
Scalable Stream Processing - Spark Streaming

Amir H. Payberah
payberah@kth.se

2023-09-25

The Course Web Page

https://id2221kth.github.io

1 / 45

https://id2221kth.github.io

The Questions-Answers Page

https://tinyurl.com/hk7hzpw5

2 / 45

https://tinyurl.com/hk7hzpw5

Where Are We?

3 / 45

Spark Streaming

4 / 45

Spark Streaming

▶ Run a streaming computation as a series of very small, deterministic batch jobs.

• Chops up the live stream into batches of X seconds.

• Treats each batch as RDDs and processes them using RDD operations.

• Discretized Stream Processing (DStream)

5 / 45

Spark Streaming

▶ Run a streaming computation as a series of very small, deterministic batch jobs.

• Chops up the live stream into batches of X seconds.

• Treats each batch as RDDs and processes them using RDD operations.

• Discretized Stream Processing (DStream)

5 / 45

Spark Streaming

▶ Run a streaming computation as a series of very small, deterministic batch jobs.

• Chops up the live stream into batches of X seconds.

• Treats each batch as RDDs and processes them using RDD operations.

• Discretized Stream Processing (DStream)

5 / 45

DStream (1/2)

▶ DStream: sequence of RDDs representing a stream of data.

6 / 45

DStream (1/2)

▶ DStream: sequence of RDDs representing a stream of data.

6 / 45

DStream (2/2)

▶ Any operation applied on a DStream translates to operations on the underlying RDDs.

7 / 45

StreamingContext

▶ StreamingContext is the main entry point of all Spark Streaming functionality.

val conf = new SparkConf().setAppName(appName).setMaster(master)

val ssc = new StreamingContext(conf, Seconds(1))

▶ The second parameter, Seconds(1), represents the time interval at which streaming
data will be divided into batches.

8 / 45

Input Operations

▶ Socket connection
• Creates a DStream from text data received over a TCP socket connection.

ssc.socketTextStream("localhost", 9999)

▶ File stream
• Reads data from files.

streamingContext.fileStream[KeyClass, ValueClass, InputFormatClass](dataDirectory)

streamingContext.textFileStream(dataDirectory)

▶ Connectors with external sources, e.g., Twitter, Kafka, Flume, Kinesis, ...

9 / 45

Input Operations

▶ Socket connection
• Creates a DStream from text data received over a TCP socket connection.

ssc.socketTextStream("localhost", 9999)

▶ File stream
• Reads data from files.

streamingContext.fileStream[KeyClass, ValueClass, InputFormatClass](dataDirectory)

streamingContext.textFileStream(dataDirectory)

▶ Connectors with external sources, e.g., Twitter, Kafka, Flume, Kinesis, ...

9 / 45

Input Operations

▶ Socket connection
• Creates a DStream from text data received over a TCP socket connection.

ssc.socketTextStream("localhost", 9999)

▶ File stream
• Reads data from files.

streamingContext.fileStream[KeyClass, ValueClass, InputFormatClass](dataDirectory)

streamingContext.textFileStream(dataDirectory)

▶ Connectors with external sources, e.g., Twitter, Kafka, Flume, Kinesis, ...

9 / 45

Transformations (1/2)

▶ Transformations on DStreams are still lazy!

▶ DStreams support many of the transformations available on normal Spark RDDs.

▶ Computation is kicked off explicitly by a call to the start() method.

10 / 45

Transformations (1/2)

▶ Transformations on DStreams are still lazy!

▶ DStreams support many of the transformations available on normal Spark RDDs.

▶ Computation is kicked off explicitly by a call to the start() method.

10 / 45

Transformations (2/2)

▶ map: a new DStream by passing each element of the source DStream through a given
function.

▶ reduce: a new DStream of single-element RDDs by aggregating the elements in
each RDD using a given function.

▶ reduceByKey: a new DStream of (K, V) pairs where the values for each key are
aggregated using the given reduce function.

11 / 45

Transformations (2/2)

▶ map: a new DStream by passing each element of the source DStream through a given
function.

▶ reduce: a new DStream of single-element RDDs by aggregating the elements in
each RDD using a given function.

▶ reduceByKey: a new DStream of (K, V) pairs where the values for each key are
aggregated using the given reduce function.

11 / 45

Transformations (2/2)

▶ map: a new DStream by passing each element of the source DStream through a given
function.

▶ reduce: a new DStream of single-element RDDs by aggregating the elements in
each RDD using a given function.

▶ reduceByKey: a new DStream of (K, V) pairs where the values for each key are
aggregated using the given reduce function.

11 / 45

Example - Word Count (1/6)

▶ First we create a StreamingContex

import org.apache.spark._

import org.apache.spark.streaming._

// Create a local StreamingContext with two working threads and batch interval of 1 second.

val conf = new SparkConf().setMaster("local[2]").setAppName("NetworkWordCount")

val ssc = new StreamingContext(conf, Seconds(1))

12 / 45

Example - Word Count (2/6)

▶ Create a DStream that represents streaming data from a TCP source.

▶ Specified as hostname (e.g., localhost) and port (e.g., 9999).

val lines = ssc.socketTextStream("localhost", 9999)

13 / 45

Example - Word Count (3/6)

▶ Use flatMap on the stream to split the records text to words.

▶ It creates a new DStream.

val words = lines.flatMap(_.split(" "))

14 / 45

Example - Word Count (4/6)

▶ Map the words DStream to a DStream of (word, 1).

▶ Get the frequency of words in each batch of data.

▶ Finally, print the result.

val pairs = words.map(word => (word, 1))

val wordCounts = pairs.reduceByKey(_ + _)

wordCounts.print()

15 / 45

Example - Word Count (5/6)

▶ Start the computation and wait for it to terminate.

// Start the computation

ssc.start()

// Wait for the computation to terminate

ssc.awaitTermination()

16 / 45

Example - Word Count (6/6)

val conf = new SparkConf().setMaster("local[2]").setAppName("NetworkWordCount")

val ssc = new StreamingContext(conf, Seconds(1))

val lines = ssc.socketTextStream("localhost", 9999)

val words = lines.flatMap(_.split(" "))

val pairs = words.map(word => (word, 1))

val wordCounts = pairs.reduceByKey(_ + _)

wordCounts.print()

ssc.start()

ssc.awaitTermination()

17 / 45

Window Operations (1/2)

▶ Spark provides a set of transformations that apply to a over a sliding window of data.

▶ A window is defined by two parameters: window length and slide interval.

▶ A tumbling window effect can be achieved by making slide interval = window length

18 / 45

Window Operations (1/2)

▶ Spark provides a set of transformations that apply to a over a sliding window of data.

▶ A window is defined by two parameters: window length and slide interval.

▶ A tumbling window effect can be achieved by making slide interval = window length

18 / 45

Window Operations (1/2)

▶ Spark provides a set of transformations that apply to a over a sliding window of data.

▶ A window is defined by two parameters: window length and slide interval.

▶ A tumbling window effect can be achieved by making slide interval = window length

18 / 45

Window Operations (2/2)

▶ reduceByWindow(func, windowLength, slideInterval)
• Returns a new single-element DStream, created by aggregating elements in the stream
over a sliding interval using func.

▶ reduceByKeyAndWindow(func, windowLength, slideInterval)
• Called on a DStream of (K, V) pairs.
• Returns a new DStream of (K, V) pairs where the values for each key are aggregated
using function func over batches in a sliding window.

19 / 45

Window Operations (2/2)

▶ reduceByWindow(func, windowLength, slideInterval)
• Returns a new single-element DStream, created by aggregating elements in the stream
over a sliding interval using func.

▶ reduceByKeyAndWindow(func, windowLength, slideInterval)
• Called on a DStream of (K, V) pairs.
• Returns a new DStream of (K, V) pairs where the values for each key are aggregated
using function func over batches in a sliding window.

19 / 45

Example - Word Count with Window

val conf = new SparkConf().setMaster("local[2]").setAppName("NetworkWordCount")

val ssc = new StreamingContext(conf, Seconds(1))

val lines = ssc.socketTextStream("localhost", 9999)

val words = lines.flatMap(_.split(" "))

val pairs = words.map(word => (word, 1))

val windowedWordCounts = pairs.reduceByKeyAndWindow(_ + _, Seconds(30), Seconds(10))

windowedWordCounts.print()

ssc.start()

ssc.awaitTermination()

20 / 45

What about States?

▶ Accumulate and aggregate the results from the start of the streaming job.

▶ Need to check the previous state of the RDD in order to do something with the
current RDD.

▶ Spark supports stateful streams.

21 / 45

What about States?

▶ Accumulate and aggregate the results from the start of the streaming job.

▶ Need to check the previous state of the RDD in order to do something with the
current RDD.

▶ Spark supports stateful streams.

21 / 45

Checkpointing

▶ It is mandatory that you provide a checkpointing directory for stateful streams.

val ssc = new StreamingContext(conf, Seconds(1))

ssc.checkpoint("path/to/persistent/storage")

22 / 45

Stateful Stream Operations

▶ mapWithState
• It is executed only on set of keys that are available in the last micro batch.

def mapWithState[StateType, MappedType](spec: StateSpec[K, V, StateType, MappedType]):

DStream[MappedType]

StateSpec.function(updateFunc)

val updateFunc = (batch: Time, key: String, value: Option[Int], state: State[Int])

▶ Define the update function (partial updates) in StateSpec.

23 / 45

Stateful Stream Operations

▶ mapWithState
• It is executed only on set of keys that are available in the last micro batch.

def mapWithState[StateType, MappedType](spec: StateSpec[K, V, StateType, MappedType]):

DStream[MappedType]

StateSpec.function(updateFunc)

val updateFunc = (batch: Time, key: String, value: Option[Int], state: State[Int])

▶ Define the update function (partial updates) in StateSpec.

23 / 45

Example - Stateful Word Count (1/4)

val ssc = new StreamingContext(conf, Seconds(1))

ssc.checkpoint(".")

val lines = ssc.socketTextStream(IP, Port)

val words = lines.flatMap(_.split(" "))

val pairs = words.map(word => (word, 1))

val stateWordCount = pairs.mapWithState(StateSpec.function(updateFunc))

val updateFunc = (key: String, value: Option[Int], state: State[Int]) => {

val newCount = value.getOrElse(0)

val oldCount = state.getOption.getOrElse(0)

val sum = newCount + oldCount

state.update(sum)

(key, sum)

}

24 / 45

Example - Stateful Word Count (2/4)

▶ The first micro batch contains a message a.

▶ updateFunc = (key: String, value: Option[Int], state: State[Int]) => (key, sum)

▶ Input: key = a, value = Some(1), state = 0

▶ Output: key = a, sum = 1

25 / 45

Example - Stateful Word Count (2/4)

▶ The first micro batch contains a message a.

▶ updateFunc = (key: String, value: Option[Int], state: State[Int]) => (key, sum)

▶ Input: key = a, value = Some(1), state = 0

▶ Output: key = a, sum = 1

25 / 45

Example - Stateful Word Count (2/4)

▶ The first micro batch contains a message a.

▶ updateFunc = (key: String, value: Option[Int], state: State[Int]) => (key, sum)

▶ Input: key = a, value = Some(1), state = 0

▶ Output: key = a, sum = 1

25 / 45

Example - Stateful Word Count (3/4)

▶ The second micro batch contains messages a and b.

▶ updateFunc = (key: String, value: Option[Int], state: State[Int]) => (key, sum)

▶ Input: key = a, value = Some(1), state = 1

▶ Input: key = b, value = Some(1), state = 0

▶ Output: key = a, sum = 2

▶ Output: key = b, sum = 1

26 / 45

Example - Stateful Word Count (3/4)

▶ The second micro batch contains messages a and b.

▶ updateFunc = (key: String, value: Option[Int], state: State[Int]) => (key, sum)

▶ Input: key = a, value = Some(1), state = 1

▶ Input: key = b, value = Some(1), state = 0

▶ Output: key = a, sum = 2

▶ Output: key = b, sum = 1

26 / 45

Example - Stateful Word Count (3/4)

▶ The second micro batch contains messages a and b.

▶ updateFunc = (key: String, value: Option[Int], state: State[Int]) => (key, sum)

▶ Input: key = a, value = Some(1), state = 1

▶ Input: key = b, value = Some(1), state = 0

▶ Output: key = a, sum = 2

▶ Output: key = b, sum = 1

26 / 45

Example - Stateful Word Count (4/4)

▶ The third micro batch contains a message b.

▶ updateFunc = (key: String, value: Option[Int], state: State[Int]) => (key, sum)

▶ Input: key = b, value = Some(1), state = 1

▶ Output: key = b, sum = 2

27 / 45

Example - Stateful Word Count (4/4)

▶ The third micro batch contains a message b.

▶ updateFunc = (key: String, value: Option[Int], state: State[Int]) => (key, sum)

▶ Input: key = b, value = Some(1), state = 1

▶ Output: key = b, sum = 2

27 / 45

Example - Stateful Word Count (4/4)

▶ The third micro batch contains a message b.

▶ updateFunc = (key: String, value: Option[Int], state: State[Int]) => (key, sum)

▶ Input: key = b, value = Some(1), state = 1

▶ Output: key = b, sum = 2

27 / 45

Structured Streaming

28 / 45

Structured Streaming

▶ Treating a live data stream as a table that is being continuously appended.

29 / 45

Programming Model (1/2)

▶ Defines a query on the input table, as a static table.
• Spark automatically converts this batch-like query to a streaming execution plan.

▶ Specify triggers to control when to update the results.
• Each time a trigger fires, Spark checks for new data (new row in the input table), and
incrementally updates the result.

30 / 45

Programming Model (1/2)

▶ Defines a query on the input table, as a static table.
• Spark automatically converts this batch-like query to a streaming execution plan.

▶ Specify triggers to control when to update the results.
• Each time a trigger fires, Spark checks for new data (new row in the input table), and
incrementally updates the result.

30 / 45

Programming Model (2/2)

31 / 45

Output Modes

▶ Three output modes:

1. Append: only the new rows appended to the result table since the last trigger will
be written to the external storage.

2. Complete: the entire updated result table will be written to external storage.

3. Update: only the rows that were updated in the result table since the last trigger will
be changed in the external storage.

32 / 45

Output Modes

▶ Three output modes:

1. Append: only the new rows appended to the result table since the last trigger will
be written to the external storage.

2. Complete: the entire updated result table will be written to external storage.

3. Update: only the rows that were updated in the result table since the last trigger will
be changed in the external storage.

32 / 45

Output Modes

▶ Three output modes:

1. Append: only the new rows appended to the result table since the last trigger will
be written to the external storage.

2. Complete: the entire updated result table will be written to external storage.

3. Update: only the rows that were updated in the result table since the last trigger will
be changed in the external storage.

32 / 45

Steps to Define a Streaming Query (1/4)

▶ Define input sources.

▶ Use spark.readStream to create a DataStreamReader.

val spark = SparkSession.builder.master("local[2]").appName("appname").getOrCreate()

val lines = spark.readStream.format("socket")

.option("host", "localhost")

.option("port", 9999)

.load()

33 / 45

Steps to Define a Streaming Query (2/4)

▶ Transform data.

▶ E.g., below counts is a streaming DataFrame that represents the running word counts.

import org.apache.spark.sql.functions._

val words = lines.select(split(col("value"), " ").as("word"))

val wordCounts = words.groupBy("word").count()

34 / 45

Steps to Define a Streaming Query (3/4)

▶ Define output sink and output mode.

▶ Use DataFrame.writeStream to define how to write the processed output data.

▶ Start the query.

val query = wordCounts.writeStream.format("console").outputMode("complete").start()

query.awaitTermination()

35 / 45

Steps to Define a Streaming Query (4/4)

[https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html]

36 / 45

Streaming Data Sources and Sinks - Files (1/2)

▶ Reading from files.

import org.apache.spark.sql.types._

val inputDirectoryOfJsonFiles = ...

val fileSchema = new StructType()

.add("key", IntegerType)

.add("value", IntegerType)

val inputDF = spark.readStream

.format("json")

.schema(fileSchema)

.load(inputDirectoryOfJsonFiles)

37 / 45

Streaming Data Sources and Sinks - Files (2/2)

▶ Writing to files.

val outputDir = ...

val checkpointDir = ...

val resultDF = ...

val streamingQuery = resultDF

.writeStream

.format("parquet")

.option("path", outputDir)

.option("checkpointLocation", checkpointDir)

.start()

38 / 45

Basic Operations (1/2)

▶ Most of operations on DataFrame/Dataset are supported for streaming.

case class Call(action: String, time: Timestamp, id: Int)

val df: DataFrame = spark.readStream.json("s3://logs")

val ds: Dataset[Call] = df.as[Call]

▶ Selection and projection

df.select("action").where("id > 10") // using untyped APIs

ds.filter(_.id > 10).map(_.action) // using typed APIs

39 / 45

Basic Operations (1/2)

▶ Most of operations on DataFrame/Dataset are supported for streaming.

case class Call(action: String, time: Timestamp, id: Int)

val df: DataFrame = spark.readStream.json("s3://logs")

val ds: Dataset[Call] = df.as[Call]

▶ Selection and projection

df.select("action").where("id > 10") // using untyped APIs

ds.filter(_.id > 10).map(_.action) // using typed APIs

39 / 45

Basic Operations (2/2)

▶ Aggregation

df.groupBy("action") // using untyped API

ds.groupByKey(_.action) // using typed API

▶ SQL commands

df.createOrReplaceTempView("dfView")

spark.sql("select count(*) from dfView") // returns another streaming DF

40 / 45

Basic Operations (2/2)

▶ Aggregation

df.groupBy("action") // using untyped API

ds.groupByKey(_.action) // using typed API

▶ SQL commands

df.createOrReplaceTempView("dfView")

spark.sql("select count(*) from dfView") // returns another streaming DF

40 / 45

Window Operation

▶ Computing counts corresponding to 10-minute windows sliding every five minutes.

words = ... // streaming DataFrame of schema { timestamp: Timestamp, word: String }

windowedCounts = words.groupBy(\

window($"timestamp", "10 minutes", "5 minutes"), $"word").count()

41 / 45

Window Operation

▶ Computing counts corresponding to 10-minute windows sliding every five minutes.

words = ... // streaming DataFrame of schema { timestamp: Timestamp, word: String }

windowedCounts = words.groupBy(\

window($"timestamp", "10 minutes", "5 minutes"), $"word").count()

41 / 45

Handling Late Data

▶ The watermark delay defines how long the engine will wait for late data to arrive.

words = ... # streaming DataFrame of schema { timestamp: Timestamp, word: String }

windowedCounts = words.withWatermark("timestamp", "10 minutes") \

.groupBy(\

window($"timestamp", "10 minutes", "5 minutes"), $"word").count()

42 / 45

Handling Late Data

▶ The watermark delay defines how long the engine will wait for late data to arrive.

words = ... # streaming DataFrame of schema { timestamp: Timestamp, word: String }

windowedCounts = words.withWatermark("timestamp", "10 minutes") \

.groupBy(\

window($"timestamp", "10 minutes", "5 minutes"), $"word").count()

42 / 45

Summary

▶ Mini-batch processing

▶ DStream: sequence of RDDs

▶ RDD and window operations

▶ Structured streaming

43 / 45

References

▶ M. Zaharia et al., “Spark: The Definitive Guide”, O’Reilly Media, 2018 - Chapters
20-23.

▶ M. Zaharia et al., “Discretized Streams: An Efficient and Fault-Tolerant Model for
Stream Processing on Large Clusters”, HotCloud’12.

▶ The world beyond batch: Streaming 102
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-102

44 / 45

Questions?

45 / 45

	

