
Introduction to Data Stream Processing

Amir H. Payberah
payberah@kth.se

2023-09-25



The Course Web Page

https://id2221kth.github.io

1 / 55

https://id2221kth.github.io


The Questions-Answers Page

https://tinyurl.com/hk7hzpw5

2 / 55

https://tinyurl.com/hk7hzpw5


Where Are We?
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Stream Processing (1/3)

I Stream processing is the act of continuously incorporating new data to compute a
result.
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Stream Processing (2/3)

I The input data is unbounded.
• A series of events, no predetermined beginning or end.

• E.g., credit card transactions, clicks on a website, or sensor readings from IoT devices.
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Stream Processing (3/3)

I Database Management Systems (DBMS): data-at-rest analytics
• Store and index data before processing it.
• Process data only when explicitly asked by the users.

I Stream Processing Systems (SPS): data-in-motion analytics
• Processing information as it flows, without storing them persistently.
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Streaming Data

I Data stream is unbound data, which is broken into a sequence of individual tuples.

I A data tuple is the atomic data item in a data stream.

I Can be structured, semi-structured, and unstructured.
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Streaming Processing Patterns

I Micro-batch systems
• Batch engines
• Slicing up the unbounded data into a sets of bounded data, then process each batch.

I Continuous processing-based systems
• Each node in the system continually listens to messages from other nodes and outputs

new updates to its child nodes.
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Event and Processing Time
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Windowing (1/2)

I Window: a buffer associated with an input port to retain previously received tuples.

I Different windowing management policies.

• Count-based policy: the maximum number of tuples a window buffer can hold
• Time-based policy: based on processing or event time period
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Windowing (2/2)

I Two types of windows: tumbling and sliding

I Tumbling window: supports batch operations.
• When the buffer fills up, all the tuples are evicted.

I Sliding window: supports incremental operations.
• When the buffer fills up, older tuples are evicted.
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Event Time vs. Processing Time (1/2)

I Event time: the time at which events actually occurred.
• Timestamps inserted into each record at the source.

I Prcosseing time: the time when the record is received at the streaming application.
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Event Time vs. Processing Time (2/2)

I Ideally, event time and processing time should be equal.

I Skew between event time and processing time.

[https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101]
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Triggering and Windowing

I Triggering determines when in processing time the results of groupings are emitted
as panes.

• Time-based or data-driven triggers

I Windowing determines where in event time data are grouped together for processing.

• Time-based or data-driven triggers
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Time-based Triggering (Processing Time)

I The system buffers up incoming data into windows until some amount of processing
time has passed.

I E.g., five-minute fixed windows

[https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101]
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Time-based Windowing (Event Time) (1/3)

I Reflect the times at which events actually happened.

I Handling out-of-order evnets.

[https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101]
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Time-based Windowing (Event Time) (2/3)

I Watermarking helps a stream processing system to deal with lateness.

I Watermarks flow as part of the data stream and carry a timestamp t.

I A watermark is a threshold to specify how long the system waits for late events.

I Streaming systems uses watermarks to measure progress in event time.
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Time-based Windowing (Event Time) (3/3)

I A W(t) declares that event time has reached time t in that stream
• There should be no more elements from the stream with a timestamp t′ ≤ t.

I It is possible that certain elements will violate the watermark condition.
• After the W(t) has occurred, more elements with timestamp t′ ≤ t will occur.

I If an arriving event lies within the watermark, it gets used to update a query.

I Streaming programs may explicitly expect some late elements.
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Winowing and Triggering - Example (1/3)

I Batch processing
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Winowing and Triggering - Example (2/3)

I Trigger at period (time-based triggers)

I Trigger at count (data-driven triggers)
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Winowing and Triggering - Example (3/3)

I Fixed window, trigger at period (micro-batch)

I Fixed window, trigger at watermark (streaming)
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Data Stream Storage
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The Problem

I We need disseminate streams of events from various producers to various consumers.
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Possible Solution?

I Messaging systems
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What is Messaging System?

I Messaging system is an approach to notify consumers about new events.

I Messaging systems
• Direct messaging
• Message brokers
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Direct Messaging (1/2)

I Necessary in latency critical applications (e.g., remote surgery).

I A producer sends a message containing the event, which is pushed to consumers.

I Both consumers and producers have to be online at the same time.
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Direct Messaging (2/2)

I What happens if a consumer crashes or temporarily goes offline? (not durable)

I What happens if producers send messages faster than the consumers can process?

• Dropping messages
• Backpressure

I We need message brokers that can log events to process at a later time.
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Message Broker

[https://bluesyemre.com/2018/10/16/thousands-of-scientists-publish-a-paper-every-five-days]
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Message Broker

I A message broker decouples the producer-consumer interaction.

I It runs as a server, with producers and consumers connecting to it as clients.

I Producers write messages to the broker, and consumers receive them by reading them
from the broker.

I Consumers are generally asynchronous.
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Partitioned Logs

I In typical message brokers, once a message is consumed, it is deleted.

I Log-based message brokers durably store all events in a sequential log.

I A log is an append-only sequence of records on disk.

I A producer sends a message by appending it to the end of the log.

I A consumer receives messages by reading the log sequentially.
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Kafka - A Log-Based Message Broker
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Kafka (1/5)

I Kafka is a distributed, topic oriented, partitioned, replicated commit log service.
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Kafka (2/5)

I Kafka is a distributed, topic oriented, partitioned, replicated commit log service.
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Kafka (3/5)

I Kafka is a distributed, topic oriented, partitioned, replicated commit log service.
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Kafka (4/5)

I Kafka is a distributed, topic oriented, partitioned, replicated commit log service.
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Kafka (5/5)

I Kafka is a distributed, topic oriented, partitioned, replicated commit log service.
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Logs, Topics and Partition (1/6)

I Kafka is about logs.

I Topics are queues: a stream of messages of a particular type
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Logs, Topics and Partition (2/6)

I Each message is assigned a sequential id called an offset.
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Logs, Topics and Partition (3/6)

I Topics are logical collections of partitions (the physical files).

• Ordered
• Append only
• Immutable
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Logs, Topics and Partition (4/6)

I Ordering is only guaranteed within a partition for a topic.

I Messages sent by a producer to a particular topic partition will be appended in the
order they are sent.

I A consumer instance sees messages in the order they are stored in the log.
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Logs, Topics and Partition (5/6)

I Partitions of a topic are replicated: fault-tolerance

I A broker contains some of the partitions for a topic.

I One broker is the leader of a partition: all writes and reads must go to the leader.
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Partitioned Logs (6/6)
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Go to www.menti.com, and use the code 2977 7833

I Kafka maintains feeds of messages in categories called?

1. Chunks

2. Topic

3. Domain

4. Message
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Go to www.menti.com, and use the code 1437 1825

I Kafka only provides a order over messages within a partition and among partitions?

1. Partial, partial

2. Partial, total

3. Total, partial

4. Total, total
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Kafka Architecture
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Coordination

I Kafka uses Zookeeper for the following tasks:

I Detecting the addition and the removal of brokers and consumers.

I Keeping track of the consumed offset of each partition.

47 / 55



Coordination

I Kafka uses Zookeeper for the following tasks:

I Detecting the addition and the removal of brokers and consumers.

I Keeping track of the consumed offset of each partition.

47 / 55



State in Kafka

I Brokers are sateless: no metadata for consumers-producers in brokers.

I Consumers are responsible for keeping track of offsets.

I Messages in queues expire based on pre-configured time periods (e.g., once a day).
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Delivery Guarantees

I Kafka guarantees that messages from a single partition are delivered to a consumer
in order.

I There is no guarantee on the ordering of messages coming from different partitions.

I Kafka only guarantees at-least-once delivery.
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Start and Work With Kafka

# Start the ZooKeeper

zookeeper-server-start.sh config/zookeeper.properties

# Start the Kafka server

kafka-server-start.sh config/server.properties

# Create a topic, called "avg"

kafka-topics.sh --create --topic avg --bootstrap-server localhost:9092 --replication-factor 1

--partitions 1

# Produce messages and send them to the topic "avg"

kafka-console-producer.sh --topic avg --bootstrap-server localhost:9092

# Consume the messages sent to the topic "avg"

kafka-console-consumer.sh --topic avg --from-beginning --bootstrap-server localhost:9092
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Summary
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Summary

I SPS vs. DBMS

I Data stream, unbounded data, tuples

I Event-time vs. processing time

I Windowing and triggering
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Summary

I Messaging system and partitioned logs

I Decoupling producers and consumers

I Kafka: distributed, topic oriented, partitioned, replicated log service

I Logs, topcs, partition

I Kafka architecture: producer, consumer, broker, coordinator
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Questions?
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