
Large Scale Graph Processing

Amir H. Payberah
payberah@kth.se

2023-09-29



The Course Web Page

https://id2221kth.github.io

1 / 56

https://id2221kth.github.io


The Questions-Answers Page

https://tinyurl.com/hk7hzpw5

2 / 56

https://tinyurl.com/hk7hzpw5


Where Are We?

3 / 56



▶ A flexible abstraction for describing relationships between discrete objects.

4 / 56



Large Graph

5 / 56



Graph Algorithms Challenges

▶ Difficult to extract parallelism based on partitioning of the data.

▶ Difficult to express parallelism based on partitioning of computation.

▶ Graph partition is a challenging problem.

6 / 56



Graph Partitioning

▶ Partition large scale graphs and distribut to hosts.

7 / 56



Edge-Cut Graph Partitioning

▶ Divide vertices of a graph into disjoint clusters.

▶ Nearly equal size (w.r.t. the number of vertices).

▶ With the minimum number of edges that span separated clusters.

8 / 56



Vertex-Cut Graph Partitioning

▶ Divide edges of a graph into disjoint clusters.

▶ Nearly equal size (w.r.t. the number of edges).

▶ With the minimum number of replicated vertices.

9 / 56



Edge-Cut vs. Vertex-Cut Graph Partitioning (1/2)

▶ Natural graphs: skewed Power-Law degree distribution.

▶ Edge-cut algorithms perform poorly on Power-Law Graphs.

10 / 56



Edge-Cut vs. Vertex-Cut Graph Partitioning (2/2)

11 / 56



PageRank with MapReduce

12 / 56



PageRank

R[i] =
∑

j∈Nbrs(i)
wjiR[j]

13 / 56



PageRank Example (1/2)

▶ R[i] =
∑

j∈Nbrs(i)
wjiR[j]

▶ Input

V1: [0.25, V2, V3, V4]

V2: [0.25, V3, V4]

V3: [0.25, V1]

V4: [0.25, V1, V3]

▶ Share the rank among all outgoing links

V1: (V2, 0.25/3), (V3, 0.25/3), (V4, 0.25/3)

V2: (V3, 0.25/2), (V4, 0.25/2)

V3: (V1, 0.25/1)

V4: (V1, 0.25/2), (V3, 0.25/2)

14 / 56



PageRank Example (2/2)

▶ R[i] =
∑

j∈Nbrs(i)
wjiR[j]

V1: (V2, 0.25/3), (V3, 0.25/3), (V4, 0.25/3)

V2: (V3, 0.25/2), (V4, 0.25/2)

V3: (V1, 0.25/1)

V4: (V1, 0.25/2), (V3, 0.25/2)

▶ Output after one iteration

V1: [0.37, V2, V3, V4]

V2: [0.08, V3, V4]

V3: [0.33, V1]

V4: [0.20, V1, V3]

15 / 56



PageRank in MapReduce - Map (1/2)

▶ Map function

map(key: [url, pagerank], value: outlink_list)

for each outlink in outlink_list:

emit(key: outlink, value: pagerank / size(outlink_list))

emit(key: url, value: outlink_list)

▶ Input (key, value)

((V1, 0.25), [V2, V3, V4])

((V2, 0.25), [V3, V4])

((V3, 0.25), [V1])

((V4, 0.25), [V1, V3])

16 / 56



PageRank in MapReduce - Map (2/2)

▶ Map function

map(key: [url, pagerank], value: outlink_list)

for each outlink in outlink_list:

emit(key: outlink, value: pagerank / size(outlink_list))

emit(key: url, value: outlink_list)

▶ Intermediate (key, value)

(V2, 0.25/3), (V3, 0.25/3), (V4, 0.25/3), (V3, 0.25/2), (V4, 0.25/2), (V1, 0.25/1),

(V1, 0.25/2), (V3, 0.25/2)

(V1, [V2, V3, V4])

(V2, [V3, V4])

(V3, [V1])

(V4, [V1, V3])

17 / 56



PageRank in MapReduce - Shuffle

▶ Intermediate (key, value)

(V2, 0.25/3), (V3, 0.25/3), (V4, 0.25/3), (V3, 0.25/2), (V4, 0.25/2), (V1, 0.25/1),

(V1, 0.25/2), (V3, 0.25/2)

(V1, [V2, V3, V4])

(V2, [V3, V4])

(V3, [V1])

(V4, [V1, V3])

▶ After shuffling

(V1, 0.25/1), (V1, 0.25/2), (V1, [V2, V3, V4])

(V2, 0.25/3), (V2, [V3, V4])

(V3, 0.25/3), (V3, 0.25/2), (V3, 0.25/2), (V3, [V1])

(V4, 0.25/3), (V4, 0.25/2), (V4, [V1, V3])

18 / 56



PageRank in MapReduce - Reduce (1/2)

▶ Reduce function

reducer(key: url, value: list_pr_or_urls)

outlink_list = []

pagerank = 0

for each pr_or_urls in list_pr_or_urls:

if is_list(pr_or_urls):

outlink_list = pr_or_urls

else

pagerank += pr_or_urls

emit(key: [url, pagerank], value: outlink_list)

▶ Input of the Reduce function

(V1, 0.25/1), (V1, 0.25/2), (V1, [V2, V3, V4])

(V2, 0.25/3), (V2, [V3, V4])

(V3, 0.25/3), (V3, 0.25/2), (V3, 0.25/2), (V3, [V1])

(V4, 0.25/3), (V4, 0.25/2), (V4, [V1, V3])

19 / 56



PageRank in MapReduce - Reduce (2/2)

▶ Reduce function

reducer(key: url, value: list_pr_or_urls)

outlink_list = []

pagerank = 0

for each pr_or_urls in list_pr_or_urls:

if is_list(pr_or_urls):

outlink_list = pr_or_urls

else

pagerank += pr_or_urls

emit(key: [url, pagerank], value: outlink_list)

▶ Output

((V1, 0.37), [V2, V3, V4])

((V2, 0.08), [V3, V4])

((V3, 0.33), [V1])

((V4, 0.20), [V1, V3])

20 / 56



Problems with MapReduce for Graph Analytics

▶ MapReduce does not directly support iterative algorithms.
• Invariant graph-topology-data re-loaded and re-processed at each iteration is wasting
I/O, network bandwidth, and CPU

▶ Materializations of intermediate results at every MapReduce iteration harm perfor-
mance.

21 / 56



Think Like a Vertex

22 / 56



Think Like a Vertex

▶ Each vertex computes individually its value (in parallel).

▶ Computation typically depends on the neighbors.

▶ Also know as graph-parallel processing model.

23 / 56



Data-Parallel vs. Graph-Parallel Computation

24 / 56



Pregel

25 / 56



Pregel

▶ Large-scale graph-parallel processing platform developed at Google.

▶ Inspired by bulk synchronous parallel (BSP) model.

26 / 56



Execution Model (1/2)

▶ Applications run in sequence of iterations, called supersteps.

▶ A vertex in superstep S can:
• reads messages sent to it in superstep S-1.
• sends messages to other vertices: receiving at superstep S+1.
• modifies its state.

▶ Vertices communicate directly with one another by sending messages.

27 / 56



Execution Model (2/2)

▶ Superstep 0: all vertices are in the active state.

▶ A vertex deactivates itself by voting to halt: no further work to do.

▶ A halted vertex can be active if it receives a message.

▶ The whole algorithm terminates when:
• All vertices are simultaneously inactive.
• There are no messages in transit.

28 / 56



Example: Max Value (1/4)

i_val := val

for each message m

if m > val then val := m

if i_val == val then

vote_to_halt

else

for each neighbor v

send_message(v, val)

29 / 56



Example: Max Value (2/4)

i_val := val

for each message m

if m > val then val := m

if i_val == val then

vote_to_halt

else

for each neighbor v

send_message(v, val)

30 / 56



Example: Max Value (3/4)

i_val := val

for each message m

if m > val then val := m

if i_val == val then

vote_to_halt

else

for each neighbor v

send_message(v, val)

31 / 56



Example: Max Value (4/4)

i_val := val

for each message m

if m > val then val := m

if i_val == val then

vote_to_halt

else

for each neighbor v

send_message(v, val)

32 / 56



Example: PageRank

R[i] =
∑

j∈Nbrs(i)
wjiR[j]

33 / 56



Example: PageRank

Pregel_PageRank(i, messages):

// receive all the messages

total = 0

foreach(msg in messages):

total = total + msg

// update the rank of this vertex

R[i] = total

// send new messages to neighbors

foreach(j in out_neighbors[i]):

sendmsg(R[i] * wij) to vertex j

R[i] =
∑

j∈Nbrs(i)
wjiR[j]

34 / 56



GraphLab/Turi

35 / 56



GraphLab

▶ GraphLab allows asynchronous iterative computation.

▶ Vertex scope of vertex v: the data stored in v, and in all adjacent vertices and edges.

▶ A vertex can read and modify any of the data in its scope (shared memory).

36 / 56



Example: PageRank (GraphLab)

GraphLab_PageRank(i)

// compute sum over neighbors

total = 0

foreach(j in in_neighbors(i)):

total = total + R[j] * wji

// update the PageRank

R[i] = total

// trigger neighbors to run again

foreach(j in out_neighbors(i)):

signal vertex-program on j

R[i] =
∑

j∈Nbrs(i)
wjiR[j]

37 / 56



Gather-Apply-Scatter (GAS)

▶ Factorizes the local vertices functions into the Gather, Apply and Scatter phases.

▶ Gather: accumulate information from neighborhood.

▶ Apply: apply the accumulated value to center vertex.

▶ Scatter: update adjacent edges and vertices.

38 / 56



Example: PageRank (GraphLab - GAS)

PowerGraph_PageRank(i):

Gather(j -> i):

return wji * R[j]

sum(a, b):

return a + b

// total: Gather and sum

Apply(i, total):

R[i] = total

Scatter(i -> j):

if R[i] changed then activate(j)

R[i] =
∑

j∈Nbrs(i)
wjiR[j]

39 / 56



Think Like a Table

40 / 56



Data-Parallel vs. Graph-Parallel Computation

41 / 56



Motivation (2/3)

▶ Graph-parallel computation: restricting the types of computation to achieve perfor-
mance.

▶ The same restrictions make it difficult and inefficient to express many stages in a
typical graph-analytics pipeline.

42 / 56



Motivation (3/3)

43 / 56



Think Like a Table

▶ Unifies data-parallel and graph-parallel systems.

▶ Tables and Graphs are composable views of the same physical data.

44 / 56



GraphX

45 / 56



GraphX

▶ GraphX is the library to perform graph-parallel processing in Spark.

46 / 56



The Property Graph Data Model

▶ Spark represent graph structured data as a property graph.

▶ It is logically represented as a pair of vertex and edge property collections.
• VertexRDD and EdgeRDD

// VD: the type of the vertex attribute

// ED: the type of the edge attribute

class Graph[VD, ED] {

val vertices: VertexRDD[VD]

val edges: EdgeRDD[ED]

}

47 / 56



The Vertex Collection

▶ VertexRDD: contains the vertex properties keyed by the vertex ID.

class Graph[VD, ED] {

val vertices: VertexRDD[VD]

val edges: EdgeRDD[ED]

}

// VD: the type of the vertex attribute

abstract class VertexRDD[VD] extends RDD[(VertexId, VD)]

48 / 56



The Edge Collection

▶ EdgeRDD: contains the edge properties keyed by the source and destination vertex
IDs.

class Graph[VD, ED] {

val vertices: VertexRDD[VD]

val edges: EdgeRDD[ED]

}

// ED: the type of the edge attribute

case class Edge[ED](srcId: VertexId, dstId: VertexId, attr: ED)

abstract class EdgeRDD[ED] extends RDD[Edge[ED]]

49 / 56



The Triplet Collection

▶ The triplets collection consists of each edge and its corresponding source and desti-
nation vertex properties.

▶ It logically joins the vertex and edge properties: RDD[EdgeTriplet[VD, ED]].

▶ The EdgeTriplet class extends the Edge class by adding the srcAttr and dstAttr

members, which contain the source and destination properties respectively.

50 / 56



Building a Property Graph

val users: RDD[(VertexId, (String, String))] = sc.parallelize(Array((3L, ("rxin", "student")),

(7L, ("jgonzal", "postdoc")), (5L, ("franklin", "prof")), (2L, ("istoica", "prof"))))

val relationships: RDD[Edge[String]] = sc.parallelize(Array(Edge(3L, 7L, "collab"),

Edge(5L, 3L, "advisor"), Edge(2L, 5L, "colleague"), Edge(5L, 7L, "pi"), Edge(5L, 1L, "-")))

val defaultUser = ("John Doe", "Missing")

val graph: Graph[(String, String), String] = Graph(users, relationships, defaultUser)

51 / 56



Graph Operators

▶ Information about the graph

▶ Property operators

▶ Structural operators

▶ Joins

▶ Aggregation

▶ Iterative computation

▶ ...

52 / 56



Summary

53 / 56



Summary

▶ Think like a vertex
• Pregel: BSP, synchronous parallel model, message passing
• GraphLab: asynchronous model, shared memory, GAS

▶ Think like a table
• Graphx: unifies data-parallel and graph-parallel systems.

54 / 56



References

▶ G. Malewicz et al., “Pregel: a system for large-scale graph processing”, ACM SIG-
MOD 2010

▶ Y. Low et al., “Distributed GraphLab: a framework for machine learning and data
mining in the cloud”, VLDB 2012

▶ J. Gonzalez et al., “Powergraph: distributed graph-parallel computation on natural
graphs”, OSDI 2012

▶ J. Gonzalez et al., “GraphX: Graph Processing in a Distributed Dataflow Framework”,
OSDI 2014

55 / 56



Questions?

56 / 56


	

