Large Scale Graph Processing

Amir H. Payberah
payberah@kth.se
2023-09-29

https://id2221kth.github.io

https://tinyurl.com/hk7hzpw5

Where Are We?

- A flexible abstraction for describing relationships between discrete objects.

Graph Algorithms Challenges

- Difficult to extract parallelism based on partitioning of the data.
- Difficult to express parallelism based on partitioning of computation.

Graph Algorithms Challenges

- Difficult to extract parallelism based on partitioning of the data.
- Difficult to express parallelism based on partitioning of computation.
- Graph partition is a challenging problem.
- Partition large scale graphs and distribut to hosts.

Edge-Cut Graph Partitioning

- Divide vertices of a graph into disjoint clusters.
- Nearly equal size (w.r.t. the number of vertices).
- With the minimum number of edges that span separated clusters.

Vertex-Cut Graph Partitioning

- Divide edges of a graph into disjoint clusters.
- Nearly equal size (w.r.t. the number of edges).
- With the minimum number of replicated vertices.

Edge-Cut vs. Vertex-Cut Graph Partitioning (1/2)

- Natural graphs: skewed Power-Law degree distribution.
- Edge-cut algorithms perform poorly on Power-Law Graphs.

Edge-Cut vs. Vertex-Cut Graph Partitioning (2/2)

PageRank with MapReduce

$$
R[i]=\sum_{j \in \operatorname{Nbrs}(i)} w_{j i} R[j]
$$

(Kxit PageRank Example (1/2)

- $R[i]=\sum_{j \in \operatorname{Mbrs}(i)} W_{j i} R[j]$

K표 PageRank Example (1/2)

- $R[i]=\sum_{j \in \operatorname{Mbrs}(i)} w_{j i} R[j]$
- Input


```
V1: [0.25, V2, V3, V4]
V2: [0.25, V3, V4]
V3: [0.25, V1]
V4: [0.25, V1, V3]
```


톤

- $R[i]=\sum_{j \in \operatorname{Mbrs}(i)} W_{j i} R[j]$
- Input


```
V1: [0.25, V2, V3, V4]
V2: [0.25, V3, V4]
V3: [0.25, V1]
V4: [0.25, V1, V3]
```

- Share the rank among all outgoing links

```
V1: (V2, 0.25/3), (V3, 0.25/3), (V4, 0.25/3)
V2: (V3, 0.25/2), (V4, 0.25/2)
V3: (V1, 0.25/1)
V4: (V1, 0.25/2), (V3, 0.25/2)
```


톤 . PageRank Example (2/2)

- $R[i]=\sum_{j \in \operatorname{Mbrs}(i)} W_{j \mathrm{i}} R[j]$


```
V1: (V2, 0.25/3), (V3, 0.25/3), (V4, 0.25/3)
V2: (V3, 0.25/2), (V4, 0.25/2)
V3: (V1, 0.25/1)
V4: (V1, 0.25/2), (V3, 0.25/2)
```


PageRank Example (2/2)

- R[i] $=\sum_{j \in \operatorname{Nbrs}(i)} W_{j i} R[j]$


```
V1: (V2, 0.25/3), (V3, 0.25/3), (V4, 0.25/3)
V2: (V3, 0.25/2), (V4, 0.25/2)
V3: (V1, 0.25/1)
V4: (V1, 0.25/2), (V3, 0.25/2)
```

- Output after one iteration

```
V1: [0.37, V2, V3, V4]
V2: [0.08, V3, V4]
V3: [0.33, V1]
V4: [0.20, V1, V3]
```


PageRank in MapReduce - Map (1/2)

- Map function


```
map(key: [url, pagerank], value: outlink_list)
    for each outlink in outlink_list:
            emit(key: outlink, value: pagerank / size(outlink_list))
    emit(key: url, value: outlink_list)
```


PageRank in MapReduce - Map (1/2)

- Map function


```
map(key: [url, pagerank], value: outlink_list)
    for each outlink in outlink_list:
            emit(key: outlink, value: pagerank / size(outlink_list))
    emit(key: url, value: outlink_list)
```

- Input (key, value)

```
((V1, 0.25), [V2, V3, V4])
((V2, 0.25), [V3, V4])
((V3, 0.25), [V1])
((V4, 0.25), [V1, V3])
```


PageRank in MapReduce - Map (2/2)

- Map function


```
map(key: [url, pagerank], value: outlink_list)
    for each outlink in outlink_list:
            emit(key: outlink, value: pagerank / size(outlink_list))
    emit(key: url, value: outlink_list)
```


PageRank in MapReduce - Map (2/2)

- Map function

```
map(key: [url, pagerank], value: outlink_list)
    for each outlink in outlink_list:
            emit(key: outlink, value: pagerank / size(outlink_list))
    emit(key: url, value: outlink_list)
```

- Intermediate (key, value)

```
(V2, 0.25/3), (V3, 0.25/3), (V4, 0.25/3), (V3, 0.25/2), (V4, 0.25/2), (V1, 0.25/1),
(V1, 0.25/2), (V3, 0.25/2)
(V1, [V2, V3, V4])
(V2, [V3, V4])
(V3, [V1])
(V4, [V1, V3])
```


PageRank in MapReduce - Shuffle

- Intermediate (key, value)

```
(V2, 0.25/3), (V3, 0.25/3), (V4, 0.25/3), (V3, 0.25/2), (V4, 0.25/2), (V1, 0.25/1),
(V1, 0.25/2), (V3, 0.25/2)
(V1, [V2, V3, V4])
(V2, [V3, V4])
(V3, [V1])
(V4, [V1, V3])
```


PageRank in MapReduce - Shuffle

- Intermediate (key, value)

```
(V2, 0.25/3), (V3, 0.25/3), (V4, 0.25/3), (V3, 0.25/2), (V4, 0.25/2), (V1, 0.25/1),
(V1, 0.25/2), (V3, 0.25/2)
(V1, [V2, V3, V4])
(V2, [V3, V4])
(V3, [V1])
(V4, [V1, V3])
```

- After shuffling

```
(V1, 0.25/1), (V1, 0.25/2), (V1, [V2, V3, V4])
(V2, 0.25/3), (V2, [V3, V4])
(V3, 0.25/3), (V3, 0.25/2), (V3, 0.25/2), (V3, [V1])
(V4, 0.25/3), (V4, 0.25/2), (V4, [V1, V3])
```


PageRank in MapReduce - Reduce (1/2)

- Reduce function

```
reducer(key: url, value: list_pr_or_urls)
    outlink_list = []
    pagerank = 0
    for each pr_or_urls in list_pr_or_urls:
        if is_list(pr_or_urls):
            outlink_list = pr_or_urls
        else
            pagerank += pr_or_urls
    emit(key: [url, pagerank], value: outlink_list)
```


PageRank in MapReduce - Reduce (1/2)

- Reduce function

```
reducer(key: url, value: list_pr_or_urls)
    outlink_list = []
    pagerank = 0
    for each pr_or_urls in list_pr_or_urls:
        if is_list(pr_or_urls):
            outlink_list = pr_or_urls
        else
            pagerank += pr_or_urls
    emit(key: [url, pagerank], value: outlink_list)
```

- Input of the Reduce function

```
(V1, 0.25/1), (V1, 0.25/2), (V1, [V2, V3, V4])
(V2, 0.25/3), (V2, [V3, V4])
(V3, 0.25/3), (V3, 0.25/2), (V3, 0.25/2), (V3, [V1])
(V4, 0.25/3), (V4, 0.25/2), (V4, [V1, V3])
```


PageRank in MapReduce - Reduce (2/2)

- Reduce function

```
reducer(key: url, value: list_pr_or_urls)
    outlink_list = []
    pagerank = 0
    for each pr_or_urls in list_pr_or_urls:
        if is_list(pr_or_urls):
            outlink_list = pr_or_urls
        else
            pagerank += pr_or_urls
    emit(key: [url, pagerank], value: outlink_list)
```


PageRank in MapReduce - Reduce (2/2)

- Reduce function

```
reducer(key: url, value: list_pr_or_urls)
    outlink_list = []
    pagerank = 0
    for each pr_or_urls in list_pr_or_urls:
        if is_list(pr_or_urls):
            outlink_list = pr_or_urls
        else
            pagerank += pr_or_urls
    emit(key: [url, pagerank], value: outlink_list)
```

- Output

```
((V1, 0.37), [V2, V3, V4])
((V2, 0.08), [V3, V4])
((V3, 0.33), [V1])
((V4, 0.20), [V1, V3])
```


Problems with MapReduce for Graph Analytics

- MapReduce does not directly support iterative algorithms.
- Invariant graph-topology-data re-loaded and re-processed at each iteration is wasting I/O, network bandwidth, and CPU

Problems with MapReduce for Graph Analytics

- MapReduce does not directly support iterative algorithms.
- Invariant graph-topology-data re-loaded and re-processed at each iteration is wasting I/O, network bandwidth, and CPU
- Materializations of intermediate results at every MapReduce iteration harm performance.

Think Like a Vertex

Think Like a Vertex

- Each vertex computes individually its value (in parallel).
- Computation typically depends on the neighbors.

Think Like a Vertex

- Each vertex computes individually its value (in parallel).
- Computation typically depends on the neighbors.
- Also know as graph-parallel processing model.

Data-Parallel vs. Graph-Parallel Computation

Graph-Parallel

"ctuas

Pregel

Pregel

- Large-scale graph-parallel processing platform developed at Google.
- Inspired by bulk synchronous parallel (BSP) model.

Execution Model (1/2)

- Applications run in sequence of iterations, called supersteps.

Execution Model (1/2)

- Applications run in sequence of iterations, called supersteps.
- A vertex in superstep S can:
- reads messages sent to it in superstep $S-1$.
- sends messages to other vertices: receiving at superstep $\mathrm{S}+1$.
- modifies its state.

Execution Model (1/2)

- Applications run in sequence of iterations, called supersteps.
- A vertex in superstep S can:
- reads messages sent to it in superstep $S-1$.
- sends messages to other vertices: receiving at superstep $\mathrm{S}+1$.
- modifies its state.
- Vertices communicate directly with one another by sending messages.

Execution Model (2/2)

- Superstep 0: all vertices are in the active state.

Execution Model (2/2)

- Superstep 0: all vertices are in the active state.
- A vertex deactivates itself by voting to halt: no further work to do.

Execution Model (2/2)

- Superstep 0: all vertices are in the active state.
- A vertex deactivates itself by voting to halt: no further work to do.
- A halted vertex can be active if it receives a message.

Execution Model (2/2)

- Superstep 0: all vertices are in the active state.
- A vertex deactivates itself by voting to halt: no further work to do.
- A halted vertex can be active if it receives a message.
- The whole algorithm terminates when:
- All vertices are simultaneously inactive.
- There are no messages in transit.

Example: Max Value (1/4)

```
i_val := val
for each message m
    if m > val then val := m
if i_val == val then
    vote_to_halt
else
    for each neighbor v
        send_message(v, val)
```


Example: Max Value (2/4)

```
i_val := val
for each message m
    if m > val then val := m
if i_val == val then
    vote_to_halt
else
    for each neighbor v
        send_message(v, val)
```


Example: Max Value (3/4)

```
i_val := val
for each message m
    if m > val then val := m
if i_val == val then
    vote_to_halt
else
    for each neighbor v
        send_message(v, val)
```


Example: Max Value (4/4)

```
i_val := val
for each message m
    if m > val then val := m
if i_val == val then
    vote_to_halt
else
    for each neighbor v
        send_message(v, val)
```


Example: PageRank

$$
R[i]=\sum_{j \in \operatorname{Nbrs}(i)} W_{j i} R[j]
$$

Example: PageRank

```
Pregel_PageRank(i, messages):
    // receive all the messages
    total = 0
    foreach(msg in messages):
        total = total + msg
    // update the rank of this vertex
    R[i] = total
    // send new messages to neighbors
    foreach(j in out_neighbors[i]):
        sendmsg(R[i] * wij) to vertex j
```

$$
R[i]=\sum_{j \in \operatorname{Nbrs}(i)} W_{j i} R[j]
$$

GraphLab/Turi

- GraphLab allows asynchronous iterative computation.

GraphLab

- GraphLab allows asynchronous iterative computation.
- Vertex scope of vertex v: the data stored in v, and in all adjacent vertices and edges.

GraphLab

- GraphLab allows asynchronous iterative computation.
- Vertex scope of vertex v: the data stored in v, and in all adjacent vertices and edges.
- A vertex can read and modify any of the data in its scope (shared memory).

Example: PageRank (GraphLab)

```
GraphLab_PageRank(i)
    // compute sum over neighbors
    total = 0
    foreach(j in in_neighbors(i)):
        total = total + R[j] * wji
    // update the PageRank
    R[i] = total
    // trigger neighbors to run again
    foreach(j in out_neighbors(i)):
        signal vertex-program on j
```

$$
R[i]=\sum_{j \in \operatorname{Nbrs}(i)} W_{j i} R[j]
$$

Gather-Apply-Scatter (GAS)

- Factorizes the local vertices functions into the Gather, Apply and Scatter phases.
- Gather: accumulate information from neighborhood.
- Apply: apply the accumulated value to center vertex.
- Scatter: update adjacent edges and vertices.

Example: PageRank (GraphLab - GAS)

```
PowerGraph_PageRank(i):
    Gather(j -> i):
        return wji * R[j]
    sum(a, b):
        return a + b
    // total: Gather and sum
    Apply(i, total):
        R[i] = total
```

 Scatter (i \(->\) j):
 if \(R[i]\) changed then activate(\(j\))
 $$
R[i]=\sum_{j \in \operatorname{Nbrs}(i)} W_{j i} R[j]
$$

Think Like a Table

Data-Parallel vs. Graph-Parallel Computation

Graph-Parallel

- Graph-parallel computation: restricting the types of computation to achieve performance.

Motivation (2/3)

- Graph-parallel computation: restricting the types of computation to achieve performance.
- The same restrictions make it difficult and inefficient to express many stages in a typical graph-analytics pipeline.

Live-Journal: 69 Million Edges

Motivation (3/3)

Think Like a Table

- Unifies data-parallel and graph-parallel systems.
- Tables and Graphs are composable views of the same physical data.

GraphX Unified Representation

Graph View

GraphX

GraphX

- GraphX is the library to perform graph-parallel processing in Spark.

The Property Graph Data Model

- Spark represent graph structured data as a property graph.
- It is logically represented as a pair of vertex and edge property collections.
- VertexRDD and EdgeRDD

```
// VD: the type of the vertex attribute
// ED: the type of the edge attribute
class Graph[VD, ED] {
    val vertices: VertexRDD[VD]
    val edges: EdgeRDD[ED]
}
```


Id	Property (V)	
3	(rxin, student)	
7	(jgonzal, postdoc)	
5	(franklin, professor)	
2	(istoica, professor)	
Edge Table		
Srcld	Dstid	Property (E)
3	7	Collaborator
5	3	Advisor
2	5	Colleague
5	7	PI

The Vertex Collection

- VertexRDD: contains the vertex properties keyed by the vertex ID.

```
class Graph[VD, ED] {
    val vertices: VertexRDD [VD]
    val edges: EdgeRDD [ED]
}
```

// VD: the type of the vertex attribute abstract class VertexRDD[VD] extends RDD[(VertexId, VD)]

The Edge Collection

- EdgeRDD: contains the edge properties keyed by the source and destination vertex IDs.

```
class Graph[VD, ED] {
    val vertices: VertexRDD[VD]
    val edges: EdgeRDD[ED]
}
// ED: the type of the edge attribute
case class Edge[ED] (srcId: VertexId, dstId: VertexId, attr: ED)
abstract class EdgeRDD[ED] extends RDD[Edge[ED]]
```


VertexTable

Edge Table

Sreld	Dstld	Property (E)
7	7	Colibocotar
5	3	Alvor
2	5	Collegue
5	7	P1
5	7	

Edges: (A-a-B

The Triplet Collection

- The triplets collection consists of each edge and its corresponding source and destination vertex properties.

The Triplet Collection

- The triplets collection consists of each edge and its corresponding source and destination vertex properties.
- It logically joins the vertex and edge properties: RDD [EdgeTriplet [VD, ED]].

The Triplet Collection

- The triplets collection consists of each edge and its corresponding source and destination vertex properties.
- It logically joins the vertex and edge properties: RDD [EdgeTriplet [VD, ED]].
- The EdgeTriplet class extends the Edge class by adding the srcAttr and dstAttr members, which contain the source and destination properties respectively.

Building a Property Graph

val users: RDD[(VertexId, (String, String))] = sc.parallelize(Array((3L, ("rxin", "student")), (7L, ("jgonzal", "postdoc")), (5L, ("franklin", "prof")), (2L, ("istoica", "prof"))))

Building a Property Graph

val users: RDD[(VertexId, (String, String))] = sc.parallelize(Array((3L, ("rxin", "student")), (7L, ("jgonzal", "postdoc")), (5L, ("franklin", "prof")), (2L, ("istoica", "prof"))))
val relationships: RDD[Edge[String]] = sc.parallelize(Array(Edge(3L, 7L, "collab"), Edge(5L, 3L, "advisor"), Edge(2L, 5L, "colleague"), Edge(5L, 7L, "pi"), Edge(5L, 1L, "-")))

Building a Property Graph


```
val users: RDD[(VertexId, (String, String))] = sc.parallelize(Array((3L, ("rxin", "student")),
    (7L, ("jgonzal", "postdoc")), (5L, ("franklin", "prof")), (2L, ("istoica", "prof"))))
```

val relationships: RDD[Edge[String]] = sc.parallelize(Array(Edge(3L, 7L, "collab"),
Edge(5L, 3L, "advisor"), Edge(2L, 5L, "colleague"), Edge(5L, 7L, "pi"), Edge(5L, 1L, "-")))
val defaultUser = ("John Doe", "Missing")

Building a Property Graph

Vertex Table		
$1 d$	Property (V)	
3	(rxin, student)	
7	(gonzal postdoc)	
5	(franklin, professor)	
2	(istoica, professor)	
Edge Table		
Srcld	Dstd	Property (E)
3	7	Collaborator
5	3	Advisor
2	5	Colleague
5	7	PI

```
val users: RDD[(VertexId, (String, String))] = sc.parallelize(Array((3L, ("rxin", "student")),
    (7L, ("jgonzal", "postdoc")), (5L, ("franklin", "prof")), (2L, ("istoica", "prof"))))
val relationships: RDD[Edge[String]] = sc.parallelize(Array(Edge(3L, 7L, "collab"),
    Edge(5L, 3L, "advisor"), Edge(2L, 5L, "colleague"), Edge(5L, 7L, "pi"), Edge(5L, 1L, "-")))
```

val defaultUser = ("John Doe", "Missing")
val graph: Graph[(String, String), String] = Graph(users, relationships, defaultUser)

- Information about the graph
- Property operators
- Structural operators
- Joins
- Aggregation
- Iterative computation
- ...

Summary

Summary

- Think like a vertex
- Pregel: BSP, synchronous parallel model, message passing
- GraphLab: asynchronous model, shared memory, GAS
- Think like a table
- Graphx: unifies data-parallel and graph-parallel systems.

References

- G. Malewicz et al., "Pregel: a system for large-scale graph processing", ACM SIGMOD 2010
- Y. Low et al., "Distributed GraphLab: a framework for machine learning and data mining in the cloud", VLDB 2012
- J. Gonzalez et al., "Powergraph: distributed graph-parallel computation on natural graphs", OSDI 2012
- J. Gonzalez et al., "GraphX: Graph Processing in a Distributed Dataflow Framework", OSDI 2014

Questions?

