

20 / 72

BigTable

21 / 72

BigTable

I Lots of (semi-)structured data at Google.
• URLs, per-user data, geographical locations, ...

I Distributed multi-level map

I CAP: strong consistency and partition tolerance

22 / 72

Data Model

23 / 72

Data Model (1/5)

I Table

I Distributed multi-dimensional sparse map

24 / 72

Data Model (2/5)

I Rows

I Every read or write in a row is atomic.

I Rows sorted in lexicographical order.

25 / 72

Data Model (3/5)

I Column

I The basic unit of data access.

I Column families: group of (the same type) column keys.

I Column key naming: family:qualifier

26 / 72

Data Model (4/5)

I Timestamp

I Each column value may contain multiple versions.

27 / 72

Data Model (5/5)

I Tablet: contiguous ranges of rows stored together.

I Tablets are split by the system when they become too large.

I Each tablet is served by exactly one tablet server.

28 / 72

System Architecture

29 / 72

BigTable System Structure

[https://www.slideshare.net/GrishaWeintraub/cap-28353551]

30 / 72

Main Components

I Master

I Tablet server

I Client library

31 / 72

Master

I Assigns tablets to tablet server.

I Balances tablet server load.

I Garbage collection of unneeded files in GFS.

I Handles schema changes, e.g., table and column family creations

32 / 72

Master

I Assigns tablets to tablet server.

I Balances tablet server load.

I Garbage collection of unneeded files in GFS.

I Handles schema changes, e.g., table and column family creations

32 / 72

Master

I Assigns tablets to tablet server.

I Balances tablet server load.

I Garbage collection of unneeded files in GFS.

I Handles schema changes, e.g., table and column family creations

32 / 72

Master

I Assigns tablets to tablet server.

I Balances tablet server load.

I Garbage collection of unneeded files in GFS.

I Handles schema changes, e.g., table and column family creations

32 / 72

Tablet Server

I Can be added or removed dynamically.

I Each manages a set of tablets (typically 10-1000 tablets/server).

I Handles read/write requests to tablets.

I Splits tablets when too large.

33 / 72

Tablet Server

I Can be added or removed dynamically.

I Each manages a set of tablets (typically 10-1000 tablets/server).

I Handles read/write requests to tablets.

I Splits tablets when too large.

33 / 72

Tablet Server

I Can be added or removed dynamically.

I Each manages a set of tablets (typically 10-1000 tablets/server).

I Handles read/write requests to tablets.

I Splits tablets when too large.

33 / 72

Tablet Server

I Can be added or removed dynamically.

I Each manages a set of tablets (typically 10-1000 tablets/server).

I Handles read/write requests to tablets.

I Splits tablets when too large.

33 / 72

Client Library

I Library that is linked into every client.

I Client data does not move though the master.

I Clients communicate directly with tablet servers for reads/writes.

34 / 72

Client Library

I Library that is linked into every client.

I Client data does not move though the master.

I Clients communicate directly with tablet servers for reads/writes.

34 / 72

Client Library

I Library that is linked into every client.

I Client data does not move though the master.

I Clients communicate directly with tablet servers for reads/writes.

34 / 72

Building Blocks

I The building blocks for the BigTable are:
• Google File System (GFS)
• Chubby
• SSTable

35 / 72

Google File System (GFS)

I Large-scale distributed file system.

I Store log and data files.

36 / 72

Chubby Lock Service

I Ensure there is only one active master.

I Store bootstrap location of BigTable data.

I Discover tablet servers.

I Store BigTable schema information and access control lists.

37 / 72

Chubby Lock Service

I Ensure there is only one active master.

I Store bootstrap location of BigTable data.

I Discover tablet servers.

I Store BigTable schema information and access control lists.

37 / 72

Chubby Lock Service

I Ensure there is only one active master.

I Store bootstrap location of BigTable data.

I Discover tablet servers.

I Store BigTable schema information and access control lists.

37 / 72

Chubby Lock Service

I Ensure there is only one active master.

I Store bootstrap location of BigTable data.

I Discover tablet servers.

I Store BigTable schema information and access control lists.

37 / 72

SSTable

I SSTable file format used internally to store BigTable data.

I Chunks of data plus a block index.

I Immutable, sorted file of key-value pairs.

I Each SSTable is stored in a GFS file.

38 / 72

SSTable

I SSTable file format used internally to store BigTable data.

I Chunks of data plus a block index.

I Immutable, sorted file of key-value pairs.

I Each SSTable is stored in a GFS file.

38 / 72

SSTable

I SSTable file format used internally to store BigTable data.

I Chunks of data plus a block index.

I Immutable, sorted file of key-value pairs.

I Each SSTable is stored in a GFS file.

38 / 72

SSTable

I SSTable file format used internally to store BigTable data.

I Chunks of data plus a block index.

I Immutable, sorted file of key-value pairs.

I Each SSTable is stored in a GFS file.

38 / 72

Tablet Serving

39 / 72

Master Startup

I The master executes the following steps at startup:

• Grabs a unique master lock in Chubby, which prevents concurrent master instantiations.

• Scans the servers directory in Chubby to find the live servers.

• Communicates with every live tablet server to discover what tablets are already assigned
to each server.

• Scans the METADATA table to learn the set of tablets.

40 / 72

Master Startup

I The master executes the following steps at startup:

• Grabs a unique master lock in Chubby, which prevents concurrent master instantiations.

• Scans the servers directory in Chubby to find the live servers.

• Communicates with every live tablet server to discover what tablets are already assigned
to each server.

• Scans the METADATA table to learn the set of tablets.

40 / 72

Master Startup

I The master executes the following steps at startup:

• Grabs a unique master lock in Chubby, which prevents concurrent master instantiations.

• Scans the servers directory in Chubby to find the live servers.

• Communicates with every live tablet server to discover what tablets are already assigned
to each server.

• Scans the METADATA table to learn the set of tablets.

40 / 72

Master Startup

I The master executes the following steps at startup:

• Grabs a unique master lock in Chubby, which prevents concurrent master instantiations.

• Scans the servers directory in Chubby to find the live servers.

• Communicates with every live tablet server to discover what tablets are already assigned
to each server.

• Scans the METADATA table to learn the set of tablets.

40 / 72

Master Startup

I The master executes the following steps at startup:

• Grabs a unique master lock in Chubby, which prevents concurrent master instantiations.

• Scans the servers directory in Chubby to find the live servers.

• Communicates with every live tablet server to discover what tablets are already assigned
to each server.

• Scans the METADATA table to learn the set of tablets.

40 / 72

Tablet Assignment

I 1 tablet → 1 tablet server.

I Master uses Chubby to keep tracks of live tablet serves and unassigned tablets.
• When a tablet server starts, it creates and acquires an exclusive lock in Chubby.

I Master detects the status of the lock of each tablet server by checking periodically.

I Master is responsible for finding when tablet server is no longer serving its tablets
and reassigning those tablets as soon as possible.

41 / 72

Tablet Assignment

I 1 tablet → 1 tablet server.

I Master uses Chubby to keep tracks of live tablet serves and unassigned tablets.
• When a tablet server starts, it creates and acquires an exclusive lock in Chubby.

I Master detects the status of the lock of each tablet server by checking periodically.

I Master is responsible for finding when tablet server is no longer serving its tablets
and reassigning those tablets as soon as possible.

41 / 72

Tablet Assignment

I 1 tablet → 1 tablet server.

I Master uses Chubby to keep tracks of live tablet serves and unassigned tablets.
• When a tablet server starts, it creates and acquires an exclusive lock in Chubby.

I Master detects the status of the lock of each tablet server by checking periodically.

I Master is responsible for finding when tablet server is no longer serving its tablets
and reassigning those tablets as soon as possible.

41 / 72

Tablet Assignment

I 1 tablet → 1 tablet server.

I Master uses Chubby to keep tracks of live tablet serves and unassigned tablets.
• When a tablet server starts, it creates and acquires an exclusive lock in Chubby.

I Master detects the status of the lock of each tablet server by checking periodically.

I Master is responsible for finding when tablet server is no longer serving its tablets
and reassigning those tablets as soon as possible.

41 / 72

Finding a Tablet

I Three-level hierarchy.

I The first level is a file stored in Chubby that contains the location of the root tablet.

I Root tablet contains location of all tablets in a special METADATA table.

I METADATA table contains location of each tablet under a row.

I The client library caches tablet locations.

42 / 72

Finding a Tablet

I Three-level hierarchy.

I The first level is a file stored in Chubby that contains the location of the root tablet.

I Root tablet contains location of all tablets in a special METADATA table.

I METADATA table contains location of each tablet under a row.

I The client library caches tablet locations.

42 / 72

Finding a Tablet

I Three-level hierarchy.

I The first level is a file stored in Chubby that contains the location of the root tablet.

I Root tablet contains location of all tablets in a special METADATA table.

I METADATA table contains location of each tablet under a row.

I The client library caches tablet locations.

42 / 72

Finding a Tablet

I Three-level hierarchy.

I The first level is a file stored in Chubby that contains the location of the root tablet.

I Root tablet contains location of all tablets in a special METADATA table.

I METADATA table contains location of each tablet under a row.

I The client library caches tablet locations.

42 / 72

Finding a Tablet

I Three-level hierarchy.

I The first level is a file stored in Chubby that contains the location of the root tablet.

I Root tablet contains location of all tablets in a special METADATA table.

I METADATA table contains location of each tablet under a row.

I The client library caches tablet locations.

42 / 72

Tablet Serving (1/2)

I Updates committed to a commit log.

I Recently committed updates are stored in memory - memtable

I Older updates are stored in a sequence of SSTables.

43 / 72

Tablet Serving (1/2)

I Updates committed to a commit log.

I Recently committed updates are stored in memory - memtable

I Older updates are stored in a sequence of SSTables.

43 / 72

Tablet Serving (1/2)

I Updates committed to a commit log.

I Recently committed updates are stored in memory - memtable

I Older updates are stored in a sequence of SSTables.

43 / 72

Tablet Serving (2/2)

I Strong consistency
• Only one tablet server is responsible for a given piece of data.
• Replication is handled on the GFS layer.

I Trade-off with availability
• If a tablet server fails, its portion of data is temporarily unavailable until a new server

is assigned.

44 / 72

Tablet Serving (2/2)

I Strong consistency
• Only one tablet server is responsible for a given piece of data.
• Replication is handled on the GFS layer.

I Trade-off with availability
• If a tablet server fails, its portion of data is temporarily unavailable until a new server

is assigned.

44 / 72

BigTable vs. HBase

�BigTable HBase

GFS HDFS

Tablet Server Region Server

SSTable StoreFile

Memtable MemStore

Chubby ZooKeeper

45 / 72

HBase Example

Create the table "test", with the column family "cf"

create ’test’, ’cf’

Use describe to get the description of the "test" table

describe ’test’

Put data in the "test" table

put ’test’, ’row1’, ’cf:a’, ’value1’

put ’test’, ’row2’, ’cf:b’, ’value2’

put ’test’, ’row3’, ’cf:c’, ’value3’

Scan the table for all data at once

scan ’test’

To get a single row of data at a time, use the get command

get ’test’, ’row1’

46 / 72

HBase Example

Create the table "test", with the column family "cf"

create ’test’, ’cf’

Use describe to get the description of the "test" table

describe ’test’

Put data in the "test" table

put ’test’, ’row1’, ’cf:a’, ’value1’

put ’test’, ’row2’, ’cf:b’, ’value2’

put ’test’, ’row3’, ’cf:c’, ’value3’

Scan the table for all data at once

scan ’test’

To get a single row of data at a time, use the get command

get ’test’, ’row1’

46 / 72

HBase Example

Create the table "test", with the column family "cf"

create ’test’, ’cf’

Use describe to get the description of the "test" table

describe ’test’

Put data in the "test" table

put ’test’, ’row1’, ’cf:a’, ’value1’

put ’test’, ’row2’, ’cf:b’, ’value2’

put ’test’, ’row3’, ’cf:c’, ’value3’

Scan the table for all data at once

scan ’test’

To get a single row of data at a time, use the get command

get ’test’, ’row1’

46 / 72

HBase Example

Create the table "test", with the column family "cf"

create ’test’, ’cf’

Use describe to get the description of the "test" table

describe ’test’

Put data in the "test" table

put ’test’, ’row1’, ’cf:a’, ’value1’

put ’test’, ’row2’, ’cf:b’, ’value2’

put ’test’, ’row3’, ’cf:c’, ’value3’

Scan the table for all data at once

scan ’test’

To get a single row of data at a time, use the get command

get ’test’, ’row1’

46 / 72

HBase Example

Create the table "test", with the column family "cf"

create ’test’, ’cf’

Use describe to get the description of the "test" table

describe ’test’

Put data in the "test" table

put ’test’, ’row1’, ’cf:a’, ’value1’

put ’test’, ’row2’, ’cf:b’, ’value2’

put ’test’, ’row3’, ’cf:c’, ’value3’

Scan the table for all data at once

scan ’test’

To get a single row of data at a time, use the get command

get ’test’, ’row1’

46 / 72

Cassandra

47 / 72

Cassandra

I A column-oriented database

I It was created for Facebook and was later open sourced

I CAP: availability and partition tolerance

48 / 72

Borrowed From BigTable

I Data model: column oriented
• Keyspaces (similar to the schema in a relational database), tables, and columns.

I SSTable disk storage
• Append-only commit log
• Memtable (buffering and sorting)
• Immutable sstable files

49 / 72

Borrowed From BigTable

I Data model: column oriented
• Keyspaces (similar to the schema in a relational database), tables, and columns.

I SSTable disk storage
• Append-only commit log
• Memtable (buffering and sorting)
• Immutable sstable files

49 / 72

Data Partitioning (1/2)

I Key/value, where values are stored as objects.

I If size of data exceeds the capacity of a single machine: partitioning

I Consistent hashing for partitioning.

50 / 72

Data Partitioning (1/2)

I Key/value, where values are stored as objects.

I If size of data exceeds the capacity of a single machine: partitioning

I Consistent hashing for partitioning.

50 / 72

Data Partitioning (2/2)

I Consistent hashing.

I Hash both data and node ids using the same hash function in a same id space.

I partition = hash(d) mod n, d: data, n: the size of the id space

id space = [0, 15], n = 16

hash("Fatemeh") = 12

hash("Ahmad") = 2

hash("Seif") = 9

hash("Jim") = 14

hash("Sverker") = 4

51 / 72

Data Partitioning (2/2)

I Consistent hashing.

I Hash both data and node ids using the same hash function in a same id space.

I partition = hash(d) mod n, d: data, n: the size of the id space

id space = [0, 15], n = 16

hash("Fatemeh") = 12

hash("Ahmad") = 2

hash("Seif") = 9

hash("Jim") = 14

hash("Sverker") = 4

51 / 72

Replication

I To achieve high availability and durability, data should be replicated on multiple
nodes.

52 / 72

Adding and Removing Nodes

I Gossip-based mechanism: periodically, each node contacts another randomly selected
node.

53 / 72

Adding and Removing Nodes

I Gossip-based mechanism: periodically, each node contacts another randomly selected
node.

53 / 72

Cassandra Example

Create a keyspace called "test"

create keyspace test

with replication = {’class’: ’SimpleStrategy’, ’replication_factor’: 1};

Print the list of keyspaces

describe keyspaces;

Navigate to the "test" keyspace

use test

Create the "words" table in the "test" keyspace

create table words (word text, count int, primary key (word));

Insert a row

insert into words(word, count) values(’hello’, 5);

Look at the table

select * from words;

54 / 72

Cassandra Example

Create a keyspace called "test"

create keyspace test

with replication = {’class’: ’SimpleStrategy’, ’replication_factor’: 1};

Print the list of keyspaces

describe keyspaces;

Navigate to the "test" keyspace

use test

Create the "words" table in the "test" keyspace

create table words (word text, count int, primary key (word));

Insert a row

insert into words(word, count) values(’hello’, 5);

Look at the table

select * from words;

54 / 72

Cassandra Example

Create a keyspace called "test"

create keyspace test

with replication = {’class’: ’SimpleStrategy’, ’replication_factor’: 1};

Print the list of keyspaces

describe keyspaces;

Navigate to the "test" keyspace

use test

Create the "words" table in the "test" keyspace

create table words (word text, count int, primary key (word));

Insert a row

insert into words(word, count) values(’hello’, 5);

Look at the table

select * from words;

54 / 72

Cassandra Example

Create a keyspace called "test"

create keyspace test

with replication = {’class’: ’SimpleStrategy’, ’replication_factor’: 1};

Print the list of keyspaces

describe keyspaces;

Navigate to the "test" keyspace

use test

Create the "words" table in the "test" keyspace

create table words (word text, count int, primary key (word));

Insert a row

insert into words(word, count) values(’hello’, 5);

Look at the table

select * from words;

54 / 72

Cassandra Example

Create a keyspace called "test"

create keyspace test

with replication = {’class’: ’SimpleStrategy’, ’replication_factor’: 1};

Print the list of keyspaces

describe keyspaces;

Navigate to the "test" keyspace

use test

Create the "words" table in the "test" keyspace

create table words (word text, count int, primary key (word));

Insert a row

insert into words(word, count) values(’hello’, 5);

Look at the table

select * from words;

54 / 72

Cassandra Example

Create a keyspace called "test"

create keyspace test

with replication = {’class’: ’SimpleStrategy’, ’replication_factor’: 1};

Print the list of keyspaces

describe keyspaces;

Navigate to the "test" keyspace

use test

Create the "words" table in the "test" keyspace

create table words (word text, count int, primary key (word));

Insert a row

insert into words(word, count) values(’hello’, 5);

Look at the table

select * from words;

54 / 72

Neo4j

55 / 72

Neo4j

I A graph database

I The relationships between data is equally important as the data itself

I Cypher: a declarative query language similar to SQL, but optimized for graphs

I CAP: strong consistency and availability

56 / 72

Data Model (1/4)

I Node (Vertex)
• The main data element from which graphs are constructed.
• A waypoint along a traversal route

57 / 72

Data Model (2/4)

I Relationship (Edge)

I May contain
• Direction
• Metadata, e.g., weight or relationship type

58 / 72

Data Model (3/4)

I Label
• Define node category (optional)
• Can have more than one

59 / 72

Data Model (4/4)

I Properties
• Enrich a node or relationship

60 / 72

Example

[Ian Robinson et al., Graph Databases, 2015]

61 / 72

62 / 72

What is Cypher?

I Declarative query language

I (): Nodes

I []: Relationships

I {}: Properties

63 / 72

Cypher Example (1/2)

// Match all nodes

MATCH (n)

RETURN n;

// Match all nodes with a Person label

MATCH (n:Person)

RETURN n;

// Match all nodes with a Person label and property name is ’Tom Hanks’

MATCH (n:Person {name: ’Tom Hanks’})

RETURN n;

64 / 72

Cypher Example (1/2)

// Match all nodes

MATCH (n)

RETURN n;

// Match all nodes with a Person label

MATCH (n:Person)

RETURN n;

// Match all nodes with a Person label and property name is ’Tom Hanks’

MATCH (n:Person {name: ’Tom Hanks’})

RETURN n;

64 / 72

Cypher Example (1/2)

// Match all nodes

MATCH (n)

RETURN n;

// Match all nodes with a Person label

MATCH (n:Person)

RETURN n;

// Match all nodes with a Person label and property name is ’Tom Hanks’

MATCH (n:Person {name: ’Tom Hanks’})

RETURN n;

64 / 72

Cypher Example (2/2)

// Return nodes with label Person and name property equals ’Tom Hanks’

MATCH (p:Person)

WHERE p.name = ’Tom Hanks’

RETURN p;

// Return nodes with label Movie, released property is between 1991 and 1999

MATCH (m:Movie)

WHERE m.released > 1990 AND m.released < 2000

RETURN m;

// Find all the movies Tom Hanks acted in

MATCH (:Person {name:’Tom Hanks’})-[:ACTED_IN]->(m:Movie)

RETURN m.title;

65 / 72

Cypher Example (2/2)

// Return nodes with label Person and name property equals ’Tom Hanks’

MATCH (p:Person)

WHERE p.name = ’Tom Hanks’

RETURN p;

// Return nodes with label Movie, released property is between 1991 and 1999

MATCH (m:Movie)

WHERE m.released > 1990 AND m.released < 2000

RETURN m;

// Find all the movies Tom Hanks acted in

MATCH (:Person {name:’Tom Hanks’})-[:ACTED_IN]->(m:Movie)

RETURN m.title;

65 / 72

Cypher Example (2/2)

// Return nodes with label Person and name property equals ’Tom Hanks’

MATCH (p:Person)

WHERE p.name = ’Tom Hanks’

RETURN p;

// Return nodes with label Movie, released property is between 1991 and 1999

MATCH (m:Movie)

WHERE m.released > 1990 AND m.released < 2000

RETURN m;

// Find all the movies Tom Hanks acted in

MATCH (:Person {name:’Tom Hanks’})-[:ACTED_IN]->(m:Movie)

RETURN m.title;

65 / 72

Summary

66 / 72

Summary

I NoSQL data models: key-value, column-oriented, document-oriented, graph-based

I CAP (Consistency vs. Availability)

67 / 72

Summary

I BigTable

I Column-oriented

I Main components: master, tablet server, client library

I Basic components: GFS, SSTable, Chubby

I CP

68 / 72

Summary

I Cassandra

I Column-oriented (similar to BigTable)

I Consistency hashing

I Gossip-based membership

I AP

69 / 72

Summary

I Neo4j

I Graph-based

I Cypher

I CA

70 / 72

References

I F. Chang et al., Bigtable: A distributed storage system for structured data, ACM
Transactions on Computer Systems (TOCS) 26.2, 2008.

I A. Lakshman et al., Cassandra: a decentralized structured storage system, ACM
SIGOPS Operating Systems Review 44.2, 2010.

I I. Robinson et al., Graph Databases (2nd ed.), O’Reilly Media, 2015.

71 / 72

Questions?

Acknowledgements
Some content of the Neo4j slides were derived from Ljubica Lazarevic’s slides.

72 / 72

