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Where Are We?

Data Processing

Pregel, GraphLab, PowerGraph Spark SQL Milib
GraphX, X-Streem, Chaos Tensorflow

MapReduce, Dryad Storm, SEEP, Naiad, Spark Streaming, Flink,
FlumeJava, Spark Millwheel, Google Dataflow

Data Storage

Dynamo, BigTable,
GFS, Flat FS Cassandra

Resource Management




Motivation

» Rapid innovation in cloud computing.
» No single framework optimal for all applications.

» Running each framework on its dedicated cluster:

e Expensive
* Hard to share data




Proposed Solution

» Running multiple frameworks on a single cluster.

» Maximize utilization and share data between frameworks.




Proposed Solution

» Running multiple frameworks on a single cluster.

» Maximize utilization and share data between frameworks.

» Three resource management systems:

* Mesos
* YARN
* Borg




Question?
How to schedule resource offering among frameworks?




Schedule Frameworks

» Monolithic scheduler

» Two-Level scheduler




» Job requirements
e Response time
e Throughput
e Availability

Monolithic Scheduler (1/2)

Organization policies -
Resource availability -
Job requirements -
Job execution plan -
Estimates -

Global
Scheduler
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» Job execution plan

e Task DAG
e Inputs/outputs
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» Job requirements

e Response time
e Throughput
e Availability

» Job execution plan

e Task DAG
e Inputs/outputs

» Estimates
e Task duration
e Input sizes
e Transfer sizes

Monolithic Scheduler (1/2)

Organization policies -
Resource availability -
Job requirements -
Job execution plan -
Estimates -

Global
Scheduler

-Task schedule



Monolithic Scheduler (2/2)

» Advantages
e Can achieve optimal schedule.




Monolithic Scheduler (2/2)

» Advantages
e Can achieve optimal schedule.

» Disadvantages
e Complexity: hard to scale and ensure resilience.
» Hard to anticipate future frameworks requirements.
e Need to refactor existing frameworks.




Two-Level Scheduler (1/2)

Organization
policies

Resource

availability Framework

schedule




Two-Level Scheduler (2/2)

» Advantages

e Simple: easier to scale and make resilient.
e Easy to port existing frameworks, support new ones.




Two-Level Scheduler (2/2)

» Advantages

e Simple: easier to scale and make resilient.
e Easy to port existing frameworks, support new ones.

» Disadvantages

 Distributed scheduling decision: not optimal.




Two-Level vs. Monolithic

» Two-level schedulers: separate concerns of resource allocation and task placement.

Monolithic Two-level

scheduling subset | 2
logic

cluster state
information

1 cluster
machines
no pessimistic
concurrency concurrency
(offers)

[Schwarzkopf et al., Omega: flexible, scalable schedulers for large compute clusters, EuroSys'13.]
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» Two-level schedulers: separate concerns of resource allocation and task placement.

e An active resource manager offers compute resources to multiple parallel, independent
scheduler frameworks.
e Mesos and Yarn

» Monolithic schedulers: use a single, centralized scheduling algorithm for all jobs.
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Two-Level vs. Monolithic

» Two-level schedulers: separate concerns of resource allocation and task placement.

e An active resource manager offers compute resources to multiple parallel, independent
scheduler frameworks.
e Mesos and Yarn

» Monolithic schedulers: use a single, centralized scheduling algorithm for all jobs.

* Borg Monolithic Two-level

©

scheduling subset | 2
logic

cluster state
information
cluster

no pessimistic
concurrency concurrency
(offers)

[Schwarzkopf et al., Omega: flexible, scalable schedulers for large compute clusters, EuroSys'13.]




Mesos




» Mesos is a common resource sharing layer, over which diverse frameworks can run.
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Computation Model

» A framework (e.g., Hadoop, Spark) manages and runs one or more jobs.
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Computation Model

» A framework (e.g., Hadoop, Spark) manages and runs one or more jobs.
> A job consists of one or more tasks.

» A task (e.g., map, reduce) consists of one or more processes running on same ma-
chine.

Executor Executor
"j (e.g., task tracker) S| (e.g., task tracker) :
= = ~... i
- ’ S Framework
| Scheduler
Executor = (e.g., job tracker)

Executor -
: . (e.g., task tracker) ~ (e.g., task tracker) -
L I§ S




Fine-Grained Sharing

» Allocation at the level of tasks within a job.

Framework 1

| iy’

Coarse-grained sharing Fine-grained sharing




Mesos Scheduler

» Master sends resource offers to frameworks.

» Frameworks select which offers to accept and which tasks to run.




Mesos Scheduler

» Master sends resource offers to frameworks.

» Frameworks select which offers to accept and which tasks to run.

» Unit of allocation: resource offer

» Vector of available resources on a node
e For example, nodel: (1CPU, 1GB), node2: (4CPU, 16GB)




Mesos Architecture (1/4)

Framework 1

Framework 2

Job1 [ Job2

Job1 [ Job2
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Executor

» Slaves continuously send status updates

about resources to the Master.




Mesos Architecture (2/4)
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» Pluggable scheduler picks framework to send an offer to.




Mesos Architecture (3/4)
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» Framework scheduler selects resources and provides tasks.




Mesos Architecture (4/4)
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] Slave 2

Executor

» Framework executors launch tasks.




Question?
How to allocate resources of different types?




Single Resource: Fair Sharing

> n users want to share a resource, e.g., CPU.

e Solution: allocate each 1—11 of the shared resource.
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Single Resource: Fair Sharing

> n users want to share a resource, e.g., CPU.
e Solution: allocate each 1—11 of the shared resource.

» Generalized by max-min fairness.

e Handles if a user wants less than its fair share.
« E.g., user 1 wants no more than 20%.

» Generalized by weighted max-min fairness.

e Give weights to users according to importance.
e E.g., user 1 gets weight 1, user 2 weight 2.




Max-Min Fairness - Example

» 1 resource: CPU

Total resources: 20 CPU

v

v

User 1 has x tasks and wants (1CPU) per task

v

User 2 has y tasks and wants (2CPU) per task




Max-Min Fairness - Example

» 1 resource: CPU

Total resources: 20 CPU

v

v

User 1 has x tasks and wants (1CPU) per task

v

User 2 has y tasks and wants (2CPU) per task

max(x,y) (maximize allocation)
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Max-Min Fairness - Example

1 resource: CPU
Total resources: 20 CPU
User 1 has x tasks and wants (1CPU) per task

User 2 has y tasks and wants (2CPU) per task

max(x,y) (maximize allocation)
subject to

x + 2y < 20 (CPU constraint)
x =2y
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Max-Min Fairness - Example

1 resource: CPU

Total resources: 20 CPU

User 1 has x tasks and wants (1CPU) per task
User 2 has y tasks and wants (2CPU) per task

max(x,y) (maximize allocation)
subject to

x + 2y < 20 (CPU constraint)
x =2y

so

x =10

y =




Properties of Max-Min Fairness

» Share guarantee

e Each user can get at least % of the resource.
e But will get less if her demand is less.




Properties of Max-Min Fairness

» Share guarantee

e Each user can get at least % of the resource.
e But will get less if her demand is less.

» Strategy proof

e Users are not better off by asking for more than they need.
 Users have no reason to lie.




Question?
When is Max-Min Fairness NOT Enough?




Question?
When is Max-Min Fairness NOT Enough?

Need to schedule multiple, heterogeneous resources, e.g.,
CPU, memory, etc.




Problem

» Single resource example
* 1 resource: CPU
e User 1 wants (1CPU) per task
o User 2 wants (2CPU) per task
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Problem

» Single resource example
* 1 resource: CPU
e User 1 wants (1CPU) per task
o User 2 wants (2CPU) per task

» Multi-resource example
e 2 resources: CPUs and mem
e User 1 wants (1CPU, 4GB) per task
e User 2 wants (2CPU, 1GB) per task

100% t
50%-
0%-
100%
wonel-2- 12|
0“/.; ---------- |
CPU mem




Problem

» Single resource example 100%
e 1 resource: CPU

e User 1 wants (1CPU) per task
e User 2 wants (2CPU) per task 50%

: 100%

» Multi-resource example
e 2 resources: CPUs and mem B S -
e User 1 wants (1CPU, 4GB) per task sool -} -2
e User 2 wants (2CPU, 1GB) per task

e What is a fair allocation?

CPU  'mem




A Natural Policy (1/2)

» Asset fairness: give weights to resources (e.g., 1 CPU = 1 GB) and equalize total
value given to each user.
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» Asset fairness: give weights to resources (e.g., 1 CPU = 1 GB) and equalize total
value given to each user.

» Total resources: 28 CPU and 56GB RAM (e.g., 1 CPU = 2 GB)

e User 1 has x tasks and wants (1CPU, 2GB) per task
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A Natural Policy (1/2)

» Asset fairness: give weights to resources (e.g., 1 CPU = 1 GB) and equalize total
value given to each user.

» Total resources: 28 CPU and 56GB RAM (e.g., 1 CPU = 2 GB)

e User 1 has x tasks and wants (1CPU, 2GB) per task

e User 2 has y tasks and wants (1CPU, 4GB) per task I User 1[] User 2

100%j -

> Asset fairness yields:

max(x,y) 50%
x+y <28

2x 4 4y < 56 0%
2x =3y

User 1: x = 12: (43%CPU, 43%GB) (. = 86%)
User 2: y = 8: (28%CPU, 57%GB) (> = 86%)




A Natural Policy (2/2)

I User 1 [] User 2

100%¢

50%
- i57%
28%
O% N bl
CPU RAM

» Problem: violates share grantee.

» User 1 gets less than 50% of both CPU and RAM.

» Better off in a separate cluster with half the resources.




Challenge

» Can we find a fair sharing policy that provides:

e Share guarantee
e Strategy-proofness

» Can we generalize max-min fairness to multiple resources?




Proposed Solution

Dominant Resource Fairness (DRF)




Dominant Resource Fairness (DRF) (1/2)

» Dominant resource of a user: the resource that user has the biggest share of.

e Total resources: (8CPU,5GB)

e User 1 allocation: (2CPU, 1GB): 2 = 25% CPU and £ = 20% RAM

+ Dominant resource of User 1 is CPU (25% > 20%)




Dominant Resource Fairness (DRF) (1/2)

» Dominant resource of a user: the resource that user has the biggest share of.
e Total resources: (8CPU,5GB)
e User 1 allocation: (2CPU, 1GB): 2 = 25% CPU and £ = 20% RAM
+ Dominant resource of User 1 is CPU (25% > 20%)

» Dominant share of a user: the fraction of the dominant resource she is allocated.
o User 1 dominant share is 25%.




Dominant Resource Fairness (DRF) (2/2)

» Apply max-min fairness to dominant shares: give every user an equal share of her
dominant resource.




Dominant Resource Fairness (DRF) (2/2)

» Apply max-min fairness to dominant shares: give every user an equal share of her
dominant resource.

» Equalize the dominant share of the users.
e Total resources: (9CPU, 18GB)

« User 1 wants (1CPU, 4GB); Dominant resource: RAM (1 < %)
e User 2 wants (3CPU, 1GB); Dominant resource: CPU (£ >

-

8

)

&l




Dominant Resource Fairness (DRF) (2/2)

» Apply max-min fairness to dominant shares: give every user an equal share of her

dominant resource.

» Equalize the dominant share of the users.
e Total resources: (9CPU, 18GB)

« User 1 wants (1CPU, 4GB); Dominant resource: RAM (1 < %)
« User 2 wants (3CPU, 1GB); Dominant resource: CPU (£ > 1)
> max(x,y) 100% § 3CPUs 12GB
x+3y <9
dx +y <18 s0%
4x _ 3y {66%

18 = 9
User 1: x = 3: (33%CPU, 66%GB) 0%
User 2: y = 2: (66%CPU, 16%GB) (o o)

& 6CPUs

mem

(18 total)

O user1

W user2




YARN




YARN Architecture

» Resource Manager (RM)
» Application Master (AM)
» Node Manager (NM)

ResourceManager
-—'m
Client - RM Scheduler
client

AMService

RM - AM

mpr | Container [
- Container « 1 J

MR
AM

Umbilical
Container

RM -- NodeManager

3
_

{ Node Manager J [ Node Manager J

!

L

Node Manager

|

~)

<)



YARN Architecture - Resource Manager

» One per cluster (Central: global view)

RM -- NodeManager

Client - RM Scheduler =
AMService

v
e = Umbilical Container

[ Node Manager ] [ Node Manager ] - [ Nodel:lanager ]




YARN Architecture - Resource Manager

» One per cluster (Central: global view)

» Job requests are submitted to RM.
e To start a job, RM finds a container to spawn AM.

Client - RM Scheduler =
AMService

v
" Umbilical Container
A )

[ Node l:lanauer ]

[ Node Manager ] [ Node Manager ]




YARN Architecture - Resource Manager

» One per cluster (Central: global view)

» Job requests are submitted to RM.
e To start a job, RM finds a container to spawn AM.

Client - RM Scheduler =
AMService

» Only handles an overall resource profile for each job.
RM - AM

e Local optimization is up to the job.

By [
[ Node Manager ] [ Node Manager ] [ Node Manager ]
T




YARN Architecture - Application Manager

» The head of a job.
» Runs as a container.

» Request resources from RM (num. of containers/resource per container/locality ...)

ResourceManager
RM -- NodeManager
(etient ) Cliont — RM Scheduler 2 ~)
client .
AMService
RM - AM I
—»| Container
hA:II hA’II\? Umbilical Container
U i)
{ Node Manager J [ Node Manager J - Node Manager
L I : 2

|




YARN Architecture - Node Manager

» The worker daemon.
> Registers with RM.
ResourceManager RM - NodeManager
» One per node. Caton | [ soheauer |3 S
P (o

» Report resources to RM: memory, CPU, ... - ]
(M—;"” ME Umbilical tainer
E El—r==
[ Node Manager J [ Node Manager ] . [ Node Manager ]

L t = —




Borg




Borg

» Cluster management system at Google.

Google




Borg Cell, Job, Task, and Alloc

» Cell: a set of machines managed by Borg as one unit.

Cell

Alloc
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» Cell: a set of machines managed by Borg as one unit.

» Job: users submit work in the form of jobs.
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Borg Cell, Job, Task, and Alloc

» Cell: a set of machines managed by Borg as one unit.

» Job: users submit work in the form of jobs.

» Task: each job contains one or more tasks.

Cell

Alloc
instance

Job Alloc set

n'_n._l_n'
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Borg Cell, Job, Task, and Alloc

Cell: a set of machines managed by Borg as one unit.

Job: users submit work in the form of jobs.

Task: each job contains one or more tasks.

Alloc: reserved set of resources and a job can
run in an alloc set.

Cell

Alloc
instance

Job Alloc set

n'_n._l_n'




Borg Cell, Job, Task, and Alloc

Cell: a set of machines managed by Borg as one unit.

Job: users submit work in the form of jobs.
Task: each job contains one or more tasks.

Alloc: reserved set of resources and a job can
run in an alloc set.

Alloc instance: making each of its tasks run in
an alloc instance.

Cell

Alloc
instance

Job Alloc set

n'_n._l_n'




Borg Architecture

> BorgMaster

e The central brain of the system

Config
file

e Holds the cluster state o
 Replicated for reliability (using paxos)

BorgMaster "eﬁd/\;I
i share
e Scheduling: where to place tasks? m SiiiL§2Los)
| link shard |
i 25

[Borglet || Borglet [Borglet_||

5‘[][]'2'[:]
)V = [




Borg Architecture

> BorgMaster

e The central brain of the system

Config
file

e Holds the cluster state -
 Replicated for reliability (using paxos)

BorgMaster | read/Ul
. . 2 shard
e Scheduling: where to place tasks? [ b—] pesnt
I link shard |
> Borglet /v
e Manage and monitor tasks and resource i< e
» BorgMaster polls Borglet every few seconds Loee |l podel “"S'e' '
=IO ==
(B | [




Borg Scheduler

cell %
» Feasibility checking: find machines for a given job s ||

—| persistent
[soresuer J o
link shard

e >
Borglet Borglet Borglet Borglet

=0 8Y)) == [y




Borg Scheduler

cell %
» Feasibility checking: find machines for a given job s ||

—| persistent
scheduler |1 store (Paxos)
link shard

» Scoring: pick one machines

e >
Borglet Borglet Borglet Borglet

=0 8Y)) == [y




Borg Scheduler

cell %
» Feasibility checking: find machines for a given job s ||

—| persistent
scheduler |1 store (Paxos)
link shard

» Scoring: pick one machines

» According to the users prefs and built-in criteria

e >
Borglet Borglet Borglet Borglet

=0 8Y)) == [y




Docker and Kubernetes



Application Deployment

App App App App
sty T
Virtual Machine Virtual Machine Container Container Container

App App App
| omeesrn |

Traditional Deployment Virtualized Deployment Container Deployment




Traditional Deployment Era

» Running applications on physical servers.

App App App
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» Running applications on physical servers.

» No resource boundaries for applications in a physical server
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Traditional Deployment Era

» Running applications on physical servers.
» No resource boundaries for applications in a physical server

» Resource allocation issues, e.g., one application would take up most of the resources,
so the other applications would underperform.

App App App

Traditional Deployment




Virtualized Deployment Era

» Virtual Machines (VMs): a full machine running all the components, including its
own operating system (OS), on top of the virtualized hardware.

App App App App

Virtual Machine Wirtual Machine.
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Virtualized Deployment Era

» Virtual Machines (VMs): a full machine running all the components, including its
own operating system (OS), on top of the virtualized hardware.

» Virtualization allows to run multiple VMs on a single physical server's CPU.
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Virtualized Deployment Era

» Virtual Machines (VMs): a full machine running all the components, including its
own operating system (OS), on top of the virtualized hardware.

» Virtualization allows to run multiple VMs on a single physical server's CPU.
 Utilizes the resources of a physical server better.
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Virtualized Deployment Era

» Virtual Machines (VMs): a full machine running all the components, including its
own operating system (OS), on top of the virtualized hardware.

» Virtualization allows to run multiple VMs on a single physical server's CPU.

 Utilizes the resources of a physical server better.
o Better scalability as applications can be added/updated easily.

App App App App

Virtual Machine Wirtual Machine.

Virtualized Deployment




Container Deployment Era

» Containers are similar to VMs, but they have relaxed isolation properties to share the
OS among the applications.
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Container Deployment Era

» Containers are similar to VMs, but they have relaxed isolation properties to share the
OS among the applications.

» Similar to a VM, a container packages applications as images that contain everything
needed to run them: code, runtime environment, libraries, and configuration.
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Container Deployment Era

» Containers are similar to VMs, but they have relaxed isolation properties to share the
OS among the applications.

» Similar to a VM, a container packages applications as images that contain everything
needed to run them: code, runtime environment, libraries, and configuration.

» As they are decoupled from the underlying infrastructure,
they are portable across clouds and OS distributions.

App. App

Container Container

App

Container

Container Deployment




Docker

» Docker is a virtualization software.

Docker

= =L

Image 1

Docker
Client ﬁ Container 1

docker pull Container 2
docker run Container 3

o — docker

Image 2

Image 3




Docker

» Docker is a virtualization software.

» A docker image is a template, and a container is a copy of that template.

Docker
Client

e

docker pull
docker run
docker ...

Container 1
Container 2

Container 3

Container N

Docker
Registry

Image 1

Image 2

Image 3

Image N

docker



Container Orchestration

» Container scalability is an operational challenge.
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» Container scalability is an operational challenge.

v

If we have 10 containers and four applications, it is not difficult to manage the
deployment and maintenance of the containers.

v

But, what if we have 1000 containers and 400 services?

v

Container orchestration can help to manage the lifecycles of containers, especially in
large and dynamic environments.




Container Orchestration

Container scalability is an operational challenge.

If we have 10 containers and four applications, it is not difficult to manage the
deployment and maintenance of the containers.

But, what if we have 1000 containers and 400 services?

Container orchestration can help to manage the lifecycles of containers, especially in
large and dynamic environments.

Container orchestration tools: Kubernetes (based on Borg), Marathon (runs on
Mesos)




Summary




Summary

» Mesos

» Offered-based
e Max-Min fairness: DRF

» YARN
e Request-based
« RM, AM, NM
» Borg

* Request-based
e BorgMaster, Borglet
e Kubernetes
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