NoSQL Databases

Amir H. Payberah
payberah@kth.se
2023-09-05

The Course Web Page

https://id2221kth.github.io

https://id2221kth.github.io

The Questions-Answers Page

https://tinyurl. com/hk7hzpwb

https://tinyurl.com/hk7hzpw5

Where Are We?

Data Processing

Pregel, GraphLab, PowerGraph Spark SQL Milib
GraphX, X-Streem, Chaos Tensorflow

MapReduce, Dryad Storm, SEEP, Naiad, Spark Streaming, Flink,
FlumeJava, Spark Millwheel, Google Dataflow

Data Storage

Dynamo, BigTable,
GFS, Flat FS Cassandra

Resource Management

Mesos, YARN

Database and Database Management System

» Database: an organized collection of data.

» Database Management System (DBMS): a software to capture and analyze data.

PATA BASE

SQL vs. NoSQL Databases

» SQL is good
e Rich language and toolset
e Easy to use and integrate
* Many vendors

» They promise: ACID

ACID Properties

» Atomicity
e All included statements in a transaction are either executed or the whole transaction is
aborted without affecting the database.

ACID Properties

» Atomicity
e All included statements in a transaction are either executed or the whole transaction is
aborted without affecting the database.

» Consistency
» A database is in a consistent state before and after a transaction.

ACID Properties

» Atomicity
e All included statements in a transaction are either executed or the whole transaction is
aborted without affecting the database.

» Consistency
» A database is in a consistent state before and after a transaction.

> lIsolation
e Transactions can not see uncommitted changes in the database.

ACID Properties

» Atomicity
e All included statements in a transaction are either executed or the whole transaction is
aborted without affecting the database.
» Consistency
e A database is in a consistent state before and after a transaction.
> lIsolation
e Transactions can not see uncommitted changes in the database.
> Durability

e Changes are written to a disk before a database commits a transaction so that committed
data cannot be lost through a power failure.

SQL Databases Challenges

e Frequent schema changes

» Web-based applications caused spikes.
* Internet-scale data size
* High read-write rates

3
£

SQL Databases Challenges

» Web-based applications caused spikes.
 Internet-scale data size
* High read-write rates
e Frequent schema changes

» RDBMS were not designed to be distributed.

» Avoids: AP ACHE W
Cassandra
» Overhead of ACID properties HBRASE

e Complexity of SQL query ‘: rlq k

» Provides: .mongoDB
. HYPERTABLE«
e Scalablity CON 4 .
e Easy and frequent changes to DB LS eo4) é redls
* Large data volumes

Availability vs. Consistency

Availability

» Replicating data to improve the availability of data.

Availability

» Replicating data to improve the availability of data.

» Data replication
 Storing data in more than one site or node

Consistency

» Strong consistency
e After an update completes, any subsequent access will return the updated value.

read(x=xl wrtexx2) _resdix)=x2

\

read(x)=x1 readix)=x2

\/

read(x)=x1 read(x)=x2

\/

Consistency

» Strong consistency
e After an update completes, any subsequent access will return the updated value.

read(x=xl wrtexx2) _resdix)=x2

\

read(x)=x1 readix)=x2

\/

read(x)=x1 read(x)=x2

\/

» Eventual consistency
e Does not guarantee that subsequent accesses will return the updated value.
¢ Inconsistency window.
* If no new updates are made to the object, eventually all accesses will return the last
updated value.

resd(xi=xl write(xx2) readix)=x readix)=xz

Yy

readix)=xl readix)=xl readixi=x2

read(x)=xL read(x)=x2 read(x}=x2

\/

Inconsistency Window

Availability vs. Consistency

» The large-scale applications have to be reliable: consistency, availability, partition
tolerance

Availability vs. Consistency

» The large-scale applications have to be reliable: consistency, availability, partition
tolerance

» Achieving ACID properties on large-scale applications is cahllenging.

Availability vs. Consistency

» The large-scale applications have to be reliable: consistency, availability, partition
tolerance

» Achieving ACID properties on large-scale applications is cahllenging.

» CAP theorem

CAP Theorem

» Consistency

e Consistent state of data after the execution of an operation.

RDBMS

BigTable
HBase
MongoDB
Redis

Consistency

Partition

Availability Tolerance
AP Category
Dynamo
Voldemort
Cassandra

CouchDB

CAP Theorem

» Consistency

e Consistent state of data after the execution of an operation.

> Availability

¢ Clients can always read and write data.

RDBMS BigTable

Consistency

Partition
Tolerance

AP Category
Dynamo

Voldemort
Cassandra

Availability

CouchDB

CAP Theorem

» Consistency
e Consistent state of data after the execution of an operation.

» Availability
¢ Clients can always read and write data.

» Partition Tolerance
» Continue the operation in the presence of network partitions.

RDBMS BigTable
HBase
MongoDB
Redis

Consistency

Partition
Tolerance

AP Category
Dynamo
Voldemort
Cassandra

CouchDB

Availability

CAP Theorem

» Consistency
e Consistent state of data after the execution of an operation.
» Availability
¢ Clients can always read and write data.
» Partition Tolerance
» Continue the operation in the presence of network partitions.
» You can choose only two! oty s8] partton

Tolerance

AP Category
Dynamo
Voldemort
Cassandra

CouchDB

NoSQL Data Models

NoSQL Data Models

{554

>

KeyValue Orderad Key-Valus Colum orientes Grapn
” e co! ted FuiTon Search "

[http://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques]

Key-Value Data Model

» Collection of key/value pairs.

» Ordered Key-Value: processing over key ranges.

» Dynamo, Scalaris, Voldemort, Riak, ...

Column-Oriented Data Model

v

Similar to a key/value store, but the value can have multiple attributes (Columns).

v

Column: a set of data values of a particular type.

v

Store and process data by column instead of row.

v

BigTable, Hbase, Cassandra, ...

row-store column-store

oss I scro v Moo

Document Data Model

Similar to a column-oriented store, but values can have complex documents.
» Flexible schema (XML, YAML, JSON, and BSON).
» CouchDB, MongoDB, ...

FirstName: "Bob",
Address: "5 0Oak St.",
Hobby: "sailing"

}

{

FirstName: "Jonathan",
Address: "15 Wanamassa Point Road",
Children: [
{Name: "Michael", Age: 10},
{Name: "Jennifer", Age: 8},

Graph Data Model

» Uses graph structures with nodes, edges, and properties to represent and store data.

» Neo4dJ, InfoGrid, ...

" AOY
A& oWS
Wi b
(oA o
la: i
!
Labef;Ms{::be

75

[http://en.wikipedia.org/wiki/Graph database]

BigTable

BigTable

» Lots of (semi-)structured data at Google.
e URLs, per-user data, geographical locations, ...

» Distributed multi-level map

» CAP: strong consistency and partition tolerance

Data Model

Data Model (1/5)

» Table

» Distributed multi-dimensional sparse map

Data Model (2/5)

> Rows
> Every read or write in a row is atomic.

» Rows sorted in lexicographical order.

“com.cnn.www” 3

Data Model (3/5)

Column

>

The basic unit of data access.

v

v

Column families: group of (the same type) column keys.

v

Column key naming: family:qualifier

Column family Column family
A — ~
“content.” “anchor:cnnsi.com” “anchor:my.look.ca

v ! !

‘com.cnn.www” L g

Data Model (4/5)

» Timestamp

» Each column value may contain multiple versions.

“content:” “anchor:cnnsi.com” “anchor:my.look.ca
f))

- -—13
“<html> ___'1;_}11

‘com.cnn.www” |

Data Model (5/5)

» Tablet: contiguous ranges of rows stored together.
» Tablets are split by the system when they become too large.

» Each tablet is served by exactly one tablet server.

“content” “anchor:cnnsi.com” “anchor:my.look.ca

“com.aaa”

“com.cnn.www’

“com.cnn.wwwi/tech”

“content” “anchor:cnnsi.com” “anchor:my.look.ca

“com.weather”

“com.wikipedia”

“com.zoom”

System Architecture

BigTable System Structure

Metadata Client
Client Library

Performs metadata ops +
load balancing

Read/write |,
Tablet server Tablet server Tablet server

D | | | |

Tablet servers serve data from their assigned tablets

GFS | Chubby |

Lock service. Holds
SSTables Tablet logs metadata. Handles
And replicas

master-election.

[bttps://www.slideshare.net/GrishaWeintraub/cap-28353551]

Main Components

Metadata Client
Client Library

> M aster Performs metadata ops +

load balancing

Read/write |},

Tablet server Tablet server Tablet server

| | | |

» Tablet server

» Client library

Tablet servers serve data from their assigned tablets

Master

» Assigns tablets to tablet server.

Client

et
Client Library

Performs metadata ops +
load balancing

Read/write ||,

Tablet server Tablet server Tablet server

Tablet servers serve data from their assigned tablets

Master

» Assigns tablets to tablet server.

» Balances tablet server load.

Client

Master server

Client Library

Performs metadata ops +
load balancing

Read/write

y

Tablet server Tablet server
Savict | raviet JI oot] reber

Saviet] tabi:

Tablet server J

Tablet servers serve data from their assigned tablets

Master

>

Assigns tablets to tablet server.

» Balances tablet server load.

v

Garbage collection of unneeded files in GFS.

Client

Master server

Client Library

Performs metadata ops +
load balancing

Read/write

y

Tablet server Tablet server
Savict | raviet JI oot] reber

Saviet] tabi:

Tablet server J

Tablet servers serve data from their assigned tablets

Master

>

Assigns tablets to tablet server.

» Balances tablet server load.

v

Garbage collection of unneeded files in GFS.

v

Handles schema changes, e.g., table and column family creations

Client
Master server
Client Library
Performs metadata ops +
load balancing
Read/write ||,
Tablet server Tablet server Tablet server
Tablet Tablet Tablet Tablet Tablet Tablet

Tablet servers serve data from their assigned tablets

Tablet Server

» Can be added or removed dynamically.

Client
Client Library

Performs metadata ops +
load balancing

Read/write

Tablet server Tablet server Tablet server

D | | D | |

Tablet servers serve data from their assigned tablets

Tablet Server

» Can be added or removed dynamically.

» Each manages a set of tablets (typically 10-1000 tablets/server).

Client

Master server
Client Library

Performs metadata ops +
load balancing
Read/write

Tablet server
Tablet Tablet

Tablet server Tablet server
Tablet RELIES Tablet Tablet

Tablet servers serve data from their assigned tablets

Tablet Server

» Can be added or removed dynamically.
» Each manages a set of tablets (typically 10-1000 tablets/server).

» Handles read /write requests to tablets.

Client

Master server

Client Library

Performs metadata ops +
load balancing
Read/write

Tablet server Tablet server
Tablet RELIES Tablet Tablet

Tablet server
Tablet Tablet

Tablet servers serve data from their assigned tablets

Tablet Server

>

Can be added or removed dynamically.

» Each manages a set of tablets (typically 10-1000 tablets/server).

v

Handles read /write requests to tablets.

v

Splits tablets when too large.

Client

Master server

Client Library

Performs metadata ops +
load balancing

Read/write

Tablet server
Tablet Tablet

Tablet server Tablet server
Tablet RELIES Tablet Tablet

Tablet servers serve data from their assigned tablets

Client Library

» Library that is linked into every client.

Client

Master server

Client Library

Performs metadata ops +
load balancing

Read/write

v

Tablet server Tablet server Tablet server

T T | | D | |

Tablet servers serve data from their assigned tablets

Client Library

» Library that is linked into every client.

» Client data does not move though the master.

Client

[et |
Client Library

Performs metadata ops +
load balancing

Read/write A

Tablet server

Tablet server Tablet server
Tablet Tablet Tablet Tablet

bt -J

Tablet servers serve data from their assigned tablets

Client Library

>

Library that is linked into every client.

v

Client data does not move though the master.

v

Clients communicate directly with tablet servers for reads/writes.

d Client
[et |
Client Library

Performs metadata ops +
load balancing

Read/write A

Tablet server
Tablet Tablet

Tablet server Tablet server
Tablet Tablet Tablet Tablet

Tablet servers serve data from their assigned tablets

Building Blocks

» The building blocks for the BigTable are:
 Google File System (GFS)

e Chubby
e SSTable

GFs Chubby

Lock service. Holds
SSTables Tabletlogs metadata. Handles
And replicas master-election.

Google File System (GFS)

> Large-scale distributed file system.

» Store log and data files.

GFS [Chubby

OOOE ()

SSTables Tablet logs
And replicas

Lock service. Holds
metadata. Handles

master-election.

Chubby Lock Service

» Ensure there is only one active master.

’WD%TFS @] [Chubby J

Lock service. Holds
SSTables Tablet logs metadata. Handles
And replicas

master-election.

Chubby Lock Service

» Ensure there is only one active master.

» Store bootstrap location of BigTable data.

Chubby J

Lock service. Holds
SSTables Tablet logs metadata. Handles
And replicas

master-election.

Chubby Lock Service

» Ensure there is only one active master.
» Store bootstrap location of BigTable data.

» Discover tablet servers.

Chubby J

Lock service. Holds
SSTables Tablet logs metadata. Handles
And replicas

master-election.

Chubby Lock Service

>

Ensure there is only one active master.

v

Store bootstrap location of BigTable data.

v

Discover tablet servers.

v

Store BigTable schema information and access control lists.

Chubby J

Lock service. Holds
SSTables Tablet logs metadata. Handles
And replicas

master-election.

SSTable

» SSTable file format used internally to store BigTable data.

64K
block

64K
block

84K
block|

SSTable

Index

Table <

SSTable
SSTable
SSTable

SSTable

SSTable

} Tablet 1

> Tablet 2

SSTable

» SSTable file format used internally to store BigTable data.

» Chunks of data plus a block index. \

SSTable
SSTable » Tablet 1
SSTable

SSTable

Table <

SSTable

B4K ||84K || 84K
block || block || block SSTable

Index)

> Tablet 2

SSTable

» SSTable file format used internally to store BigTable data.

» Chunks of data plus a block index.

» Immutable, sorted file of key-value pairs.

SSTable

Index

BAK ||B4K || B4K
block || block || block

TaMe<

SSTable
SSTable
SSTable

SSTable

SSTable

}'mmal

> Tablet 2

SSTable

» SSTable file format used internally to store BigTable data.
» Chunks of data plus a block index. \
b
» Immutable, sorted file of key-value pairs.
}Tabletl
» Each SSTable is stored in a GFS file.

SSTable

SSTable

Table <

SSTable

B4K ||84K || 84K
block || block || block SSTable

Index)

> Tablet 2

Tablet Serving

Master Startup

» The master executes the following steps at startup:

Master Startup

» The master executes the following steps at startup:

e Grabs a unique master lock in Chubby, which prevents concurrent master instantiations.

Master Startup

» The master executes the following steps at startup:

e Grabs a unique master lock in Chubby, which prevents concurrent master instantiations.

e Scans the servers directory in Chubby to find the live servers.

Master Startup

» The master executes the following steps at startup:

e Grabs a unique master lock in Chubby, which prevents concurrent master instantiations.

e Scans the servers directory in Chubby to find the live servers.

e Communicates with every live tablet server to discover what tablets are already assigned
to each server.

Master Startup

» The master executes the following steps at startup:
e Grabs a unique master lock in Chubby, which prevents concurrent master instantiations.
e Scans the servers directory in Chubby to find the live servers.

e Communicates with every live tablet server to discover what tablets are already assigned
to each server.

Scans the METADATA table to learn the set of tablets.

Tablet Assignment

» 1 tablet — 1 tablet server.

Tablet Assignment

» 1 tablet — 1 tablet server.

> Master uses Chubby to keep tracks of live tablet serves and unassigned tablets.
e When a tablet server starts, it creates and acquires an exclusive lock in Chubby.

Tablet Assignment

» 1 tablet — 1 tablet server.

> Master uses Chubby to keep tracks of live tablet serves and unassigned tablets.
e When a tablet server starts, it creates and acquires an exclusive lock in Chubby.

> Master detects the status of the lock of each tablet server by checking periodically.

Tablet Assignment

1 tablet — 1 tablet server.

>

v

Master uses Chubby to keep tracks of live tablet serves and unassigned tablets.
e When a tablet server starts, it creates and acquires an exclusive lock in Chubby.

v

Master detects the status of the lock of each tablet server by checking periodically.

v

Master is responsible for finding when tablet server is no longer serving its tablets
and reassigning those tablets as soon as possible.

Finding a Tablet

> Three-level hierarchy.

UserTable1

Other
METADATA
tablets

Root tablet
Chubby f||e (1st METADATA tablet)

(

Finding a Tablet

> Three-level hierarchy.

» The first level is a file stored in Chubby that contains the location of the root tablet.

Other
METADATA
tabl

Root tablet
Chubby f||e (1st METADATA tablet)

(

UserTableN

Finding a Tablet

> Three-level hierarchy.

» The first level is a file stored in Chubby that contains the location of the root tablet.

» Root tablet contains location of all tablets in a special METADATA table.

UserTable1
Other = -
METADATA
tablets 7 -
Root tablet = =
Chubby f||e (1st METADATA tablet)

(

UserTableN

Finding a Tablet

>

Three-level hierarchy.

v

The first level is a file stored in Chubby that contains the location of the root tablet.

v

Root tablet contains location of all tablets in a special METADATA table.

v

METADATA table contains location of each tablet under a row.

UserTable1

Other

METADATA
tablets 7 -

UserTableN

Root tablet
Chubby f||e (1st METADATA tablet)

(

Finding a Tablet

>

Three-level hierarchy.

v

The first level is a file stored in Chubby that contains the location of the root tablet.

v

Root tablet contains location of all tablets in a special METADATA table.

v

METADATA table contains location of each tablet under a row.

v

The client library caches tablet locations.

UserTable1

Other

METADATA
tablets Vo -

UserTableN

Root tablet
Chubby f||e (1st METADATA tablet)

(

Tablet Serving (1/2)

» Updates committed to a commit log.

Memtable and sstables are merged to

Recent updates kept in memory serve a read request

memtable |—— read

Memeory /\

GFS tabletJ /

log

sstable | | sstable

) —

‘Write operations are logged

Tablet Serving (1/2)

» Updates committed to a commit log.

» Recently committed updates are stored in memory - memtable

Recent updates kept in memory

Memtable and sstables are merged to
serve a read request

———— read

A

memtable
Memeory
GFS tablet
log

‘Write operations are logged

/

sstable | | sstable

Tablet Serving (1/2)

» Updates committed to a commit log.

» Recently committed updates are stored in memory - memtable

» Older updates are stored in a sequence of SSTables.

Memeory

Recent updates kept in memory

Memtable and sstables are merged to
serve a read request

memtable

———— read

A

GFS

) —

are logged

‘Write operations

tablet
log

/

sstable | | sstable

Tablet Serving (2/2)

» Strong consistency

e Only one tablet server is responsible for a given piece of data.
¢ Replication is handled on the GFS layer.

Tablet Serving (2/2)

» Strong consistency

e Only one tablet server is responsible for a given piece of data.
¢ Replication is handled on the GFS layer.

» Trade-off with availability

 If a tablet server fails, its portion of data is temporarily unavailable until a new server
is assigned.

BigTable vs. HBase

| BigTable | HBase |
GFS HDFS
Tablet Server | Region Server
SSTable StoreFile
Memtable MemStore
Chubby ZooKeeper

HBase Example

Create the table "test”, with the column family "cf"
create ’test’, ’cf’

HBase Example

Create the table "test”, with the column family "cf"
create ’test’, ’cf’

Use describe to get the description of the "test” table
describe ’test’

g4l HBase Example

OcH KoN:

Create the table "test”, with the column family "cf"
create ’test’, ’cf’

Use describe to get the description of the "test” table
describe ’test’

Put data in the "test" table

put ’test’, ’rowl’, ’cf:a’, ’valuel’
put ’test’, ’row2’, ’cf:b’, ’value2’
put ’test’, ’row3d’, ’cf:c’, ’valued’

HBase Example

Create the table "test”, with the column family "cf"
create ’test’, ’cf’

Use describe to get the description of the "test” table
describe ’test’

Put data in the "test" table

put ’test’, ’rowl’, ’cf:a’, ’valuel’
put ’test’, ’row2’, ’cf:b’, ’value2’
put ’test’, ’row3d’, ’cf:c’, ’valued’

Scan the table for all data at once
scan ’test’

p] HBase Example

%%Wﬁy

Create the table "test”, with the column family "cf"
create ’test’, ’cf’

Use describe to get the description of the "test" table
describe ’test’

Put data in the "test" table

put ’test’, ’rowl’, ’cf:a’, ’valuel’
put ’test’, ’row2’, ’cf:b’, ’value2’
put ’test’, ’row3d’, ’cf:c’, ’valued’

Scan the table for all data at once
scan ’test’

To get a single row of data at a time, use the get command
get ’test’, ’rowl’

Cassandra

Cassandra

» A column-oriented database

» It was created for Facebook and was later open sourced

» CAP: availability and partition tolerance /w
w>

cassandra

Borrowed From BigTable

» Data model: column oriented
¢ Keyspaces (similar to the schema in a relational database), tables, and columns.

Borrowed From BigTable

» Data model: column oriented
¢ Keyspaces (similar to the schema in a relational database), tables, and columns.

» SSTable disk storage
* Append-only commit log
¢ Memtable (buffering and sorting)
e Immutable sstable files

Data Partitioning (1/2)

» Key/value, where values are stored as objects.

> If size of data exceeds the capacity of a single machine: partitioning

F

Data Partitioning (1/2)

» Key/value, where values are stored as objects.
> If size of data exceeds the capacity of a single machine: partitioning

» Consistent hashing for partitioning. ’

Data Partitioning (2/2)

» Consistent hashing.

» Hash both data and node ids using the same hash function in a same id space.

> partition = hash(d) mod n, d: data, n: the size of the id space

Data Partitioning (2/2)

» Consistent hashing.

» Hash both data and node ids using the same hash function in a same id space.

> partition = hash(d) mod n, d: data, n: the size of the id space

id space = [0, 15], n = 16
hash("Fatemeh") = 12
hash("Ahmad") = 2 13
hash("Seif") = 9 12
hash("Jim") = 14
hash("Sverker") = 4

Replication

» To achieve high availability and durability, data should be replicated on multiple
nodes.

Adding and Removing Nodes

» Gossip-based mechanism: periodically, each node contacts another randomly selected
node.

@
B>G

C>E

D>G
@

F>B

o—ef 7

Adding and Removing Nodes

» Gossip-based mechanism: periodically, each node contacts another randomly selected
node.

X=Data\(X,B)
Data=Data\(A,X)
Drop G

@®
B>G

D>G

-
o

COE
X=B\(X,B)
B=B\(A.X)
F>B Drop A

Cassandra Example

Create a keyspace called "test"
create keyspace test
with replication = {’class’: ’SimpleStrategy’, ’replication_factor’: 1};

Cassandra Example

Create a keyspace called "test"
create keyspace test
with replication = {’class’: ’SimpleStrategy’, ’replication_factor’: 1};

Print the list of keyspaces
describe keyspaces;

Cassandra Example

Create a keyspace called "test"
create keyspace test
with replication = {’class’: ’SimpleStrategy’, ’replication_factor’: 1};

Print the list of keyspaces
describe keyspaces;

Navigate to the "test" keyspace
use test

Cassandra Example

Create a keyspace called "test"
create keyspace test

with replication = {’class’: ’SimpleStrategy’, ’replication_factor’:

Print the list of keyspaces
describe keyspaces;

Navigate to the "test" keyspace
use test

Create the "words" table in the "test" keyspace
create table words (word text, count int, primary key (word));

kg

Cassandra Example

Create a keyspace called "test"
create keyspace test

with replication = {’class’: ’SimpleStrategy’, ’replication_factor’:

Print the list of keyspaces
describe keyspaces;

Navigate to the "test" keyspace
use test

Create the "words" table in the "test" keyspace
create table words (word text, count int, primary key (word));

Insert a Tow
insert into words(word, count) values(’hello’, 5);

kg

b
gl Cassandra Example

%ﬂm&@

Create a keyspace called "test"
create keyspace test
with replication = {’class’: ’SimpleStrategy’, ’replication_factor’: 1};

Print the list of keyspaces
describe keyspaces;

Navigate to the "test" keyspace
use test

Create the "words" table in the "test" keyspace
create table words (word text, count int, primary key (word));

Insert a Tow
insert into words(word, count) values(’hello’, 5);

Look at the table
select * from words;

Neodj

Neo4j

>

A graph database

v

The relationships between data is equally important as the data itself

v

Cypher: a declarative query language similar to SQL, but optimized for graphs

v

CAP: strong consistency and availability

@neoqj

Data Model (1/4)

» Node (Vertex)

e The main data element from which graphs are constructed.
e A waypoint along a traversal route

Data Model (2/4)

» Relationship (Edge)

» May contain

e Direction
* Metadata, e.g., weight or relationship type

Data Model (3/4)

> Label

* Define node category (optional)
» Can have more than one

Data Model (4/4)

» Properties
e Enrich a node or relationship

since: 2018

name: Jane make: Volvo
model: V60

Example

content: ...

[lan Robinson et al., Graph Databases, 2015]

What is Cypher?

>

Declarative query language

v

(): Nodes

v

[]: Relationships

v

{}: Properties

Cypher Example (1/2)

title: Apollo 13
m released: 1995
. e Tha thing you do @ DIRECTED @ ACTED_IN @ ACTED N (H

// Match all nodes
MATCH (n)
RETURN n;

Cypher Example (1/2)

title: Apollo 13
m released: 1995

. e Tha thing you do @ DIRECTED @ ACTED_IN ACTED N (H

// Match all nodes
MATCH (n)
RETURN n;

// Match all nodes with a Person label
MATCH (n:Person)
RETURN n;

Cypher Example (1/2)

title: Apollo 13
m released: 1995

e Thatthing you do @ DIRECTED @ ACTED_IN ACTEDIN (person

// Match all nodes
MATCH (n)
RETURN n;

// Match all nodes with a Person label
MATCH (n:Person)
RETURN n;

// Match all nodes with a Person label and property name is ’Tom Hanks’
MATCH (n:Person {name: ’Tom Hanks’})
RETURN n;

Cypher Example (2/2)

title: Apollo 13

m released; 1995
title: That thing you do DIRECTED ACTED IN
released: 1996

AETEDIY (erson

// Return nodes with label Person and name property equals ’Tom Hanks’
MATCH (p:Person)

WHERE p.name = ’Tom Hanks’

RETURN p;

Cypher Example (2/2)

title: Apollo 13
released: 1995

title: That thing you do DIRECTED ACTED IN
released: 1996

ACTED (person

// Return nodes with label Person and name property equals ’Tom Hanks’
MATCH (p:Person)

WHERE p.name = ’Tom Hanks’

RETURN p;

// Return nodes with label Movie, released property is between 1991 and 1999
MATCH (m:Movie)

WHERE m.released > 1990 AND m.released < 2000

RETURN m;

Cypher Example (2/2)

title: Apollo 13

m released: 1995
title: That thing you do DIRECTED ACTED IN
released: 1996

ACTED (person

// Return nodes with label Person and name property equals ’Tom Hanks’
MATCH (p:Person)

WHERE p.name = ’Tom Hanks’

RETURN p;

// Return nodes with label Movie, released property is between 1991 and 1999
MATCH (m:Movie)

WHERE m.released > 1990 AND m.released < 2000

RETURN m;

// Find all the movies Tom Hanks acted in
MATCH (:Person {name:’Tom Hanks’})-[:ACTED_IN]->(m:Movie)
RETURN m.title;

Summary

Summary

» NoSQL data models: key-value, column-oriented, document-oriented, graph-based

» CAP (Consistency vs. Availability)

Summary

>

BigTable

Column-oriented

v

v

Main components: master, tablet server, client library

» Basic components: GFS, SSTable, Chubby

» CP

Summary

Cassandra

>

v

Column-oriented (similar to BigTable)

v

Consistency hashing

>

» AP

Gossip-based membership

Summary

>

Neo4;j

v

Graph-based

v

Cypher

» CA

References

F. Chang et al., Bigtable: A distributed storage system for structured data, ACM
Transactions on Computer Systems (TOCS) 26.2, 2008.

>

A. Lakshman et al.,, Cassandra: a decentralized structured storage system, ACM
SIGOPS Operating Systems Review 44.2, 2010.

v

» |. Robinson et al., Graph Databases (2nd ed.), O'Reilly Media, 2015.

Questions?

Acknowledgements
Some content of the Neo4j slides were derived from Ljubica Lazarevic's slides.

