iﬁéﬁm B éi}
"“%3;4’:‘.?“ ©

Scalable Stream Processing - Spark Streaming

Amir H. Payberah
payberah@kth.se
2023-09-25

The Course Web Page

https://id2221kth.github.io

https://id2221kth.github.io

The Questions-Answers Page

https://tinyurl. com/hk7hzpwb

https://tinyurl.com/hk7hzpw5

Where Are We?

Data Processing

Pregel, GraphLab, PowerGraph Spark SQL Milib
GraphX, X-Streem, Chaos Tensorflow

MapReduce, Dryad Storm, SEEP, Naiad, Spark Streaming, Flink,
FlumeJava, Spark h Millwheel, Google Dataflow ‘

Data Storage

Dynamo, BigTable,
GFS, Flat FS Cassandra

Resource Management

Mesos, YARN

Spark Streaming

Spark Streaming

» Run a streaming computation as a series of very small, deterministic batch jobs.

input data batches of batches of
stream Spark input data Spark processed data

Streaming |:”:”:> Engine |1

Spark Streaming

» Run a streaming computation as a series of very small, deterministic batch jobs.

e Chops up the live stream into batches of X seconds.

e Treats each batch as RDDs and processes them using RDD operations.

input data batches of batches of
stream Spark input data Spark processed data

Streaming |:”:”:> Engine |1

Spark Streaming

» Run a streaming computation as a series of very small, deterministic batch jobs.

e Chops up the live stream into batches of X seconds.

Treats each batch as RDDs and processes them using RDD operations.

Discretized Stream Processing (DStream)

input data batches of batches of
stream Spark input data Spark processed data

Streaming |1 Engine |1

DStream (1/2)

» DStream: sequence of RDDs representing a stream of data.

input data batches of batches of
stream Spark input data Spark processed data

Streaming |:||:||:> Engine |1

RDD @time1 RDD@time2 RDD@time3 RDD @ time4

_| datafrom |__| datafrom | _
time 1to 2 time2to3

data from
time3to4

>

DStream = _{ data from

timeOto1

DStream (1/2)

» DStream: sequence of RDDs representing a stream of data.

input data batches of batches of
stream Spark input data Spark processed data
|:> Streaming |1 |:> Engine |:||:||:>

RDD @time1 RDD@time2 RDD@time3 RDD @ time4

~| detafom || datafrom | _| datafrom | o
time 1to 2 time2to3 time3to4

DStream = data from
time 0 to 1

DStream (2/2)

» Any operation applied on a DStream translates to operations on the underlying RDDs.

lines — | tfinesfrom |__| linesfrom | _ | linesfrom | _ | linesfrom | .
DStream timeOto 1 time 1to 2 time 2 to 3 time3to4
flatMap
operation
N A 4 A 4 A 4
words _ | wordsfrom | _| wordsfrom | _ | wordsfrom |_ | wordsfrom |_ >
DStream time O to 1 time 1to 2 time 2 to 3 time3to 4

StreamingContext

» StreamingContext is the main entry point of all Spark Streaming functionality.

val conf = new SparkConf () .setAppName (appName) .setMaster (master)
val ssc = new StreamingContext(conf, Seconds(1))

» The second parameter, Seconds (1), represents the time interval at which streaming
data will be divided into batches.

Input Operations

» Socket connection
o Creates a DStream from text data received over a TCP socket connection.

ssc.socketTextStream("localhost", 9999)

Input Operations

» Socket connection
o Creates a DStream from text data received over a TCP socket connection.

ssc.socketTextStream("localhost", 9999)

» File stream
* Reads data from files.

streamingContext.fileStream[KeyClass, ValueClass, InputFormatClass] (dataDirectory)

streamingContext.textFileStream(dataDirectory)

Input Operations

» Socket connection
o Creates a DStream from text data received over a TCP socket connection.

ssc.socketTextStream("localhost", 9999)

» File stream
* Reads data from files.

streamingContext.fileStream[KeyClass, ValueClass, InputFormatClass] (dataDirectory)

streamingContext.textFileStream(dataDirectory)

» Connectors with external sources, e.g., Twitter, Kafka, Flume, Kinesis, ...

Transformations (1/2)

» Transformations on DStreams are still lazy!

» DStreams support many of the transformations available on normal Spark RDDs.

Transformations (1/2)

» Transformations on DStreams are still lazy!

» DStreams support many of the transformations available on normal Spark RDDs.

» Computation is kicked off explicitly by a call to the start () method.

Transformations (2/2)

» map: a new DStream by passing each element of the source DStream through a given
function.

Transformations (2/2)

» map: a new DStream by passing each element of the source DStream through a given
function.

» reduce: a new DStream of single-element RDDs by aggregating the elements in
each RDD using a given function.

Transformations (2/2)

» map: a new DStream by passing each element of the source DStream through a given
function.

» reduce: a new DStream of single-element RDDs by aggregating the elements in
each RDD using a given function.

» reduceByKey: a new DStream of (K, V) pairs where the values for each key are
aggregated using the given reduce function.

Example - Word Count (1/6)

» First we create a StreamingContex

import org.apache.spark._
import org.apache.spark.streaming._

// Create a local StreamingContext with two working threads and batch interval of 1 second.
val conf = new SparkConf () .setMaster("local[2]").setAppName ("NetworkWordCount")
val ssc = new StreamingContext(conf, Seconds(1))

Example - Word Count (2/6)

» Create a DStream that represents streaming data from a TCP source.

» Specified as hostname (e.g., localhost) and port (e.g., 9999).

val lines = ssc.socketTextStream("localhost", 9999)

Example - Word Count (3/6)

» Use flatMap on the stream to split the records text to words.

» |t creates a new DStream.

val words = lines.flatMap(_.split(" "))

lines _ | lines from _| linesfrom | _ | linesfrom
DStream timeOto 1 time 1to 2 time 2to 3

lines from
time3to4 >

flatMap

operation
words _ | wordsfrom |__| wordsfrom | _ | wordsfrom |_ | wordsfrom >
DStream time0to 1 time 1to 2 time2to3 time 3to 4

Example - Word Count (4/6)

» Map the words DStream to a DStream of (word, 1).
» Get the frequency of words in each batch of data.

» Finally, print the result.

val pairs = words.map(word => (word, 1))

val wordCounts = pairs.reduceByKey(_ + _)

wordCounts.print ()

Example - Word Count (5/6)

> Start the computation and wait for it to terminate.

// Start the computation
ssc.start()

// Wait for the computation to terminate
ssc.awaitTermination()

Example - Word Count (6/6)

val conf = new SparkConf ().setMaster("local[2]").setAppName ("NetworkWordCount")
val ssc = new StreamingContext(conf, Seconds(1))

val lines = ssc.socketTextStream("localhost", 9999)
val words = lines.flatMap(_.split(" "))

val pairs = words.map(word => (word, 1))

val wordCounts = pairs.reduceByKey(_ + _)
wordCounts.print ()

ssc.start ()
ssc.awaitTermination()

lines lines from lines from lines from lines from
DStream timeO0to 1 time 1t0 2 time 2 to 3 time3to4
flatMap
operation
words words from

DStream

time 0to 1 time 1to 2 time2to3 time3to4

words from | | words from | ‘ words from |

Window Operations (1/2)

» Spark provides a set of transformations that apply to a over a sliding window of data.

time 1 time 2 time 3 time 4 time 5
original
DStream D U [U D D]

window-based
operation

windowed
DStream

window window window

at time 1 attime 3 attime 5

Window Operations (1/2)

» Spark provides a set of transformations that apply to a over a sliding window of data.

» A window is defined by two parameters: window length and slide interval.

time 1 time 2 time 3 time 4 time 5
original
DStream D U [U D D]

window-based
operation

windowed
DStream

window window window

at time 1 attime 3 attime 5

Window Operations (1/2)

» Spark provides a set of transformations that apply to a over a sliding window of data.
» A window is defined by two parameters: window length and slide interval.

» A tumbling window effect can be achieved by making slide interval = window length

time 1 time 2 time 3 time 4 time 5
original
DStream D U [U D D]
window-based
operation

windowed
DStream

window window window

at time 1 attime 3 attime 5

Window Operations (2/2)

» reduceByWindow(func, windowLength, slideInterval)

e Returns a new single-element DStream, created by aggregating elements in the stream
over a sliding interval using func.

Window Operations (2/2)

» reduceByWindow(func, windowLength, slideInterval)

e Returns a new single-element DStream, created by aggregating elements in the stream
over a sliding interval using func.

» reduceByKeyAndWindow(func, windowLength, slideInterval)
¢ Called on a DStream of (K, V) pairs.
¢ Returns a new DStream of (K, V) pairs where the values for each key are aggregated
using function func over batches in a sliding window.

Example - Word Count with Window

val conf = new SparkConf () .setMaster("local[2]").setAppName ("NetworkWordCount")
val ssc = new StreamingContext(conf, Seconds(1))

val lines = ssc.socketTextStream("localhost", 9999)

val words = lines.flatMap(_.split(" "))

val pairs = words.map(word => (word, 1))

val windowedWordCounts = pairs.reduceByKeyAndWindow(_ + _, Seconds(30), Seconds(10))
windowedWordCounts.print ()

ssc.start()
ssc.awaitTermination()

time 1 time 2 time 3 time 4 time 5
original
DStream

window-based
operation

windowed
DStream

window window window

at time 1 attime 3 attime 5

What about States?

» Accumulate and aggregate the results from the start of the streaming job.

» Need to check the previous state of the RDD in order to do something with the
current RDD.

What about States?

» Accumulate and aggregate the results from the start of the streaming job.

» Need to check the previous state of the RDD in order to do something with the
current RDD.

» Spark supports stateful streams.

Checkpointing

» It is mandatory that you provide a checkpointing directory for stateful streams.

val ssc = new StreamingContext(conf, Seconds(1))
ssc.checkpoint ("path/to/persistent/storage")

Stateful Stream Operations

» mapWithState
* It is executed only on set of keys that are available in the last micro batch.

def mapWithState[StateType, MappedTypel (spec: StateSpec[K, V, StateType, MappedTypel) :
DStream[MappedType]

StateSpec.function(updateFunc)
val updateFunc = (batch: Time, key: String, value: Option[Int], state: State[Int])

Stateful Stream Operations

» mapWithState
* It is executed only on set of keys that are available in the last micro batch.

def mapWithState[StateType, MappedTypel (spec: StateSpec[K, V, StateType, MappedTypel) :
DStream[MappedType]

StateSpec.function(updateFunc)
val updateFunc = (batch: Time, key: String, value: Option[Int], state: State[Int])

» Define the update function (partial updates) in StateSpec.

Example - Stateful Word Count (1/4)

val ssc = new StreamingContext(conf, Seconds(1))
ssc.checkpoint (".")

val lines = ssc.socketTextStream(IP, Port)
val words = lines.flatMap(_.split(" "))

val pairs = words.map(word => (word, 1))

val stateWordCount = pairs.mapWithState(StateSpec.function(updateFunc))

val updateFunc = (key: String, value: Option[Int], state: State[Int]) => {
val newCount = value.getOrElse(0)
val oldCount = state.getOption.getOrElse(0)
val sum = newCount + oldCount
state.update (sum)
(key, sum)

Example - Stateful Word Count (2/4)

» The first micro batch contains a message a.

Example - Stateful Word Count (2/4)

» The first micro batch contains a message a.

» updateFunc = (key: String, value: Option[Int], state: Statel[Int]) => (key, sum)

> Input: key = a, value = Some(1), state = 0

Example - Stateful Word Count (2/4)

>

The first micro batch contains a message a.

» updateFunc = (key: String, value: Option[Int], state: Statel[Int]) => (key, sum)

v

Input: key = a, value = Some(1), state = 0

v

Output: key = a, sum = 1

Example - Stateful Word Count (3/4)

» The second micro batch contains messages a and b.

Example - Stateful Word Count (3/4)

The second micro batch contains messages a and b.

>

» updateFunc = (key: String, value: Option[Int], state: State[Int]) => (key, sum)
» Input: key = a, value = Some(1), state = 1

» Input: key = b, value = Some(1), state = 0

Example - Stateful Word Count (3/4)

>

The second micro batch contains messages a and b.

» updateFunc = (key: String, value: Option[Int], state: State[Int]) => (key, sum)
» Input: key = a, value = Some(1), state = 1

» Input: key = b, value = Some(1), state = 0

» Output: key = a, sum = 2

» Output: key = b, sum = 1

Example - Stateful Word Count (4/4)

» The third micro batch contains a message b.

Example - Stateful Word Count (4/4)

» The third micro batch contains a message b.

» updateFunc = (key: String, value: Option[Int], state: Statel[Int]) => (key, sum)

> Input: key = b, value = Some(1), state = 1

Example - Stateful Word Count (4/4)

>

» updateFunc = (key: String, value: Option[Int], state: Statel[Int]) => (key, sum)

>

The third micro batch contains a message b.

Input: key = b, value = Some(1), state = 1

v

Output: key = b, sum = 2

Structured Streaming

Structured Streaming

» Treating a live data stream as a table that is being continuously appended.

Data stream Unbounded Table

new datain the
data stream
new rows appended
to a unbounded table

Data stream as an unbounded table

Programming Model (1/2)

» Defines a query on the input table, as a static table.
e Spark automatically converts this batch-like query to a streaming execution plan.

Programming Model (1/2)

» Defines a query on the input table, as a static table.
e Spark automatically converts this batch-like query to a streaming execution plan.

» Specify triggers to control when to update the results.

e Each time a trigger fires, Spark checks for new data (new row in the input table), and
incrementally updates the result.

Programming Model

(2/2)

Input

Table

User A

Query (I
Spark SQL

Result Planner

Table

User's batch-like
queryon inputtable

Triggers
System 1 2 3 N
Time T T —>
Input dataup dataup dataup
Table tot=1 tot=2 tot=3
Incremental
Query
Result resultup resultup result up
Table tot=1 tot=2 tot=3
Update Mode
rows rows
updated updated
att=2 att=3

Incremental execution on streaming data

Output Modes

» Three output modes:

1. Append: only the new rows appended to the result table since the last trigger will
be written to the external storage.

Output Modes

» Three output modes:

1. Append: only the new rows appended to the result table since the last trigger will
be written to the external storage.

2. Complete: the entire updated result table will be written to external storage.

Output Modes

» Three output modes:

1. Append: only the new rows appended to the result table since the last trigger will
be written to the external storage.

2. Complete: the entire updated result table will be written to external storage.

3. Update: only the rows that were updated in the result table since the last trigger will
be changed in the external storage.

Steps to Define a Streaming Query (1/4)

» Define input sources.

» Use spark.readStream to create a DataStreamReader.

val spark = SparkSession.builder.master("local[2]").appName("appname").getOrCreate()

val lines = spark.readStream.format("socket")
.option("host", "localhost")
.option("port", 9999)
.load ()

Steps to Define a Streaming Query (2/4)

» Transform data.

» E.g., below counts is a streaming DataFrame that represents the running word counts.

import org.apache.spark.sql.functions._

val words = lines.select(split(col("value"), " ").as("word"))

val wordCounts = words.groupBy("word") .count ()

Steps to Define a Streaming Query (3/4)

» Define output sink and output mode.
» Use DataFrame.writeStream to define how to write the processed output data.
> Start the query.

val query = wordCounts.writeStream.format("console").outputMode("complete").start()

query.awaitTermination()

Steps to Define a Streaming Query (4/4)

nc
catdog dog
owl cat
dog dog owl
. 1 2 3
Time] ‘ —>
\% v v
Input catdog | data up catdog | data up catdog | data up
Unbounded dogdog | to t=1 dogdog | to t=2 dogdog | t0 t=3
table of all input oulcet owlcat

[dog

word count query

result up
tot=1

Result
Table of

word counts l

Output
Complete Mode

print all the counts to console

[https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html]

Streaming Data Sources and Sinks - Files (1/2)

» Reading from files.

import org.apache.spark.sql.types._
val inputDirectoryOfJsonFiles = ...
val fileSchema = new StructType()

.add("key", IntegerType)
.add("value", IntegerType)

val inputDF = spark.readStream
.format ("json")
.schema(fileSchema)
.load (inputDirectory0fJsonFiles)

Streaming Data Sources and Sinks - Files (2/2)

» Writing to files.

val outputDir = ...
val checkpointDir = ...
val resultDF = ...

val streamingQuery = resultDF
.writeStream
.format ("parquet")
.option("path", outputDir)
.option("checkpointLocation", checkpointDir)
.start ()

Basic Operations (1/2)

» Most of operations on DataFrame/Dataset are supported for streaming.

case class Call(action: String, time: Timestamp, id: Int)

val df: DataFrame = spark.readStream.json("s3://logs")
val ds: Dataset[Call] = df.as[Call]

Basic Operations (1/2)

» Most of operations on DataFrame/Dataset are supported for streaming.

case class Call(action: String, time: Timestamp, id: Int)

val df: DataFrame = spark.readStream.json("s3://logs")
val ds: Dataset[Call] = df.as[Call]

» Selection and projection

df .select("action") .where("id > 10") // using untyped APIs
ds.filter(_.id > 10) .map(_.action) // using typed APIs

Basic Operations (2/2)

> Aggregation

df . groupBy("action") // using untyped API
ds.groupByKey(_.action) // using typed API

Basic Operations (2/2)

> Aggregation

df . groupBy("action") // using untyped API
ds.groupByKey(_.action) // using typed API

» SQL commands

df .createOrReplaceTempView("dfView")
spark.sql("select count(*) from dfView") // returns another streaming DF

Window Operation

» Computing counts corresponding to 10-minute windows sliding every five minutes.

nouts 102 | cardog | el 21| dog
nput Stream 1293 | dogdog Ll 1213 owl
. 12:00 12:05 12:10 12:15
Time ———— T S
. Y v
[E o B0 [2 00 10 [
B 12001210 | dog | £ 12001210 | dog
Result Tables 12001210 | awl | 1 12001210 | owl
after 5 minute triggers 12051215 | cat | 1 12051215 | cat
12051245 [owl | 1 12:05-12:15 | owl

12051215 | dog,
12101220 | dog
12:0- 1770 | owl

countsincremented for windows
12:00 - 12:10 end 12:05 - 12:15

counts incremented for
1205 - 12:15 and 12:10

Windowed Grouped Aggregation
with 10 min windows, sliding every 5 mins

Window Operation

» Computing counts corresponding to 10-minute windows sliding every five minutes.

20 [catdog 121] dog
Input Stream 1203 dogdo, 1207 | owlcal 1213 owl
12:00 12:05 12:10 12:15

Time

2 1200-1210 | cat

) 1200-1210 | dog | 3 1200-1210 [dog
Result Tables 1200-1210 | owl [1 1200-1210 | owl
after S minute triggers 1205-1215 | cat | 1 1205-1215 | cat
12051245 [owl | 1 12:05-12:15 | owl
12051245 | dog
12.10-1220 | dog
12:10-1290 | owi

1200120 | cat

countsincremented for windows
12:00 - 12:10 end 12:05 - 12:15

caunts incremented for windows

Windowed Grouped Aggregation 1208 12:15 and 12:10 . 12:20
with 10 min windows, sliding every 5 mins

words = ... // streaming DataFrame of schema { timestamp: Timestamp, word: String }

windowedCounts = words.groupBy(\
window($"timestamp", "10 minutes", "5 minutes"), $"word").count()

Handling Late Data

» The watermark delay defines how long the

engine will wait for late data to

late data that was generated

&
d

arrive.

at 12:04 but arr atlz:1l
77 [et 1204] dog
L 107 [ovicat
Input Stream 1203 | dogdog 1212 owl
1200 ; 12:10 12:15
Time ———— T
! Y 4
IEEzaEan| IR o0 0 [[
[2se 1236 [3 | 1200-1210 [dog | 2 1200-12:10 [dog | 4
Result Tables 12:00-12:10 | owl | 1 12:00-1220 [onl | 1
after S minute triggers 12051205 [cot | 1 12051205 | cat | 1
12051215 [owl | 1 12051205 [owt | 2
1101220 [owl | 1

counts incremented only for
window 12:00- 12:10

Late data handlingin
Windowed Grouped Aggregation

Handling Late Data

» The watermark delay defines how long the engine will wait for late data to arrive.

late data that was generated
at 12:04 but arrived at 12:11
1204 dog

Input Stream 1201 | owleal wE e
. 12:00 12:10 12:15
Time ————

[Fe a1 IR Te a0 [

|20 1235 | dos | 3 | 12001210 | dog | £ B

Result Tables 1200-1210 | owl [1 1

after 5 minute triggers 2 delllc 1

12051215 [owl | 1 >

[

Late data handlingin
Windowed Grouped Aggregation

words = # streaming DataFrame of schema { timestamp: Timestamp, word: String }

windowedCounts = words.withWatermark("timestamp", "10 minutes") \
.groupBy (\
window($"timestamp", "10 minutes", "5 minutes"), $"word").count()

Summary

>

Mini-batch processing

v

DStream: sequence of RDDs

v

RDD and window operations

v

Structured streaming

References

» M. Zaharia et al., “Spark: The Definitive Guide”, O'Reilly Media, 2018 - Chapters
20-23.

M. Zaharia et al., “Discretized Streams: An Efficient and Fault-Tolerant Model for
Stream Processing on Large Clusters”, HotCloud'12.

v

The world beyond batch: Streaming 102
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-102

v

Questions?

	

