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The Course Web Page

https://id2221kth.github.io


https://id2221kth.github.io

The Questions-Answers Page

https://tinyurl. com/hk7hzpwb


https://tinyurl.com/hk7hzpw5

Where Are We?

Data Processing

Pregel, GraphLab, PowerGraph Spark SQL Milib
GraphX, X-Streem, Chaos Tensorflow

MapReduce, Dryad Storm, SEEP, Naiad, Spark Streaming, Flink,
FlumeJava, Spark Millwheel, Google Dataflow

Data Storage

Dynamo, BigTable,
GFS, Flat FS Cassandra

Resource Management

Mesos, YARN




What Are The Challenges?



The Biggest Challenges With Data Today

>

Data quality

v

Staleness

Data volume

v

Scale

v




Fivetran Data Analyst Survey

» 60% reported data quality as top challenge.

d Resource

» 86% of analysts had to use stale data,
with 41% using data that is > 2 months old.

» 90% regularly had unreliable data sources over
the last 12 months

‘\\\‘ Fivetran




Getting high-quality, timely data is hard!



The Evolution of Data Management



Data Warehouses (1980s)

» ETL (Extract, Transform, Load) data directly
from operational database systems.
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Data Warehouses (1980s)

» ETL (Extract, Transform, Load) data directly
from operational database systems.

» Purpose-built for SQL analytics and BI:
schemas, indexes, caching, etc.

» Powerful management features such as
ACID transactions and time travel

SEE8B

Operational Data




Data Warehouses - Problems (2010s)

» Could not support rapidly growing unstructured and Bl Reports
semi-structured data: time series, logs, images, T

documents, etc. @ @ @
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Data Warehouses - Problems (2010s)

» Could not support rapidly growing unstructured and Bl Reports
semi-structured data: time series, logs, images, T

documents, etc. @ @ @

» High cost to store large datasets. Data Warehouses

» No support for data science and ML.
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Data Lakes (2010s)

» Low-cost storage to hold all raw data,
e.g., Amazon S3, and HDFS.
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Data Lakes (2010s)

» Low-cost storage to hold all raw data,
e.g., Amazon S3, and HDFS.

» ETL jobs then load specific data into warehouses,
possibly for further ELT.

» Directly readable in ML libraries (e.g., TensorFlow and
PyTorch) due to open file format.
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Data Lakes - Problems (Todays)

» Cheap to store all the data, but system architecture is
much more complex!
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Data Lakes - Problems (Todays)

» Cheap to store all the data, but system architecture is
much more complex!

» Data reliability suffers:
e Multiple storage systems with different semantics,

SQL dialects, etc.
e Extra ETL steps that can go wrong.
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Data Lakes - Problems (Todays)

» Cheap to store all the data, but system architecture is
much more complex!

» Data reliability suffers:
e Multiple storage systems with different semantics,
SQL dialects, etc.
e Extra ETL steps that can go wrong.

» Timeliness suffers and high cost:
e Extra ETL steps before data is available in data warehouses.
e Continuous ETL, duplicated storage
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Data Lake vs. Data Warehouse

Data - Data
Lake VS warenovse

» Data Lake stores all data irrespective of the source and its structure whereas Data
Warehouse stores data in quantitative metrics with their attributes.
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Data Lake vs. Data Warehouse

Data - Data
Lake VS warenovse

» Data Lake stores all data irrespective of the source and its structure whereas Data
Warehouse stores data in quantitative metrics with their attributes.

» Data Lake defines the schema after data is stored whereas Data Warehouse defines
the schema before data is stored.

» Data Lake uses the ELT process while the Data Warehouse uses ETL process.




Lakehouse



Lakehouse Vision
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Streamlng Data Machine
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] Single platform for every use case

Management features
(transactions, versioning, etc.)
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Structured, Semi-Structured & Unstructured Data

» Lakehouse systems combine the benefits of Data Warehouses and Data Lakes while
simplifying enterprise data architectures.




Lakehouse Systems
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Key Technologies Enabling Lakehouse

@g (@ &
» Metadata layers for Data Lakes

Report: Data Machine
eports Sclence Learnlng

SUL AP\s Dec\aratlve
DataFrame APls

Metadata APIS

Transaction mgmt.,

_, governance, versioning,
- ”E‘a"a‘ﬁv@ac"'"‘!‘a““ auxiliary datasstructures
i@:@ IndexingLayer
£
N ETL A7 0°% Tertitee ilesi
v ¢ : e

Data filesin open
°.' Datalake format (e.g. Parquet)

@é]ﬂ»ll%

Structured, Semi-structured & Unstructured Data




» Metadata layers for Data Lakes

» New query engine designs

Key Technologies Enabling Lakehouse
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Key Technologies Enabling Lakehouse

Metadata layers for Data Lakes
New query engine designs

Declarative access for data science and ML
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Metadata Layers for Data Lakes

» Add transactions, versioning, and more ... —@ @]’ @ %
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Metadata Layers for Data Lakes

» Add transactions, versioning, and more ...

» Track which files are part of a table version to offer rich
management features like transactions.
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Metadata Layers for Data Lakes
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» Track which files are part of a table version to offer rich
management features like transactions.

» Implemented in multiple systems, such as Delta Lake.
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New Query Engine Designs

» Great SQL performance on Data Lake storage systems and file formats.
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New Query Engine Designs

» Great SQL performance on Data Lake storage systems and file formats.

» Directly-accessible file storage optimizations can enable high SQL performance:
¢ Caching hot data in RAM/SSD
e Data layout within files to cluster co-accessed data
* Auxiliary data structures like statistics and indexes




Declarative Access for Data Science and ML

» New declarative interfaces for |/O enable further optimization.

User program Lazily evaluated query plan

users = spark.table(“users”)

PROJECT(NULL — 0)
|

buygr's = users[users.kind == .huyer‘ ] ) L PROJECT(date, zip, ...
train_set = buyers[“date”, “zip”, “price”] |
.fillna(e) SELECT(kind = "buyer”)
|
users
model. it (train set) A\ DELTA LAKE
clientlibrary

Optimized execution using
cache, statistics, index, etc




Declarative Access for Data Science and ML

» New declarative interfaces for |/O enable further optimization.

» Example: Spark DataFrame API compiles to relational algebra.

User program Lazily evaluated query plan

users = spark.table(“users”)

PROJECT(NULL — 0)
|

- ind == »
buygr's = users[users.kind .huyer‘ ] ) L PROJECT(date, zip, ..
train_set = buyers[“date”, “zip”, “price”] |
.fillna(e) SELECT(kind = "buyer’)
|
users
model. it (train set) A\ DELTA LAKE

clientlibrary

Optimized execution using
cache, statistics, index, etc
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» Delta Lake is an open source storage layer that brings reliability to Data Lakes.
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Delta Lake

>

Delta Lake is an open source storage layer that brings reliability to Data Lakes.

Provides ACID transactions.

v

v

Provides scalable metadata handling.

v

Provides time travel and versioning.

v

Unifies streaming and batch data processing.




Delta Lake Table

» Delta Lake Table is a directory (e.g., mytable) that holds data objects and a log of
transaction operations.

mytable/date=2020-01-01/1b8a32d2ad.parquet
/a2dc5244f7 .parquet
/date=2020-01-02/f52312dfae.parquet
/ba68f6bd4af.parquet

/_delta_log/000001.json

/000002. json

/000003 . json

/000003 .parquet -

/000004 .json —
/000005 . json \
/_last_checkpoint A\

\

Contains {version: “0@0083”} / \
Combines log
records 1to 3

Transaction’s operations, e.g.,
add date=2020-01-01/a2dc5244f77.parquet
add date=2020-01-02/ba68f6bd4fle.parquet

Data objects
(partitioned
by date field)

Log records
& checkpoints




Deltalog

» Deltalog is a transaction log that tracks all changes that users make to the table.




Deltalog

» Deltalog is a transaction log that tracks all changes that users make to the table.

» Delta Lake uses the DeltaLog for many features including ACID transactions, scalable
metadata handling, time travel, etc.




DeltaLog Structure (1/2)

» When a user creates a Delta Lake Table, its DeltalLog is automatically created in the
_delta_ log subdirectory.

my_table/
_delta_log/
00000. json
00001. json
date=2019-01-01/

file-1.parquet
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DeltaLog Structure (1/2)

» When a user creates a Delta Lake Table, its DeltalLog is automatically created in the
_delta_ log subdirectory.

» Any changes to that table are then recorded as ordered, atomic commits in the
Deltalog.

» Each commit is written out as a JSON file, starting with 000000. json.

» Additional changes to the table generate subsequent JSON files in ascending numer-
ical order, e.g., 000001. json, 000002.json, and so on.

my_table/
_delta_log/
00000. json
00001. json
date=2019-01-01/

file-1.parquet




Deltalog Structure (2/2)

> Assume you add some records to a table from data files 1.parquet and 2.parquet.

000000. json
000001.json
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commit 000000. json.
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Deltalog Structure (2/2)

> Assume you add some records to a table from data files 1.parquet and 2.parquet.

» That transaction would automatically be added to the Deltalog, saved to disk as
commit 000000. json.

> Then, assume remove those files and add 3.parquet instead.

000000. json
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Deltalog Structure (2/2)

Assume you add some records to a table from data files 1.parquet and 2.parquet.

That transaction would automatically be added to the Deltalog, saved to disk as
commit 000000. json.

Then, assume remove those files and add 3.parquet instead.

Those actions would be recorded as the next commit in the Deltalog, as
000001. json.

000000. json
000001.json




Delta Lake Transaction Example

» Query: delete all events data about customer no. 17

“events” table

[ filel.parquet rewrite

L file2.parquet

‘ file3.parquet rewrite

|/ _delta_log / vl.parquet
/ v2.parquet

—

track which files are part of
each version of the table
(e.g., v2 =filel, file2, file3)

filelb.parquet

file3b.parquet

atomically add new log file
_delta_log / v3.parquet
-
v3 = filelb, file2, file3b




Delta Lake Transaction Example
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L file2.parquet
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track which files are part of v3 = fileb, file2, file3b

each version of the table
(e.g., v2 =filel, file2, file3)

» Clients now always read a consistent table version!
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Delta Lake Transaction Example

» Query: delete all events data about customer no. 17

“events” table

E filel.parquet rewrite filelb.parquet

C file2.parquet

. .
‘ file3.parquet rewrite file3b.parquet

|/ _delta_log / vl.parquet

/ v2.parquet atomically add new log file
_delta_log / v3.parquet
- -
track which files are part of v3 = fileb, file2, file3b

each version of the table
(e.g., v2 =filel, file2, file3)

» Clients now always read a consistent table version!

o If a client reads v2 of log, it sees filel, file2, file3 (no delete)
e If a client reads v3 of log, it sees filelb, file2, file3b (all deleted)
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Actions and Commits

» Each log record object (e.g., 000003.json) contains a commit, i.e., an array of
actions recoreded as atomic, ordered units.

» Change metadata: name, schema, partitioning, etc.
» Add/remove file: adds/removes a file
» Protocol evolution: upgrades the version of the transaction protocol

» Set transaction: records an idempotent transaction id

» Commit info: information around commit for auditing
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Use Cases - Time Travel

» Every table is the result of the sum of all of the commits recorded in the Delta Lake
Deltalog.
» The DeltalLog provides a step-by-step instruction guide, detailing exactly how to get

from the table's original state to its current state.

v

Thus, we can recreate the state of a table at any point in time.
 Starting with an original table, and processing only commits made prior to that point.

v

This ability is known as time travel or data versioning.




Use Cases - Data Lineage and Debugging

» The Delta Lake DeltalLog offers users a verifiable data lineage.
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Use Cases - Data Lineage and Debugging

» The Delta Lake DeltalLog offers users a verifiable data lineage.

» It is is useful for governance, audit and compliance purposes.

» It can also be used to trace the origin of an inadvertent change or a bug in a pipeline
back to the exact action that caused it.




Schema Enforcement and Evolution
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Schema Enforcement and Evolution

>

Data is always evolving and accumulating.

v

So, structure of data evolves over time.

v

With Delta Lake, as the data changes, incorporating new dimensions is easy.

v

Schema enforcement: prevents users from accidentally polluting their tables with
mistakes or garbage data.

v

Schema evolution: enables automatic addition of columns when desired.




Understanding Table Schemas

» Spark DataFrames contain the schema.

» With Delta Lake, the table's schema is saved in JSON format inside the Deltalog.

schemaString: {"type":"struct","fields":[
{"name":"loan_id","type":"long","nullable":false, "metadata":{}},
"name":"funded_amnt","type":"integer", "nullable":true, "metadata”:{}},
{"name":"paid_amnt","type":"double","nullable":true,"metadata":{}},

{"name":"addr_state","type":"string","nullable":true, "metadata”:{}}

1}
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» Schema enforcement (a.k.a schema validation) occurs on write.
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Schema Enforcement

» Schema enforcement (a.k.a schema validation) occurs on write.

> If the schema is not compatible, Delta Lake cancels the transaction, i.e., no data is
written.

» As well, Delta Lake raises an exception to let the user know about the mismatch.




Schema Enforcement Rules

> Rule 1: cannot contain any additional columns that are not present in the target
table's schema.
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Schema Enforcement Rules

> Rule 1: cannot contain any additional columns that are not present in the target
table's schema.

» Rule 2: cannot have column data types that differ from the column data types in
the target table.

» Rule 3: Can not contain column names that differ only by case.




Schema Evolution

» Schema evolution allows users to change a table’s current schema to accommodate
data that is changing over time.




Schema Evolution

» Schema evolution allows users to change a table’s current schema to accommodate
data that is changing over time.

» Most commonly used operations for append and overwrite.




Delta Lake and Spark



Loading Data into a Delta Lake Table (1/2)

» All you need to migrate any of the structured data formats (e.g., Parquet) to Delta
Lake is to use format ("delta").

// Configure source data and Delta Lake path
val sourcePath = "loan-risks.snappy.parquet"
val deltaPath = "loans_delta"

// Create the Delta table with the same loans data
spark.read.format ("parquet") .load (sourcePath) .write.format ("delta") .save(deltaPath)

// Create a view on the data called loans_delta
spark.read.format("delta") .load(deltaPath) .createOrReplaceTempView("loans_delta")




// Read and ezplore the data
spark.sql ("SELECT count(*) FROM loans_delta").show()

pE—=oToos +
| count (1) |
e +
| 14705]|
B +

// First 3 rows of loans table
spark.sql ("SELECT * FROM loans_delta LIMIT 3").show()

} + N fmm e +
|loan_id|funded_amnt|paid_amnt |addr_state]
+ - fmmm e +

ol 1000| 182.22] CA|

1] 1000| 361.19| WA|

2| 1000 176.26| TX|

+ + + +

+ ——— +

ar + t ar




Loading Data Streams into a Delta Lake Table

» You can modify your existing Structured Streaming jobs to write to and read from
a Delta Lake table by setting the format to "delta".




Loading Data Streams into a Delta Lake Table

» You can modify your existing Structured Streaming jobs to write to and read from
a Delta Lake table by setting the format to "delta".

import org.apache.spark.sql.streaming._

// Streaming DataFrame with new loans data
val newLoanStreamDF = ...

// Directory for streaming checkpoints
val checkpointDir = ...

val streamingQuery = newLoanStreamDF.writeStream
.format("delta")

.option("checkpointLocation", checkpointDir)
.trigger (Trigger.ProcessingTime("10 seconds"))
.start (deltaPath)




Schema Enforcement

» All writes to a Delta Lake table can verify whether the data being written has a
schema compatible with that of the table.

val loanUpdates = Seq(
(1111111L, 1000, 1000.0, "TX", false),
(2222222L, 2000, 0.0, "CA", true))
.toDF("loan_id", "funded_amnt", "paid_amnt", "addr_state", "closed")

loanUpdates.write.format("delta") .mode("append") .save(deltaPath)

// The exception message:

// This write will fail with the following error message:

// org.apache.spark.sql.AnalysisException: A schema mismatch detected when writing
// to the Delta table (Table ID: 48bfa949-5a09-49ce-96cb-34090ab7d695) .




Schema Enforcement

» All writes to a Delta Lake table can verify whether the data being written has a
schema compatible with that of the table.

» If it is not compatible, Spark will throw an error before any data is written and
committed to the table.

val loanUpdates = Seq(
(1111111L, 1000, 1000.0, "TX", false),
(22222221, 2000, 0.0, "CA", true))
.toDF("loan_id", "funded_amnt", "paid_amnt", "addr_state", "closed")

loanUpdates.write.format("delta") .mode("append") .save(deltaPath)

// The exception message:

// This write will fail with the following error message:

// org.apache.spark.sql.AnalysisException: A schema mismatch detected when writing
// to the Delta table (Table ID: 48bfa949-5a09-49ce-96cb-34090ab7d695) .




Schema Evolution

> A new column can be explicitly added by setting the option mergeSchema to true.

loanUpdates.write.format("delta") .mode("append")
.option("mergeSchema", "true")
.save (deltaPath)




Transforming Existing Data - Updating Data

> Delta Lake supports UPDATE, DELETE, and MERGE commands
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Transforming Existing Data - Updating Data

> Delta Lake supports UPDATE, DELETE, and MERGE commands

» They ensure ACID guarantees.
» Assume we want to change all addr_state = ’0R’ to addr_state = ’WA’ in a
table.

import io.delta.tables.DeltaTable
import org.apache.spark.sql.functions._

val deltaTable = DeltaTable.forPath(spark, deltaPath)

deltaTable.update(
col("addr_state") === "OR",
Map ("addr_state" -> 1it("WA")))




Transforming Existing Data - Deleting Data

» Deleting user data from all tables.

val deltaTable = DeltaTable.forPath(spark, deltaPath)

deltaTable.delete("funded_amnt >= paid_amnt")




Auditing Data Changes with Operation History

> All of the changes are recorded as commits in the table's Deltalog.
» Every operation is automatically versioned.

» You can query the table's operation history.

deltaTable
.history(3)
.select("version", "timestamp", "operation", "operationParameters")
.show(false)




Querying Previous Snapshots of a Table with Time Travel

» You can query previous versioned snapshots of a table by using the DataFrameReader
options versionAsOf and timestampAsOf.

spark.read.format ("delta")
.option("timestampAsOf", "2020-01-01") // timestamp after table creation
.load(deltaPath)

spark.read.format ("delta")
.option("versionAsOf", "4")
.load(deltaPath)




Summary




Summary

Late 1980’s

Data Warehouse
4

Bl Reports

=EEE

Data Marts

External Data Operational Data

2011
Data Lake

o = -

Data Machine  Real-Time Reports Bl

Science Learning  Database T

*  Data Marts
Data Prep
and Validation

Structured, Semi-Structured and Unstructured Data

2020

Lakehouse

—)

Streaming Analytics Data Science

12
\&_ﬁ‘?&)

Machine Learning

000 = @ ¢ B

Structured, Semi-Structured and Unstructured Data




References

>

J. S. Damji et al., “Learning Spark - Lightning-Fast Data Analytics”, O'Reilly Media,
2020 - Chapters 9

» M. Armbrust et al., “Lakehouse: A New Generation of Open Platforms that Unify
Data Warehousing and Advanced Analytics”, CIDR 2021

v

M. Armbrust et al., “Delta Lake: High-Performance ACID Table Storage over Cloud
Object Stores”, VLBD 2020



Questions?

Acknowledgements

Some content and images are derived from Jules S. Damji, Andreas Neumann,
Burak Yavuz, and Denny Lee slides from Databricks.




