Parallel Processing - MapReduce

Amir H. Payberah
payberah@kth.se
2023-09-11

The Course Web Page

https://id2221kth.github.io

https://id2221kth.github.io

The Questions-Answers Page

https://tinyurl. com/hk7hzpwb

https://tinyurl.com/hk7hzpw5

Where Are We?

Data Processing

Pregel, GraphLab, PowerGraph Spark SQL Milib
GraphX, X-Streem, Chaos Tensorflow

MapReduce, Dryad Storm, SEEP, Naiad, Spark Streaming, Flink,
FlumeJava, Spark Millwheel, Google Dataflow

Data Storage

Dynamo, BigTable,
GFS, Flat FS Cassandra

Resource Management

Mesos, YARN

What do we do when there is too much data to process?

Scale Up vs. Scale Out

» Scale up or scale vertically: adding resources to a single node in a system.

» Scale out or scale horizontally: adding more nodes to a system.

Taxonomy of Parallel Architectures

Shared nothing Shared disk
[Interconnect] % %
........ [Interconnect]

O Process |:| Memory

Shared memory

DeWitt, D. and Gray, J. “Parallel database systems: the future of high performance database systems”. ACM Communications, 35(6), 85-98, 1992.

MapReduce

» A shared nothing architecture for processing large data sets with a parallel /distributed
algorithm on clusters of commodity hardware.

Challenges

» How to distribute computation?
» How can we make it easy to write distributed programs?

» Machines failure.

Challenge

» MapReduce takes care of parallelization, fault tolerance, and data distribution.

» Hide system-level details from programmers.

[http://www. johnlund.com/page/8358/elephant-on-a-scooter.asp]

MapReduce Definition

» A programming model: to batch process large data sets (inspired by functional pro-
gramming).

» An execution framework: to run parallel algorithms on clusters of commodity hard-
ware.

Programming Model

I'm glad | don’'t
have to hunt for
my food,

Il don't even
know where
sandwiches live.

Map Shuffle/Group Reduce

Word Count

» Count the number of times each distinct word appears in the file

> If the file fits in memory: words(doc.txt) | sort | uniq -c

k words(doc.txt) sort uniq -¢
A A A

Y ™

m—0O— n—OCH

» If not?

Data-Parallel Processing (1/2)

» Parallelize the data and process.

words(doc.txt) sort uniqg -c
E e
—-L [O
il
=- I)<“|
il

=. m—0o

Data-Parallel Processing (2/2)

» MapReduce

Map Shuffle Reduce
k ' % ™ A s A Y
—-L [O
il
=- I)<“|
il

=. m—0o

MapReduce Stages - Map

» Each Map task (typically) operates on a single HDFS block.
» Map tasks (usually) run on the node where the block is stored.

» Each Map task generates a set of intermediate key/value pairs.

Map Shuffle Reduce
- A Y A N7 A Y
I
|
n—Q<
T
|
I \||—~O<|"
nm

mm—O

MapReduce Stages - Shuffle and Sort

» Sorts and consolidates intermediate data from all mappers.
» Happens after all Map tasks are complete and before Reduce tasks start.

Map Shuffle Reduce
A A

MapReduce Stages - Reduce

» Each Reduce task operates on all intermediate values associated with the same in-
termediate key.

» Produces the final output.

Map Shuffle Reduce
A

e

x

I II—~O<|;

MapReduce Data Flow (1/5)

Input Input format 1 l l

files

MapReduce Data Flow (2/5)

Sl

Input Input format
files 1 l 1

MapReduce Data Flow (3/5)

Input Input format 1 1

Partitioner Partitioner

Shuffle and Sort

i

ol MapReduce Data Flow (4/5)

Input format 1

= o

v

Partitioner Partitioner Partitioner

pHit

Shuffle and Sort

Reducer Reducer

ol MapReduce Data Flow (5/5)

Input format l l l
n

Partitioner Partitioner Partitioner

Shuffle and Sort

Reducer Reducer

Word Count in MapReduce

Consider doing a word count of the following file using MapReduce

Input file

Hello World Bye World
Hello Hadoop Goodbye Hadoop

Reducer

(Bye, 1)
(Goodbye, 1)
(Hadoop, 2)

(Hello, 2)
(World, 2)

Output file

Word Count in MapReduce - Map (1/2)

Input data (hdfs files)

Hello World Bye World
Hello Hadoop Goodbye Hadoop

Input format

Mapper

0 Hello World Bye World

21 | Hello Hadoop Goodbye Hadoop ———

44

Word Count in MapReduce - Map (2/2)

Input data (hdfs files)

Hello World Bye World
Hello Hadoop Goodbye Hadoop

Mapper

0 Hello World Bye World

map()
21 | Hello Hadoop Goodbye Hadoop

44

map()

(Hello, 1)
(World, 1)
(Bye, 1)
(World, 1)

(Hello, 1)
(Hadoop, 1)
(Goodbye, 1)
(Hadoop, 1)

Word Count in MapReduce - Shuffle and Sort (1/3)

Mapper Node 1

Mapper (Hello, 1)

(World, 1)
(Bye, 1)

map0 (World, 1) (Hello, (1, 1))
(World, (2, 1))
x (Bye’ (1))
(Hadoop, (1, 1))

map() (Hello, 1) (Goodbye, (1))
(Hadoop, 1)
(Goodbye, 1)
(Hadoop, 1)

Word Count in MapReduce - Shuffle and Sort (2/3)

Mapper Node 1

..

’ Mapper (Hello, 1) ;
H (World, 1) '
. (Bye, 1) .
map() (World, 1) (Hello, (1, 1)) :
' (World, (1, 1)) H
: x (Bye, (1)) .
: (Hadoop, (1, 1)) |
: map() (Hello, 1) (Goodbye, (1)) |
H (Hadoop, 1) |
| (Goodbye, 1) |
) (Hadoop, 1) h
MapperNode2
:' Mapper :
: (Hello, 1) :
: (Hello, (1)) :
: (fg)‘;‘;‘fﬁ) (Spark, (1, 1)) | !
' (Spark, 1) (Bye, (1) |

Word Count in MapReduce - Shuffle and Sort (3/3)

. Mapper Node1 _ ReducerNode 1_
VETI H . :
= : D Word, 1)
: L Ee @)
(Hello, (1, 1)) : : :
e (World, (1, 1)) ' | ;
(Bye, (1)) : AT S .
(Hadoop, (1, 1)) | Reducer Node 2__
map() (Goodbye, (1)) %
H | (Hello, (1, 1,2)) | !
Mapper Node 2 x e ~

e Reducer Node 3
Mapper : [N
(Hello, (1)) : : :
(Spark, (1. 1) : L (Spark, (1, 1 .
®ve @) E | (Ghoe @y
H | (Hadoop, (1,1)) | |

Word Count in MapReduce - Reduce (1/2)

Reducer Node 1

E Reducer 1 E

.| (World, (1, 1)) H

.| (Bye, (1,1) :
e ReducerNode2 _________.

! Reducer 2 |

! | (Hello, (1,1, 1)) ——

H Reducer 3

| (spark, (1, 1))

| (Goodbye, (1))

! | (Hadoop, (1, 1)

Word Count in MapReduce - Reduce (2/2)

Reducer Node 1

(Spark, (1, 1)) =
(Goodbye, (1))
(Hadoop, (1, 1))

msesessscssamessssssscesesessssss, . Final output (hdfs files)

Reducer 1

(World, 2)
(Bye, 2)

reduce()

reduce()

Reducer 2

reduce() (Hello, 3)

Reducer 3 .

reduce() . (Spark, 2)
reduce() _ (Goodbye, 1)
_ (Hadoop, 2)

reduce()

Mapper

The Mapper

» Input: (key, value) pairs

» Output: a list of (key, value) pairs

» The Mapper may use or completely ignore the input key.
» A standard pattern is to read one line of a file at a time.

* Key: the byte offset
e Value: the content of the line

map(in_key, in_value) -> list of (inter_key, inter_value)

(in_key, in_value) = map() = (inter_keyl, inter_valuel)
(inter_key2, inter_value2)
(inter_key3, inter_value3)
(inter_key4, inter_value4)

The Mapper Example (1/3)

» Turn input into upper case

map(k, v) = emit (k.to_upper, v.to_upper)

(kth, this is the course id2221) = map() = (KTH, THIS IS THE COURSE ID2221)

The Mapper Example (2/3)

» Count the number of characters in the input

map(k, v) = emit (k, v.length)

(kth, this is the course id2221) = map() = (kth, 26)

The Mapper Example (3/3)

» Turn each word in the input into pair of (word, 1)

map(k, v) = foreach w in v emit (w, 1)

(21, Hello Hadoop Goodbye Hadoop) = map() = (Hello, 1)
(Hadoop, 1)
(Goodbye, 1)
(Hadoop, 1)

Reducer

Shuffle and Sort

» After the Map phase, all intermediate (key, value) pairs are grouped by the interme-

diate keys.

» Each (key, list of values) is passed to a Reducer.

(hadoop, 45)

(spark, 23)

(hadoop, 12)
(hadoop, 45)

(hadoop, 12)

(spark, 15)

(spark, 2)

(spark, 2)
(spark, 15)
(spark, 23)

Reducer 1

Reducer 2

The Reducer

» Input: (key, list of values) pairs
» Output: a (key, value) pair or list of (key, value) pairs

» The Reducer outputs zero or more final (key, value) pairs

reduce (inter_key, [inter_valuel, inter_value2, ...]) -> (out_key, out_value)

(inter_k, [inter_vl, inter_v2, ---]) = reduce() = (outk, out.v)

or

(inter_k, [inter_vl, inter_v2, ---]1) = reduce() = (out_k, out_vl)
(out_k, out_v2)

The Reducer Example (1/3)

» Add up all the values associated with each intermediate key

reduce(k, vals) = {
sum = O
foreach v in vals sum += v
emit (k, sum)

}

(Hello, [1, 1, 1]) = reduce() = (Hello, 3)

(Bye, [1]) = reduce() = (Bye, 1)

The Reducer Example (2/3)

» Get the maximum value of each intermediate key

reduce(k, vals) = emit (k, max(vals))

(KTH, [5, 1, 12, 7]) = reduce() = (KTH, 12)

The Reducer Example (3/3)

» Identify reducer

reduce(k, vals) = foreach v in vals emit (k, v))

(KTH, [5, 1, 12, 7]1) = reduce() = (KTH, 5)
(KTH, 1)

(KTH, 12)
(KTH, 7)

& %
£ KTH

Example: Word Count - map

.
&

%ﬂméﬁ

public static class MyMap extends Mapper<...> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();

public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);

while (tokenizer.hasMoreTokens()) {
word.set (tokenizer.nextToken());
context.write(word, one);
I
}

}

Example: Word Count - reduce

public static class MyReduce extends Reducer<...> {
public void reduce(Text key, Iterator<...> values, Context context)
throws IOException, InterruptedException {
int sum = O;

while (values.hasNext())
sum += values.next().get();

context.write(key, new IntWritable(sum));

}

}

Example: Word Count - driver

public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = new Job(conf, "wordcount");

job.setOutputKeyClass(Text.class) ;
job.setOutputValueClass(IntWritable.class);

job.setMapperClass(MyMap.class) ;
job.setCombinerClass (MyReduce.class) ;
job.setReducerClass (MyReduce.class) ;

job.setInputFormatClass(TextInputFormat.class) ;
job.setOutputFormatClass (TextOutputFormat.class) ;

FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));

job.waitForCompletion(true) ;

MapReduce Algorithm Design

MapReduce Algorithm Design

» Local aggregation

> Joining

» Sorting

MapReduce Algorithm Design

» Local aggregation

> Joining

» Sorting

Local Aggregation - In-Map Combiner (1/2)

> In some cases, there is significant repetition in the intermediate keys produced by
each map task, and the reduce function is commutative and associative.

Mapper 1 ... Redugerl _

(World, (1, 1))
(Bye, (1, 1))

(Hello, (1, 1))
(World, (1, 1))

®ye. (1) : Meeeeieeeeennas .
(Hadoop, (1, 1)) ' ... Reducer2 _
(Goodbye, (1)) : . =

(Hello, (1, 1, 1))

| Reducers
(Hello, (1)) ' '
(Spark, (1, 1)) H B (Spark, (1, 1))
(Bye, (1)) H | (Goodbye, (1))
H + | (Hadoop, (1, 1))

Local Aggregation - In-Map Combiner (2/2)

» Merge partially data before it is sent over the network to the reducer.

» Typically the same code for the combiner and the reduce function.

Mapper 1 ,---Reducerl
(World, (2))
(Bye, (1, 1))
(Hello, (2))
(World, (2)) : | !
(Bye, (1)) ! IREEELLERITSILE ‘
(Hadoop, (2)) : ... Reducer2
(Goodbye, (1)) H .

(Hello, (2, 1))

(Hello, (1)) ' H
(Spark, (2)) : | (Spark, (2))
(Bye, (1)) H | (Goodbye, (1))
H ' (Hadoop, (2))

MapReduce Algorithm Design

» Local aggregation

> Joining

» Sorting

» Joins are relational constructs you use to combine relations together.

» In MapReduce joins are applicable in situations where you have two or more
datasets you want to combine.

4

Employee ID | First Name | Department ID Department | Department
1 John 10 ID Name

2 Daniel 20 10 Sales

3 Anne 10 20 HR

4 George 20

5 Tim 10

First Name | Department
Name

John Sales

Daniel HR

Anne Sales

George HR

Tim Sales

Joins - Two Strategies

» Reduce-side join
 Repartition join
e When joining two or more large datasets together

» Map-side join
* Replication join
e When one of the datasets is small enough to cache

Data Set A i

i
Input | 1 Join (bob, ‘md’)
Split \ > Mapper >
1
1
wo Lip]
npu oin »
Split [y Mapper v
1
)
I i > J
nput oin »
Split 1 Mapper v
i
> 1
Input i Join (bob 37) [
Split -:'> Mapper v
1
1
: 1
Input i p| Jon (bob33)
Split H Mapper v
1
|
[M. Donald et al.

Shuffle
and Sort

Join
Reducer

>

—

Join
Reducer

Join
Reducer

—

Output
Part

Output
Part

Qutput
Part

, MapReduce design patterns, 0’Reilly, 2012.]

:' Data SetA ‘:
VN Y S
1 1
v Input |t »| Reploin | Output
i st [T) Mapper par
|
1 1
1 > 1 I>
1 1
o[Input | ».| Reploin | Output
H Split H _: Mapper p;:‘
i !
1 1
1 _B 1 _B
1 1 i
Vol put |y ».| Reploin | Output
Vol oselit [T 77| Mapper Pa‘r’t
>

i i
P S
ol nput L ».| RepJoin | Output
i spit. [»| Mapper Pan
A .

D Distributed

cache
Data
SetB

[M. Donald et al., MapReduce design patterns, 0’Reilly, 2012.]

MapReduce Algorithm Design

» Local aggregation

> Joining

» Sorting

Sort (1/3)

» Assume you want to have your job output in total sort order.

» Trivial with a single Reducer.
» Keys are passed to the Reducer in sorted order.

oo Mapperl
(Hello, (2))
(World, (2))
(Hadoon, 20 :
. ladoop, .
(Goodb;e. W : Reducer 1
y ; L (Bye ()
L ' (Hadoop, (2))
Trmmmmmmmmmmeeeet H (Hello, (3))
Mapper 2 x ! (Goodbye, (1)
------------------- . (Spark (2))
© (World, (2))
(Hello, (1)) H " B
(Spark, (2)) H R .
(Bye, (1)) :

Sort (2/3)

» What if we have multiple Reducer?

Reducer 1

...... Mapper 1 ___
E : : (World, (2)) :
: : BN CTACI
H (Hello, (2)) H H H
: (World, (2)) : ; ;

(Bye, (1)) : [.

: (Hadoop, (2)) ' Reducer 2
(Goodbye, (1)) . .
o D (Hello,@) |
(Hello, (1))
H (Spark, (2)) H © o (spak.(2) -
: B @ : : | (Goodbye, (1)
H H | (Hadoop, 2))

Sort (3/3)

» For multiple Reducers we need to choose a partitioning function

keyl < key2 = partition(keyl) < partition(key2)

Mapper 1 .- Reducer1_ __
E : GO N
H (Hello, (2)) H :
H (World, (2) H 5 .
. (Bye, (1) : .

(Hadoop, (2))
(Goodbye, (1))

(Hadoop, (2))
' (Hello, (3))
(Goodbye, (1))

L. Redueers
(Hello, (1)) : I
(Spark, (2) : :
: Spark, (2)
(Bye, (1)) : Ew%ar‘d. EZB

g

%

HOW DOES THIS THINGS

Implementation

Architecture

split 0

split 1

split 2

split 3

split 4

Input
files

(1) fork .

(1ifork

@ ,4\ @

assign assign
_~map reduce
P N

(4) local write

Map
phasr

Intermediate files Reduce Output
(on local disks) phase files

MapReduce Execution (1/7)

» The user program divides the input files into M splits.

* A typical size of a split is the size of a HDFS block (64 MB).
o Converts them to key/value pairs.

> It starts up many copies of the program on a cluster of machines.

User
Program

(1) fork - -..(1) fork

(1)ifork

Input Map Intermediate files Reduce Output
files phasr (on local disks) phase files

MapReduce Execution (2/7)

» One of the copies of the program is master, and the rest are workers.

» The master assigns works to the workers.
e |t picks idle workers and assigns each one a map task or a reduce task.

Input Map Intermediate files Reduce Output
files phasr (on local disks) phase files

MapReduce Execution (3/7)

» A map worker reads the contents of the corresponding input splits.

» It parses key/value pairs out of the input data and passes each pair to the user defined
map function.

» The key/value pairs produced by the map function are buffered in memory.

User
Program
(1) fork . . (1) fork

(1):fork.

i assign assign
i _-imap reduce
_// ©%fead

(4) local write

(5) read @

Input Map Intermediate files Reduce Output
files phasr (on local disks) phase files

MapReduce Execution (4/7)

» The buffered pairs are periodically written to local disk.
¢ They are partitioned into R regions (hash(key) mod R).

» The locations of the buffered pairs on the local disk are passed back to the master.

» The master forwards these locations to the reduce workers.

Input Map Intermediate files. Reduce Output
files phasr (on local disks) phase files

MapReduce Execution (5/7)

» A reduce worker reads the buffered data from the local disks of the map workers.

» When a reduce worker has read all intermediate data, it sorts it by the intermediate
keys.

Input Map Intermediate files Reduce Output
files phasr (on local disks) phase files

MapReduce Execution (6/7)

» The reduce worker iterates over the intermediate data.

» For each unique intermediate key, it passes the key and the corresponding set of
intermediate values to the user defined reduce function.

» The output of the reduce function is appended to a final output file for this reduce
partition.

MapReduce Execution (7/7)

» When all map tasks and reduce tasks have been completed, the master wakes up the
user program.

Input Map Intermediate files Reduce Output
files phasr (on local disks) phase files

Hadoop MapReduce and HDFS

&

Job
Tracker

Name
Node

Task
Tracker

Data
Node

Task

Task

Task
Tracker,

Data
Node

Task
racker

Data
Node

Fault Tolerance - Worker

» Detect failure via periodic heartbeats.

» Re-execute in-progress map and reduce tasks.

» Re-execute completed map tasks: their output is stored on the local disk of the failed
machine and is therefore inaccessible.

» Completed reduce tasks do not need to be re-executed since their output is stored in
a global filesystem.

Fault Tolerance - Master

» State is periodically checkpointed: a new copy of master starts from the last
checkpoint state.

Summary

Summary

» Scaling out: shared nothing architecture

» MapReduce

e Programming model: Map and Reduce
¢ Execution framework

References

> J. Dean et al., "MapReduce: simplified data processing on large clusters”, Commu-
nications of the ACM, 2008.

» J. Lin et al., "Data-intensive text processing with MapReduce”, Synthesis Lectures
on Human Language Technologies, 2010.

Questions?

	
	

