
Resource Management - Mesos, YARN, and Borg

Amir H. Payberah
payberah@kth.se

2023-10-02

The Course Web Page

https://id2221kth.github.io

1 / 55

https://id2221kth.github.io

The Questions-Answers Page

https://tinyurl.com/hk7hzpw5

2 / 55

https://tinyurl.com/hk7hzpw5

Where Are We?

3 / 55

Motivation

I Rapid innovation in cloud computing.

I No single framework optimal for all applications.

I Running each framework on its dedicated cluster:
• Expensive
• Hard to share data

4 / 55

Proposed Solution

I Running multiple frameworks on a single cluster.

I Maximize utilization and share data between frameworks.

I Three resource management systems:
• Mesos
• YARN
• Borg

5 / 55

Proposed Solution

I Running multiple frameworks on a single cluster.

I Maximize utilization and share data between frameworks.

I Three resource management systems:
• Mesos
• YARN
• Borg

5 / 55

Question?
How to schedule resource offering among frameworks?

6 / 55

Schedule Frameworks

I Monolithic scheduler

I Two-Level scheduler

7 / 55

Monolithic Scheduler (1/2)

I Job requirements
• Response time
• Throughput
• Availability

I Job execution plan
• Task DAG
• Inputs/outputs

I Estimates
• Task duration
• Input sizes
• Transfer sizes

8 / 55

Monolithic Scheduler (1/2)

I Job requirements
• Response time
• Throughput
• Availability

I Job execution plan
• Task DAG
• Inputs/outputs

I Estimates
• Task duration
• Input sizes
• Transfer sizes

8 / 55

Monolithic Scheduler (1/2)

I Job requirements
• Response time
• Throughput
• Availability

I Job execution plan
• Task DAG
• Inputs/outputs

I Estimates
• Task duration
• Input sizes
• Transfer sizes

8 / 55

Monolithic Scheduler (2/2)

I Advantages
• Can achieve optimal schedule.

I Disadvantages
• Complexity: hard to scale and ensure resilience.
• Hard to anticipate future frameworks requirements.
• Need to refactor existing frameworks.

9 / 55

Monolithic Scheduler (2/2)

I Advantages
• Can achieve optimal schedule.

I Disadvantages
• Complexity: hard to scale and ensure resilience.
• Hard to anticipate future frameworks requirements.
• Need to refactor existing frameworks.

9 / 55

Two-Level Scheduler (1/2)

10 / 55

Two-Level Scheduler (2/2)

I Advantages
• Simple: easier to scale and make resilient.
• Easy to port existing frameworks, support new ones.

I Disadvantages
• Distributed scheduling decision: not optimal.

11 / 55

Two-Level Scheduler (2/2)

I Advantages
• Simple: easier to scale and make resilient.
• Easy to port existing frameworks, support new ones.

I Disadvantages
• Distributed scheduling decision: not optimal.

11 / 55

Two-Level vs. Monolithic

I Two-level schedulers: separate concerns of resource allocation and task placement.

• An active resource manager offers compute resources to multiple parallel, independent
scheduler frameworks.

• Mesos and Yarn

I Monolithic schedulers: use a single, centralized scheduling algorithm for all jobs.

• Borg

[Schwarzkopf et al., Omega: flexible, scalable schedulers for large compute clusters, EuroSys’13.]

12 / 55

Two-Level vs. Monolithic

I Two-level schedulers: separate concerns of resource allocation and task placement.
• An active resource manager offers compute resources to multiple parallel, independent

scheduler frameworks.

• Mesos and Yarn

I Monolithic schedulers: use a single, centralized scheduling algorithm for all jobs.

• Borg

[Schwarzkopf et al., Omega: flexible, scalable schedulers for large compute clusters, EuroSys’13.]

12 / 55

Two-Level vs. Monolithic

I Two-level schedulers: separate concerns of resource allocation and task placement.
• An active resource manager offers compute resources to multiple parallel, independent

scheduler frameworks.
• Mesos and Yarn

I Monolithic schedulers: use a single, centralized scheduling algorithm for all jobs.

• Borg

[Schwarzkopf et al., Omega: flexible, scalable schedulers for large compute clusters, EuroSys’13.]

12 / 55

Two-Level vs. Monolithic

I Two-level schedulers: separate concerns of resource allocation and task placement.
• An active resource manager offers compute resources to multiple parallel, independent

scheduler frameworks.
• Mesos and Yarn

I Monolithic schedulers: use a single, centralized scheduling algorithm for all jobs.

• Borg

[Schwarzkopf et al., Omega: flexible, scalable schedulers for large compute clusters, EuroSys’13.]

12 / 55

Two-Level vs. Monolithic

I Two-level schedulers: separate concerns of resource allocation and task placement.
• An active resource manager offers compute resources to multiple parallel, independent

scheduler frameworks.
• Mesos and Yarn

I Monolithic schedulers: use a single, centralized scheduling algorithm for all jobs.
• Borg

[Schwarzkopf et al., Omega: flexible, scalable schedulers for large compute clusters, EuroSys’13.]

12 / 55

Mesos

13 / 55

Mesos

I Mesos is a common resource sharing layer, over which diverse frameworks can run.

14 / 55

Computation Model

I A framework (e.g., Hadoop, Spark) manages and runs one or more jobs.

I A job consists of one or more tasks.

I A task (e.g., map, reduce) consists of one or more processes running on same ma-
chine.

15 / 55

Computation Model

I A framework (e.g., Hadoop, Spark) manages and runs one or more jobs.

I A job consists of one or more tasks.

I A task (e.g., map, reduce) consists of one or more processes running on same ma-
chine.

15 / 55

Computation Model

I A framework (e.g., Hadoop, Spark) manages and runs one or more jobs.

I A job consists of one or more tasks.

I A task (e.g., map, reduce) consists of one or more processes running on same ma-
chine.

15 / 55

Fine-Grained Sharing

I Allocation at the level of tasks within a job.

Coarse-grained sharing Fine-grained sharing

16 / 55

Mesos Scheduler

I Master sends resource offers to frameworks.

I Frameworks select which offers to accept and which tasks to run.

I Unit of allocation: resource offer
• Vector of available resources on a node
• For example, node1: 〈1CPU, 1GB〉, node2: 〈4CPU, 16GB〉

17 / 55

Mesos Scheduler

I Master sends resource offers to frameworks.

I Frameworks select which offers to accept and which tasks to run.

I Unit of allocation: resource offer
• Vector of available resources on a node
• For example, node1: 〈1CPU, 1GB〉, node2: 〈4CPU, 16GB〉

17 / 55

Mesos Architecture (1/4)

I Slaves continuously send status updates about resources to the Master.

18 / 55

Mesos Architecture (2/4)

I Pluggable scheduler picks framework to send an offer to.

19 / 55

Mesos Architecture (3/4)

I Framework scheduler selects resources and provides tasks.

20 / 55

Mesos Architecture (4/4)

I Framework executors launch tasks.

21 / 55

Question?
How to allocate resources of different types?

22 / 55

Single Resource: Fair Sharing

I n users want to share a resource, e.g., CPU.
• Solution: allocate each 1

n
of the shared resource.

CPU

I Generalized by max-min fairness.
• Handles if a user wants less than its fair share.
• E.g., user 1 wants no more than 20%.

I Generalized by weighted max-min fairness.
• Give weights to users according to importance.
• E.g., user 1 gets weight 1, user 2 weight 2.

23 / 55

Single Resource: Fair Sharing

I n users want to share a resource, e.g., CPU.
• Solution: allocate each 1

n
of the shared resource.

CPU

I Generalized by max-min fairness.
• Handles if a user wants less than its fair share.
• E.g., user 1 wants no more than 20%.

I Generalized by weighted max-min fairness.
• Give weights to users according to importance.
• E.g., user 1 gets weight 1, user 2 weight 2.

23 / 55

Single Resource: Fair Sharing

I n users want to share a resource, e.g., CPU.
• Solution: allocate each 1

n
of the shared resource.

CPU

I Generalized by max-min fairness.
• Handles if a user wants less than its fair share.
• E.g., user 1 wants no more than 20%.

I Generalized by weighted max-min fairness.
• Give weights to users according to importance.
• E.g., user 1 gets weight 1, user 2 weight 2.

23 / 55

Max-Min Fairness - Example

I 1 resource: CPU

I Total resources: 20 CPU

I User 1 has x tasks and wants 〈1CPU〉 per task

I User 2 has y tasks and wants 〈2CPU〉 per task

max(x, y) (maximize allocation)
subject to
x + 2y ≤ 20 (CPU constraint)
x = 2y

so
x = 10

y = 5

24 / 55

Max-Min Fairness - Example

I 1 resource: CPU

I Total resources: 20 CPU

I User 1 has x tasks and wants 〈1CPU〉 per task

I User 2 has y tasks and wants 〈2CPU〉 per task

max(x, y) (maximize allocation)

subject to
x + 2y ≤ 20 (CPU constraint)
x = 2y

so
x = 10

y = 5

24 / 55

Max-Min Fairness - Example

I 1 resource: CPU

I Total resources: 20 CPU

I User 1 has x tasks and wants 〈1CPU〉 per task

I User 2 has y tasks and wants 〈2CPU〉 per task

max(x, y) (maximize allocation)
subject to
x + 2y ≤ 20 (CPU constraint)
x = 2y

so
x = 10

y = 5

24 / 55

Max-Min Fairness - Example

I 1 resource: CPU

I Total resources: 20 CPU

I User 1 has x tasks and wants 〈1CPU〉 per task

I User 2 has y tasks and wants 〈2CPU〉 per task

max(x, y) (maximize allocation)
subject to
x + 2y ≤ 20 (CPU constraint)
x = 2y

so
x = 10

y = 5

24 / 55

Properties of Max-Min Fairness

I Share guarantee
• Each user can get at least 1

n of the resource.
• But will get less if her demand is less.

I Strategy proof
• Users are not better off by asking for more than they need.
• Users have no reason to lie.

25 / 55

Properties of Max-Min Fairness

I Share guarantee
• Each user can get at least 1

n of the resource.
• But will get less if her demand is less.

I Strategy proof
• Users are not better off by asking for more than they need.
• Users have no reason to lie.

25 / 55

Question?
When is Max-Min Fairness NOT Enough?

Need to schedule multiple, heterogeneous resources, e.g.,
CPU, memory, etc.

26 / 55

Question?
When is Max-Min Fairness NOT Enough?

Need to schedule multiple, heterogeneous resources, e.g.,
CPU, memory, etc.

26 / 55

Problem

I Single resource example
• 1 resource: CPU
• User 1 wants 〈1CPU〉 per task
• User 2 wants 〈2CPU〉 per task

I Multi-resource example
• 2 resources: CPUs and mem
• User 1 wants 〈1CPU, 4GB〉 per task
• User 2 wants 〈2CPU, 1GB〉 per task

• What is a fair allocation?

27 / 55

Problem

I Single resource example
• 1 resource: CPU
• User 1 wants 〈1CPU〉 per task
• User 2 wants 〈2CPU〉 per task

I Multi-resource example
• 2 resources: CPUs and mem
• User 1 wants 〈1CPU, 4GB〉 per task
• User 2 wants 〈2CPU, 1GB〉 per task

• What is a fair allocation?

27 / 55

Problem

I Single resource example
• 1 resource: CPU
• User 1 wants 〈1CPU〉 per task
• User 2 wants 〈2CPU〉 per task

I Multi-resource example
• 2 resources: CPUs and mem
• User 1 wants 〈1CPU, 4GB〉 per task
• User 2 wants 〈2CPU, 1GB〉 per task

• What is a fair allocation?

27 / 55

A Natural Policy (1/2)

I Asset fairness: give weights to resources (e.g., 1 CPU = 1 GB) and equalize total
value given to each user.

I Total resources: 28 CPU and 56GB RAM (e.g., 1 CPU = 2 GB)
• User 1 has x tasks and wants 〈1CPU, 2GB〉 per task
• User 2 has y tasks and wants 〈1CPU, 4GB〉 per task

I Asset fairness yields:

max(x, y)
x + y ≤ 28

2x + 4y ≤ 56

2x = 3y

User 1: x = 12: 〈43%CPU, 43%GB〉 (
∑

= 86%)
User 2: y = 8: 〈28%CPU, 57%GB〉 (

∑
= 86%)

28 / 55

A Natural Policy (1/2)

I Asset fairness: give weights to resources (e.g., 1 CPU = 1 GB) and equalize total
value given to each user.

I Total resources: 28 CPU and 56GB RAM (e.g., 1 CPU = 2 GB)
• User 1 has x tasks and wants 〈1CPU, 2GB〉 per task
• User 2 has y tasks and wants 〈1CPU, 4GB〉 per task

I Asset fairness yields:

max(x, y)
x + y ≤ 28

2x + 4y ≤ 56

2x = 3y

User 1: x = 12: 〈43%CPU, 43%GB〉 (
∑

= 86%)
User 2: y = 8: 〈28%CPU, 57%GB〉 (

∑
= 86%)

28 / 55

A Natural Policy (1/2)

I Asset fairness: give weights to resources (e.g., 1 CPU = 1 GB) and equalize total
value given to each user.

I Total resources: 28 CPU and 56GB RAM (e.g., 1 CPU = 2 GB)
• User 1 has x tasks and wants 〈1CPU, 2GB〉 per task
• User 2 has y tasks and wants 〈1CPU, 4GB〉 per task

I Asset fairness yields:

max(x, y)
x + y ≤ 28

2x + 4y ≤ 56

2x = 3y

User 1: x = 12: 〈43%CPU, 43%GB〉 (
∑

= 86%)
User 2: y = 8: 〈28%CPU, 57%GB〉 (

∑
= 86%)

28 / 55

A Natural Policy (2/2)

I Problem: violates share grantee.

I User 1 gets less than 50% of both CPU and RAM.

I Better off in a separate cluster with half the resources.

29 / 55

Challenge

I Can we find a fair sharing policy that provides:
• Share guarantee
• Strategy-proofness

I Can we generalize max-min fairness to multiple resources?

30 / 55

Proposed Solution

Dominant Resource Fairness (DRF)

31 / 55

Dominant Resource Fairness (DRF) (1/2)

I Dominant resource of a user: the resource that user has the biggest share of.

• Total resources: 〈8CPU, 5GB〉
• User 1 allocation: 〈2CPU, 1GB〉: 2

8
= 25% CPU and 1

5
= 20% RAM

• Dominant resource of User 1 is CPU (25% > 20%)

I Dominant share of a user: the fraction of the dominant resource she is allocated.
• User 1 dominant share is 25%.

32 / 55

Dominant Resource Fairness (DRF) (1/2)

I Dominant resource of a user: the resource that user has the biggest share of.

• Total resources: 〈8CPU, 5GB〉
• User 1 allocation: 〈2CPU, 1GB〉: 2

8
= 25% CPU and 1

5
= 20% RAM

• Dominant resource of User 1 is CPU (25% > 20%)

I Dominant share of a user: the fraction of the dominant resource she is allocated.
• User 1 dominant share is 25%.

32 / 55

Dominant Resource Fairness (DRF) (2/2)

I Apply max-min fairness to dominant shares: give every user an equal share of her
dominant resource.

I Equalize the dominant share of the users.
• Total resources: 〈9CPU, 18GB〉
• User 1 wants 〈1CPU, 4GB〉; Dominant resource: RAM (1

9
< 4

18
)

• User 2 wants 〈3CPU, 1GB〉; Dominant resource: CPU (3
9
> 1

18
)

I max(x, y)
x + 3y ≤ 9

4x + y ≤ 18
4x
18

= 3y
9

User 1: x = 3: 〈33%CPU, 66%GB〉
User 2: y = 2: 〈66%CPU, 16%GB〉

33 / 55

Dominant Resource Fairness (DRF) (2/2)

I Apply max-min fairness to dominant shares: give every user an equal share of her
dominant resource.

I Equalize the dominant share of the users.
• Total resources: 〈9CPU, 18GB〉
• User 1 wants 〈1CPU, 4GB〉; Dominant resource: RAM (1

9
< 4

18
)

• User 2 wants 〈3CPU, 1GB〉; Dominant resource: CPU (3
9
> 1

18
)

I max(x, y)
x + 3y ≤ 9

4x + y ≤ 18
4x
18

= 3y
9

User 1: x = 3: 〈33%CPU, 66%GB〉
User 2: y = 2: 〈66%CPU, 16%GB〉

33 / 55

Dominant Resource Fairness (DRF) (2/2)

I Apply max-min fairness to dominant shares: give every user an equal share of her
dominant resource.

I Equalize the dominant share of the users.
• Total resources: 〈9CPU, 18GB〉
• User 1 wants 〈1CPU, 4GB〉; Dominant resource: RAM (1

9
< 4

18
)

• User 2 wants 〈3CPU, 1GB〉; Dominant resource: CPU (3
9
> 1

18
)

I max(x, y)
x + 3y ≤ 9

4x + y ≤ 18
4x
18

= 3y
9

User 1: x = 3: 〈33%CPU, 66%GB〉
User 2: y = 2: 〈66%CPU, 16%GB〉

33 / 55

YARN

34 / 55

YARN Architecture

I Resource Manager (RM)

I Application Master (AM)

I Node Manager (NM)

35 / 55

YARN Architecture - Resource Manager

I One per cluster (Central: global view)

I Job requests are submitted to RM.
• To start a job, RM finds a container to spawn AM.

I Only handles an overall resource profile for each job.
• Local optimization is up to the job.

36 / 55

YARN Architecture - Resource Manager

I One per cluster (Central: global view)

I Job requests are submitted to RM.
• To start a job, RM finds a container to spawn AM.

I Only handles an overall resource profile for each job.
• Local optimization is up to the job.

36 / 55

YARN Architecture - Resource Manager

I One per cluster (Central: global view)

I Job requests are submitted to RM.
• To start a job, RM finds a container to spawn AM.

I Only handles an overall resource profile for each job.
• Local optimization is up to the job.

36 / 55

YARN Architecture - Application Manager

I The head of a job.

I Runs as a container.

I Request resources from RM (num. of containers/resource per container/locality ...)

37 / 55

YARN Architecture - Node Manager

I The worker daemon.

I Registers with RM.

I One per node.

I Report resources to RM: memory, CPU, ...

38 / 55

Borg

39 / 55

Borg

I Cluster management system at Google.

40 / 55

Borg Cell, Job, Task, and Alloc

I Cell: a set of machines managed by Borg as one unit.

I Job: users submit work in the form of jobs.

I Task: each job contains one or more tasks.

I Alloc: reserved set of resources and a job can
run in an alloc set.

I Alloc instance: making each of its tasks run in
an alloc instance.

41 / 55

Borg Cell, Job, Task, and Alloc

I Cell: a set of machines managed by Borg as one unit.

I Job: users submit work in the form of jobs.

I Task: each job contains one or more tasks.

I Alloc: reserved set of resources and a job can
run in an alloc set.

I Alloc instance: making each of its tasks run in
an alloc instance.

41 / 55

Borg Cell, Job, Task, and Alloc

I Cell: a set of machines managed by Borg as one unit.

I Job: users submit work in the form of jobs.

I Task: each job contains one or more tasks.

I Alloc: reserved set of resources and a job can
run in an alloc set.

I Alloc instance: making each of its tasks run in
an alloc instance.

41 / 55

Borg Cell, Job, Task, and Alloc

I Cell: a set of machines managed by Borg as one unit.

I Job: users submit work in the form of jobs.

I Task: each job contains one or more tasks.

I Alloc: reserved set of resources and a job can
run in an alloc set.

I Alloc instance: making each of its tasks run in
an alloc instance.

41 / 55

Borg Cell, Job, Task, and Alloc

I Cell: a set of machines managed by Borg as one unit.

I Job: users submit work in the form of jobs.

I Task: each job contains one or more tasks.

I Alloc: reserved set of resources and a job can
run in an alloc set.

I Alloc instance: making each of its tasks run in
an alloc instance.

41 / 55

Borg Architecture

I BorgMaster
• The central brain of the system
• Holds the cluster state
• Replicated for reliability (using paxos)
• Scheduling: where to place tasks?

I Borglet
• Manage and monitor tasks and resource
• BorgMaster polls Borglet every few seconds

42 / 55

Borg Architecture

I BorgMaster
• The central brain of the system
• Holds the cluster state
• Replicated for reliability (using paxos)
• Scheduling: where to place tasks?

I Borglet
• Manage and monitor tasks and resource
• BorgMaster polls Borglet every few seconds

42 / 55

Borg Scheduler

I Feasibility checking: find machines for a given job

I Scoring: pick one machines

I According to the users prefs and built-in criteria

43 / 55

Borg Scheduler

I Feasibility checking: find machines for a given job

I Scoring: pick one machines

I According to the users prefs and built-in criteria

43 / 55

Borg Scheduler

I Feasibility checking: find machines for a given job

I Scoring: pick one machines

I According to the users prefs and built-in criteria

43 / 55

Docker and Kubernetes

44 / 55

Application Deployment

45 / 55

Traditional Deployment Era

I Running applications on physical servers.

I No resource boundaries for applications in a physical server

I Resource allocation issues, e.g., one application would take up most of the resources,
so the other applications would underperform.

46 / 55

Traditional Deployment Era

I Running applications on physical servers.

I No resource boundaries for applications in a physical server

I Resource allocation issues, e.g., one application would take up most of the resources,
so the other applications would underperform.

46 / 55

Traditional Deployment Era

I Running applications on physical servers.

I No resource boundaries for applications in a physical server

I Resource allocation issues, e.g., one application would take up most of the resources,
so the other applications would underperform.

46 / 55

Virtualized Deployment Era

I Virtual Machines (VMs): a full machine running all the components, including its
own operating system (OS), on top of the virtualized hardware.

I Virtualization allows to run multiple VMs on a single physical server’s CPU.

• Utilizes the resources of a physical server better.
• Better scalability as applications can be added/updated easily.

47 / 55

Virtualized Deployment Era

I Virtual Machines (VMs): a full machine running all the components, including its
own operating system (OS), on top of the virtualized hardware.

I Virtualization allows to run multiple VMs on a single physical server’s CPU.

• Utilizes the resources of a physical server better.
• Better scalability as applications can be added/updated easily.

47 / 55

Virtualized Deployment Era

I Virtual Machines (VMs): a full machine running all the components, including its
own operating system (OS), on top of the virtualized hardware.

I Virtualization allows to run multiple VMs on a single physical server’s CPU.
• Utilizes the resources of a physical server better.

• Better scalability as applications can be added/updated easily.

47 / 55

Virtualized Deployment Era

I Virtual Machines (VMs): a full machine running all the components, including its
own operating system (OS), on top of the virtualized hardware.

I Virtualization allows to run multiple VMs on a single physical server’s CPU.
• Utilizes the resources of a physical server better.
• Better scalability as applications can be added/updated easily.

47 / 55

Container Deployment Era

I Containers are similar to VMs, but they have relaxed isolation properties to share the
OS among the applications.

I Similar to a VM, a container packages applications as images that contain everything
needed to run them: code, runtime environment, libraries, and configuration.

I As they are decoupled from the underlying infrastructure,
they are portable across clouds and OS distributions.

48 / 55

Container Deployment Era

I Containers are similar to VMs, but they have relaxed isolation properties to share the
OS among the applications.

I Similar to a VM, a container packages applications as images that contain everything
needed to run them: code, runtime environment, libraries, and configuration.

I As they are decoupled from the underlying infrastructure,
they are portable across clouds and OS distributions.

48 / 55

Container Deployment Era

I Containers are similar to VMs, but they have relaxed isolation properties to share the
OS among the applications.

I Similar to a VM, a container packages applications as images that contain everything
needed to run them: code, runtime environment, libraries, and configuration.

I As they are decoupled from the underlying infrastructure,
they are portable across clouds and OS distributions.

48 / 55

Docker

I Docker is a virtualization software.

I A docker image is a template, and a container is a copy of that template.

49 / 55

Docker

I Docker is a virtualization software.

I A docker image is a template, and a container is a copy of that template.

49 / 55

Container Orchestration

I Container scalability is an operational challenge.

I If we have 10 containers and four applications, it is not difficult to manage the
deployment and maintenance of the containers.

I But, what if we have 1000 containers and 400 services?

I Container orchestration can help to manage the lifecycles of containers, especially in
large and dynamic environments.

I Container orchestration tools: Kubernetes (based on Borg), Marathon (runs on
Mesos)

50 / 55

Container Orchestration

I Container scalability is an operational challenge.

I If we have 10 containers and four applications, it is not difficult to manage the
deployment and maintenance of the containers.

I But, what if we have 1000 containers and 400 services?

I Container orchestration can help to manage the lifecycles of containers, especially in
large and dynamic environments.

I Container orchestration tools: Kubernetes (based on Borg), Marathon (runs on
Mesos)

50 / 55

Container Orchestration

I Container scalability is an operational challenge.

I If we have 10 containers and four applications, it is not difficult to manage the
deployment and maintenance of the containers.

I But, what if we have 1000 containers and 400 services?

I Container orchestration can help to manage the lifecycles of containers, especially in
large and dynamic environments.

I Container orchestration tools: Kubernetes (based on Borg), Marathon (runs on
Mesos)

50 / 55

Container Orchestration

I Container scalability is an operational challenge.

I If we have 10 containers and four applications, it is not difficult to manage the
deployment and maintenance of the containers.

I But, what if we have 1000 containers and 400 services?

I Container orchestration can help to manage the lifecycles of containers, especially in
large and dynamic environments.

I Container orchestration tools: Kubernetes (based on Borg), Marathon (runs on
Mesos)

50 / 55

Container Orchestration

I Container scalability is an operational challenge.

I If we have 10 containers and four applications, it is not difficult to manage the
deployment and maintenance of the containers.

I But, what if we have 1000 containers and 400 services?

I Container orchestration can help to manage the lifecycles of containers, especially in
large and dynamic environments.

I Container orchestration tools: Kubernetes (based on Borg), Marathon (runs on
Mesos)

50 / 55

Summary

51 / 55

Summary

I Mesos
• Offered-based
• Max-Min fairness: DRF

I YARN
• Request-based
• RM, AM, NM

I Borg
• Request-based
• BorgMaster, Borglet
• Kubernetes

52 / 55

References

I B. Hindman et al., “Mesos: A Platform for Fine-Grained Resource Sharing in the
Data Center”, NSDI 2011

I V. Vavilapalli et al., “Apache hadoop yarn: Yet another resource negotiator”, ACM
Cloud Computing 2013

I A. Verma et al., “Large-scale cluster management at Google with Borg”, EuroSys
2015

53 / 55

Questions?

Acknowledgements
Some slides were derived from Ion Stoica and Ali Ghodsi slides (Berkeley University),

Wei-Chiu Chuang slides (Purdue University), and Arnon Rotem-Gal-Oz (Amdocs).

54 / 55

	

