b

k.
EFXTHE

NSKAP
3% OCH KONST 3%

S

Introduction to Data Stream Processing

Amir H. Payberah
payberah@kth.se
2023-09-25

The Course Web Page

https://id2221kth.github.io

https://id2221kth.github.io

The Questions-Answers Page

https://tinyurl. com/hk7hzpwb

https://tinyurl.com/hk7hzpw5

Where Are We?

Data Processing

Pregel, GraphLab, PowerGraph Spark SQL Milib
GraphX, X-Streem, Chaos Tensorflow

MapReduce, Dryad Storm, SEEP, Naiad, Spark Streaming, Flink,
FlumeJava, Spark h Millwheel, Google Dataflow ‘

Data Storage

Dynamo, BigTable,
GFS, Flat FS Cassandra

Resource Management

Mesos, YARN

Stream Processing (1/3)

» Stream processing is the act of continuously incorporating new data to compute a
result.

Stream Processing (2/3)

» The input data is unbounded.
e A series of events, no predetermined beginning or end.

Stream Processing (2/3)

» The input data is unbounded.

e A series of events, no predetermined beginning or end.
e E.g., credit card transactions, clicks on a website, or sensor readings from loT devices.

\

TR Teowsactions

@ ¥=

C\ He@«’am

Stream Processing (3/3)

» Database Management Systems (DBMS): data-at-rest analytics

e Store and index data before processing it.
e Process data only when explicitly asked by the users.

Dews srs

Data

Y
-M

Stream Processing (3/3)

» Database Management Systems (DBMS): data-at-rest analytics

e Store and index data before processing it.
e Process data only when explicitly asked by the users.

» Stream Processing Systems (SPS): data-in-motion analytics
e Processing information as it flows, without storing them persistently.

Dews srs

-
- Data @

Streaming Data

» Data stream is unbound data, which is broken into a sequence of individual tuples.

» A data tuple is the atomic data item in a data stream.

» Can be structured, semi-structured, and unstructured.

Streaming Processing Patterns

» Micro-batch systems

e Batch engines
e Slicing up the unbounded data into a sets of bounded data, then process each batch.

DDD;&%

Microbatches of DataFromes

Streaming Processing Patterns

» Micro-batch systems

e Batch engines
e Slicing up the unbounded data into a sets of bounded data, then process each batch.

DDD;&%

Microbatches of DataFromes

» Continuous processing-based systems

e Each node in the system continually listens to messages from other nodes and outputs
new updates to its child nodes.

=)=

One record at a time

Event and Processing Time

Windowing (1/2)

» Window: a buffer associated with an input port to retain previously received tuples.

Windowing (1/2)

» Window: a buffer associated with an input port to retain previously received tuples.

» Different windowing management policies.

Windowing (1/2)

» Window: a buffer associated with an input port to retain previously received tuples.

» Different windowing management policies.

e Count-based policy: the maximum number of tuples a window buffer can hold

Windowing (1/2)

» Window: a buffer associated with an input port to retain previously received tuples.

» Different windowing management policies.

e Count-based policy: the maximum number of tuples a window buffer can hold
e Time-based policy: based on processing or event time period

Windowing (2/2)

» Two types of windows: tumbling and sliding

Windowing (2/2)

» Two types of windows: tumbling and sliding

» Tumbling window: supports batch operations.
e When the buffer fills up, all the tuples are evicted.

1 GERT | EREEIC]

Windowing (2/2)

» Two types of windows: tumbling and sliding

» Tumbling window: supports batch operations.
e When the buffer fills up, all the tuples are evicted.

1 EEET | EEERIC]

» Sliding window: supports incremental operations.
e When the buffer fills up, older tuples are evicted.

C I EE] EER] EREE EEEE] EEEE

Event Time vs. Processing Time (1/2)

» Event time: the time at which events actually occurred.
e Timestamps inserted into each record at the source.

» Prcosseing time: the time when the record is received at the streaming application.

Event Time vs. Processing Time (2/2)

» |deally, event time and processing time should be equal.

» Skew between event time and processing time.

Reality

Event Time

[https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101]

Triggering and Windowing

> Triggering determines when in processing time the results of groupings are emitted
as panes.

Triggering and Windowing

> Triggering determines when in processing time the results of groupings are emitted
as panes.

» Windowing determines where in event time data are grouped together for processing.

Triggering and Windowing

> Triggering determines when in processing time the results of groupings are emitted
as panes.

e Time-based or data-driven triggers

» Windowing determines where in event time data are grouped together for processing.

e Time-based or data-driven triggers

Time-based Triggering (Processing Time)

» The system buffers up incoming data into windows until some amount of processing
time has passed.

» E.g., five-minute fixed windows

[https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101]

Time-based Windowing (Event Time) (1/3)

» Reflect the times at which events actually happened.

» Handling out-of-order evnets.

oo J| cocooo [l cooceo
©ooooo ooooon oooooo Output
cooooo | oooooo | oooooca

[https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101]

Time-based Windowing (Event Time) (2/3)

» Watermarking helps a stream processing system to deal with lateness.

Stream (in order)

I 1
» =[] [1e]a7][2s] [1a]{fna] [0] o | »
Wwiz2op wi11)

/ Event

Watermark

Event timestamp

Time-based Windowing (Event Time) (2/3)

» Watermarking helps a stream processing system to deal with lateness.

» Watermarks flow as part of the data stream and carry a timestamp t.

Stream (in order)

I 1
» =[] [1e]a7][2s] [1a]{fna] [0] o | »
Wwiz2op wi11)

/ Event

Watermark

Event timestamp

Time-based Windowing (Event Time) (2/3)

» Watermarking helps a stream processing system to deal with lateness.
» Watermarks flow as part of the data stream and carry a timestamp t.

» A watermark is a threshold to specify how long the system waits for late events.

Stream (in order)

I 1
» =[] [1e]a7][2s] [1a]{fna] [0] o | »
Wwiz2op wi11)

/ Event

Watermark

Event timestamp

Time-based Windowing (Event Time) (2/3)

>

Watermarking helps a stream processing system to deal with lateness.

v

Watermarks flow as part of the data stream and carry a timestamp t.

» A watermark is a threshold to specify how long the system waits for late events.

v

Streaming systems uses watermarks to measure progress in event time.

Stream (in order)

I 1
» =[] [1e]a7][2s] [1a]{fna] [0] o | »
Wwiz2op wi11)

/ Event

Watermark

Event timestamp

Time-based Windowing (Event Time) (3/3)

» A W(t) declares that event time has reached time t in that stream
e There should be no more elements from the stream with a timestamp t’ < t.

Stream {out of order)

1]
W (@)]! [2][1] [z]e)] (6] E] 1) o

Wi17) wi1)

Event
Watermark

Event timestamp

Time-based Windowing (Event Time) (3/3)

» A W(t) declares that event time has reached time t in that stream
e There should be no more elements from the stream with a timestamp t’ < t.

» |t is possible that certain elements will violate the watermark condition.
o After the W(t) has occurred, more elements with timestamp t’ < t will occur.

Stream {out of order)

1]
W (@)]! [2][1] [z]e)] (6] E] 1) o

Wi17) wi1)

Event
Watermark

Event timestamp

Time-based Windowing (Event Time) (3/3)

» A W(t) declares that event time has reached time t in that stream
e There should be no more elements from the stream with a timestamp t’ < t.

» |t is possible that certain elements will violate the watermark condition.
o After the W(t) has occurred, more elements with timestamp t’ < t will occur.

» If an arriving event lies within the watermark, it gets used to update a query.

Stream {out of order)

1]
W (@)]! [2][1] [z]e)] (6] E] 1) o

Wi17) wi1)

Event
Watermark

Event timestamp

Time-based Windowing (Event Time) (3/3)

>

A W(t) declares that event time has reached time t in that stream
e There should be no more elements from the stream with a timestamp t’ < t.

v

It is possible that certain elements will violate the watermark condition.
o After the W(t) has occurred, more elements with timestamp t’ < t will occur.

v

If an arriving event lies within the watermark, it gets used to update a query.

v

Streaming programs may explicitly expect some late elements.

Stream {out of order)

1]
W (@)]! [2][1] [z]e)] (6] E] 1) o

Wi17) wi1)

Event
Watermark

Event timestamp

Winowing and Triggering - Example (1/3)

» Batch processing

12:06 12:07 12:08 12:09
+ + + +

Processing Time

@

12001 1202 12003 12004 12105 12:06 12:07 12:08

Event. Time

®

Actual watermark: ~ ======eea- >

Ideal watermark:

Winowing and Triggering - Example (2/3)

» Trigger at period (time-based triggers)

=
2
{3
= 18
o g @
£ = 11
25 @ ®
£ 3
= E @ 12
®

' ' ' ' ' ' '
12:01 12:02 12:03 12:04 12:05 12:06 12:07 12:08

Event Time

Winowing and Triggering - Example (2/3)

Trigger at period (time-based triggers)
Trigger at count (data-driven triggers)

2 a % 5 +
3 &
3 1 B &
, 5 ® s ot 12
g8 1 £ =
g g
5 @ ® P! ® ®
7 & 7 11
B 5o 5 4
Es @ Pel @
E 12 = &
©, © ®, o =

'
12:01 12:02 12:03 12:04 12:05 12:06 12:07 12:08

Event Time

' 4 ' L L L '
t t t + t u t
12:01 12:02 12:03 12:04 12:05 12:06 12:07 12:08

Event Time

Winowing and Triggering - Example (3/3)

» Fixed window, trigger at period (micro-batch)

=
= Sy
8 14 12LL
el @
AT 2| 3
sl & ®
z g 14 3
: ©)
Pl =1 N I 1 2
B

12:01 12:02 1203 12:04 1205 1206 12:07 12:0¢
Event Time

Actual watermark: =~ ========== >

Ideal watermark:

Winowing and Triggering - Example (3/3)

Fixed window, trigger at period (micro-batch)

Fixed window, trigger at watermark (streaming)

= =
a @ 12@ a7 12:1
o ® 3 5

g) % T 3 g g 1+ _”’." E

Fel & O] S ZTT 3

il 147 3 2 ar e

g ©) §= : ©)

J -1 N (N v A —] ! (g

£ 2 i3 L
- 21 eGes @

12:01 12:02 1203 12:04 1205 1206 12:07 12:0¢

Event Time

" n

12001 12:02 12:03 1204 12005 1206 12:07 1208
Event Time

Actual watermark: =~ ==========s >

Ideal watermark:

Actual watermark: = ====em-ae >

Ideal watermark:

Data Stream Storage

The Problem

» We need disseminate streams of events from various producers to various consumers.

Data Producers Data Consumers

D == Q="
even

\$ G processing

User Transactions

Possible Solution?

» Messaging systems

www.defit.org

What is Messaging System?

» Messaging system is an approach to notify consumers about new events.

What is Messaging System?

» Messaging system is an approach to notify consumers about new events.

> Messaging systems

e Direct messaging
e Message brokers

Direct Messaging (1/2)

» Necessary in latency critical applications (e.g., remote surgery).

» A producer sends a message containing the event, which is pushed to consumers.

g
i \

=)

/\

[] Bl

ATIIIIIR

Direct Messaging (1/2)

» Necessary in latency critical applications (e.g., remote surgery).
» A producer sends a message containing the event, which is pushed to consumers.

» Both consumers and producers have to be online at the same time.

/\

[] Ele

ATIIIIIR

Direct Messaging (2/2)

» What happens if a consumer crashes or temporarily goes offline? (not durable)

Direct Messaging (2/2)

» What happens if a consumer crashes or temporarily goes offline? (not durable)

» What happens if producers send messages faster than the consumers can process?

Direct Messaging (2/2)

» What happens if a consumer crashes or temporarily goes offline? (not durable)

» What happens if producers send messages faster than the consumers can process?
e Dropping messages
e Backpressure

Direct Messaging (2/2)

» What happens if a consumer crashes or temporarily goes offline? (not durable)

» What happens if producers send messages faster than the consumers can process?
e Dropping messages
e Backpressure

» We need message brokers that can log events to process at a later time.

&
0

AIIIIIIIER

Message Broker

[https://bluesyemre.com/2018/10/16/thousands-of-scientists-publish-a-paper-every-five-days]

Message Broker

> A message broker decouples the producer-consumer interaction.

» It runs as a server, with producers and consumers connecting to it as clients.

&
J

Message Broker

> A message broker decouples the producer-consumer interaction.
» It runs as a server, with producers and consumers connecting to it as clients.

» Producers write messages to the broker, and consumers receive them by reading them
from the broker.

&
J

Message Broker

>

A message broker decouples the producer-consumer interaction.

v

It runs as a server, with producers and consumers connecting to it as clients.

v

Producers write messages to the broker, and consumers receive them by reading them
from the broker.

v

Consumers are generally asynchronous.

D

Partitioned Logs

> In typical message brokers, once a message is consumed, it is deleted.

Partitioned Logs

> In typical message brokers, once a message is consumed, it is deleted.

> Log-based message brokers durably store all events in a sequential log.

Partitioned Logs

> In typical message brokers, once a message is consumed, it is deleted.

> Log-based message brokers durably store all events in a sequential log.

» A log is an append-only sequence of records on disk.

Partitioned Logs

>

In typical message brokers, once a message is consumed, it is deleted.

v

Log-based message brokers durably store all events in a sequential log.

v

A log is an append-only sequence of records on disk.

>

» A consumer receives messages by reading the log sequentially.

A producer sends a message by appending it to the end of the log.

Kafka - A Log-Based Message Broker

§@ kafka

Kafka (1/5)

» Kafka is a distributed, topic oriented, partitioned, replicated commit log service.

Web logs
Transactions Warehouse

Metrics Alerting

Audit logs Security

Kafka (2/5)

» Kafka is a distributed, topic oriented, partitioned, replicated commit log service.

Web logs
Transactions

Metrics

Audit logs

Kafka (3/5)

» Kafka is a distributed, topic oriented, partitioned, replicated commit log service.

Source 1

Source 2

Source 3
Broker

Kafka (4/5)

» Kafka is a distributed, topic oriented, partitioned, replicated commit log service.

Topic 1
(Partition 1)

Topic 2

(Partition 1)
—

Broker

Source 1

Source 2

Topic 1
Source 3 (Partition 2)

Topic 2

(Partition 2)
N —

Broker

Kafka (5/5)

» Kafka is a distributed, topic oriented, partitioned, replicated commit log service.

Topic 1
(Partition 1)

Source 1 Topic 2
(Partition 1)

]

Broker

Topic 1
Source 3 (Partition 2)

Topic 2
(Partition 2)

Source 2

Broker

» Kafka is about logs.

Topics and Partition

GET

(1/6)

jkreps-mn;~ jkreps$ tail ~f -n 20 /var/log/apachez/access log
[00 —

/images/apache_feather.gif HTTP/1.1" 200 4128

f0700 “GET /images/producer_consumer.png HTTP/1.1" 200 8¢
-0700] "GET /images/log_anatomy.png HTTP/1.1" 200 19579
-0700] "GET /images/consumer-groups.png HTTP/1.1" 200 268:
-0700] "GET /images/log_compaction.png HTTP/1.1" 200 4141¢
—-0700] "GET /documentation.html HTTP/1.1" 200 189893
-0700] "GET /images/log_cleaner_anatomy.png HTTP/1.1" 200
-0700] "GET /images/kafka_log.png HTTP/1.1" 200 134321
-0700] "GET /images/mirror-maker.png HTTP/1.1" 200 17054
-0700] "GET /documentation.html HTTP/1.1" 200 189937
-0700] "GET /styles.css HTTP/1.1" 304 —
-0700] "GET /images/kafka_logo.png HTTP/1.1" 304 -
-0700] "“GET /images/producer_consumer.png HTTP/1.1" 304 -
-0700] "GET /images/log_anatomy.png HTTP/1.1" 304 -
-0700] "GET /images/consumer-groups.png HTTP/1.1" 304 —
-0700] "GET /images/log_cleaner_anatomy.png HTTP/1.1" 304
-0700] "GET /images/log_compaction.png HTTP/1.1" 304 -
-0700] "GET /images/kafka_log.png HTTP/1.1" 304 —
-0700] "GET /images/mirror-maker.png HTTP/1.1" 304 -
-0700] "GET /documentation.html HTTP/1.1" 200 195264
3|4

5|6|7|8|9 [10]11[12i

» Kafka is about logs.

Topics and Partition (1/6)

» Topics are queues: a stream of messages of a particular type

GET

jkreps-mn;~ jkreps$ tail ~f -n 20 /var/log/apachez/access log
[00 —

/images/apache_feather.gif HTTP/1.1" 200 4128

f0700 “GET /images/producer_consumer.png HTTP/1.1" 200 8¢
-0700] "GET /images/log_anatomy.png HTTP/1.1" 200 19579
-0700] "GET /images/consumer-groups.png HTTP/1.1" 200 268:
-0700] "GET /images/log_compaction.png HTTP/1.1" 200 4141¢
—-0700] "GET /documentation.html HTTP/1.1" 200 189893
-0700] "GET /images/log_cleaner_anatomy.png HTTP/1.1" 200
-0700] "GET /images/kafka_log.png HTTP/1.1" 200 134321
-0700] "GET /images/mirror-maker.png HTTP/1.1" 200 17054
-0700] "GET /documentation.html HTTP/1.1" 200 189937
-0700] "GET /styles.css HTTP/1.1" 304 —
-0700] "GET /images/kafka_logo.png HTTP/1.1" 304 -
-0700] "“GET /images/producer_consumer.png HTTP/1.1" 304 -
-0700] "GET /images/log_anatomy.png HTTP/1.1" 304 -
-0700] "GET /images/consumer-groups.png HTTP/1.1" 304 —
-0700] "GET /images/log_cleaner_anatomy.png HTTP/1.1" 304
-0700] "GET /images/log_compaction.png HTTP/1.1" 304 -
-0700] "GET /images/kafka_log.png HTTP/1.1" 304 —
-0700] "GET /images/mirror-maker.png HTTP/1.1" 304 -
-0700] "GET /documentation.html HTTP/1.1" 200 195264
3|4

5|6|7|8|9 [10]11[12i

Logs, Topics and Partition (2/6)

» Each message is assigned a sequential id called an offset.

Producer

writes

Consumer A Consumer B

(time =7) (time = 11)

Logs, Topics and Partition (3/6)

» Topics are logical collections of partitions (the physical files).

Partition0 [0|1]|2|3|4(5|6]|7]|8

Partition1 |0f1]2(3]|4|5(6]|7|8 Writes

Partition2 [0|1]|2|3|4(5|6]|7]|8

Old » New

Logs, Topics and Partition (3/6)

» Topics are logical collections of partitions (the physical files).

* Ordered
* Append only
e Immutable

Partition0 [0|1]|2|3|4(5|6]|7]|8

Partition1 |0f1]2(3]|4|5(6]|7|8 Writes

Partition2 [0|1]|2|3|4(5|6]|7]|8

Old » New

Logs, Topics and Partition (4/6)

» Ordering is only guaranteed within a partition for a topic.

Partition0 |0(1]|2|3(4|5]|6|7|8]|9

Partition1 [o|1|2[3|4|5|6(7|8]|9 Writes

Partiton2 |0|1]|2(3|4|5(6]|7|8]|9

Old » New

Logs, Topics and Partition (4/6)

» Ordering is only guaranteed within a partition for a topic.

» Messages sent by a producer to a particular topic partition will be appended in the
order they are sent.

Partition0 [0|1]|2|3|4(5|6]|7]|8

Partition1 |0f1]2(3]|4|5(6]|7|8 Writes

Partition2 [0|1]|2|3|4(5|6]|7]|8

Old » New

Logs, Topics and Partition (4/6)

» Ordering is only guaranteed within a partition for a topic.

» Messages sent by a producer to a particular topic partition will be appended in the
order they are sent.

» A consumer instance sees messages in the order they are stored in the log.

Partition0 0|1]2|3(4|5|6(7]|8(9(10/11 125

Partition1 |0f1]2(3]|4|5(6]|7|8 Writes

Partition2 [0|1]|2|3|4(5|6]|7]|8

Old » New

Logs, Topics and Partition (5/6)

» Partitions of a topic are replicated: fault-tolerance

Broker 1

Partition 0 Partition 1

Broker 2

Partition 0 Partition 1

Logs, Topics and Partition (5/6)

» Partitions of a topic are replicated: fault-tolerance

» A broker contains some of the partitions for a topic.

Broker 1

Partition 0 Partition 1

Broker 2

Partition 0 Partition 1

Logs, Topics and Partition (5/6)

» Partitions of a topic are replicated: fault-tolerance
» A broker contains some of the partitions for a topic.

» One broker is the leader of a partition: all writes and reads must go to the leader.

Broker 1 Broker 2

Partition 0 Partition 1

Partition 0 Partition 1

Partitioned Logs (6/6)

P
Partition0|1’2’3’4‘5|6|7’8‘9
S
a4 -
° Producer client
Partiti0n1|1’2’3‘4‘5|6|7’8‘
N
e
Partition 0 Consumergroup
. Consumer client |
2 < Partition 1 © | offsetforBo=4 |
,9 ! offset forB.1=5 !
Partition2|1‘2’3‘4‘5|6|7‘8’9‘10|11|12| | Consumerclient |
\ — | offset forB.2=9 |

read sequentially

VETENSKAP

Go to www.menti.com, and use the code 2977 7833

» Kafka maintains feeds of messages in categories called?

Chunks
Topic

Domain

sl NS

Message

Go to www.menti.com, and use the code 1437 1825

» Kafka only provides a ___ order over messages within a partition and among partitions?

Partial, partial
Partial, total

Total, partial

Sl

Total, total

Kafka Architecture

Producer Producer

Kafka Cluster

Partition 1 Partition 2 Partition 3
(leader) (leader) (leader)

Partition 2 Partition 1

Partition 3 Partitici1 3

....~“.'—

Coordination

» Kafka uses Zookeeper for the following tasks:

Coordination

» Kafka uses Zookeeper for the following tasks:
» Detecting the addition and the removal of brokers and consumers.

» Keeping track of the consumed offset of each partition.

State in Kafka

» Brokers are sateless: no metadata for consumers-producers in brokers.

State in Kafka

» Brokers are sateless: no metadata for consumers-producers in brokers.

» Consumers are responsible for keeping track of offsets.

State in Kafka

» Brokers are sateless: no metadata for consumers-producers in brokers.

» Consumers are responsible for keeping track of offsets.

» Messages in queues expire based on pre-configured time periods (e.g., once a day).

Delivery Guarantees

» Kafka guarantees that messages from a single partition are delivered to a consumer
in order.

Delivery Guarantees

» Kafka guarantees that messages from a single partition are delivered to a consumer
in order.

» There is no guarantee on the ordering of messages coming from different partitions.

Delivery Guarantees

» Kafka guarantees that messages from a single partition are delivered to a consumer
in order.

» There is no guarantee on the ordering of messages coming from different partitions.

» Kafka only guarantees at-least-once delivery.

Start and Work With Kafka

Start the ZooKeeper
zookeeper-server-start.sh config/zookeeper.properties

Start and Work With Kafka

Start the ZooKeeper
zookeeper-server-start.sh config/zookeeper.properties

Start the Kafka server
kafka-server-start.sh config/server.properties

Start and Work With Kafka

Start the ZooKeeper
zookeeper-server-start.sh config/zookeeper.properties

Start the Kafka server
kafka-server-start.sh config/server.properties

Create a topic, called "avg"
kafka-topics.sh --create --topic avg --bootstrap-server localhost:9092 --replication-factor 1

--partitions 1

o8l Start and Work With Kafka

OcH KoN:

Start the ZooKeeper
zookeeper-server-start.sh config/zookeeper.properties

Start the Kafka server
kafka-server-start.sh config/server.properties

Create a topic, called "avg"
kafka-topics.sh --create --topic avg --bootstrap-server localhost:9092 --replication-factor 1
--partitions 1

" "

Produce messages and send them to the topic "avg

kafka-console-producer.sh --topic avg --bootstrap-server localhost:9092

Start and Work With Kafka

Start the ZooKeeper
zookeeper-server-start.sh config/zookeeper.properties

Start the Kafka server
kafka-server-start.sh config/server.properties

"

Create a topic, called "avg"
kafka-topics.sh --create --topic avg --bootstrap-server localhost:9092 --replication-factor 1
--partitions 1

" "

Produce messages and send them to the topic "avg
kafka-console-producer.sh --topic avg --bootstrap-server localhost:9092

Consume the messages sent to the topic "avg"
kafka-console-consumer.sh --topic avg --from-beginning --bootstrap-server localhost:9092

Summary

Summary

SPS vs. DBMS

>

v

Data stream, unbounded data, tuples

v

Event-time vs. processing time

v

Windowing and triggering

Summary

>

Messaging system and partitioned logs

v

Decoupling producers and consumers

v

Kafka: distributed, topic oriented, partitioned, replicated log service

» Logs, topcs, partition

v

Kafka architecture: producer, consumer, broker, coordinator

References

>

J. Kreps et al., “Kafka: A distributed messaging system for log processing”, NetDB
2011

» M. Zaharia et al., “Spark: The Definitive Guide”, O'Reilly Media, 2018 - Chapter 20

v

T. Akidau et al., “The dataflow model: a practical approach to balancing correctness,
latency, and cost in massive-scale, unbounded, out-of-order data processing”, VLDB
2015.

v

M. Fragkoulis et al., “A Survey on the Evolution of Stream Processing Systems”,
2020

v

T. Akidau, “The world beyond batch: Streaming 101",

https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101

Questions?

	

